1
|
Sánchez-Romero MA, Casadesús J. Waddington's Landscapes in the Bacterial World. Front Microbiol 2021; 12:685080. [PMID: 34149674 PMCID: PMC8212987 DOI: 10.3389/fmicb.2021.685080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Conrad Waddington’s epigenetic landscape, a visual metaphor for the development of multicellular organisms, is appropriate to depict the formation of phenotypic variants of bacterial cells. Examples of bacterial differentiation that result in morphological change have been known for decades. In addition, bacterial populations contain phenotypic cell variants that lack morphological change, and the advent of fluorescent protein technology and single-cell analysis has unveiled scores of examples. Cell-specific gene expression patterns can have a random origin or arise as a programmed event. When phenotypic cell-to-cell differences are heritable, bacterial lineages are formed. The mechanisms that transmit epigenetic states to daughter cells can have strikingly different levels of complexity, from the propagation of simple feedback loops to the formation of complex DNA methylation patterns. Game theory predicts that phenotypic heterogeneity can facilitate bacterial adaptation to hostile or unpredictable environments, serving either as a division of labor or as a bet hedging that anticipates future challenges. Experimental observation confirms the existence of both types of strategies in the bacterial world.
Collapse
Affiliation(s)
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Yi X, Kazlauskas R, Travisano M. Evolutionary innovation using EDGE, a system for localized elevated mutagenesis. PLoS One 2020; 15:e0232330. [PMID: 32353078 PMCID: PMC7192385 DOI: 10.1371/journal.pone.0232330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mutations arising across the whole genome can hinder the emergence of evolutionary innovation required for adaptation because many mutations are deleterious. This trade-off is overcome by elevated mutagenesis to localized loci. Examples include phase variation and diversity-generating retroelements. However, these mechanisms are rare in nature; and all have narrow mutational spectra limiting evolutionary innovation. Here, we engineer a platform of Experimental Designed Genic Evolution (EDGE) to study the potential for evolutionary novelty at a single locus. Experimental evolution with EDGE shows that bacterial resistance to a novel antibiotic readily evolves, provided that elevated mutagenesis is focused on a relevant gene. A model is proposed to account for the cost and benefit of such single loci to adaptation in a changing environment and explains their high mutation rates, limited innovation, and the rarity of localized mutagenesis in nature. Overall, our results suggest that localized mutation systems can facilitate continuing adaptive evolution without necessarily restricting the spectrum of mutations. EDGE has utility in dissecting the complex process of adaptation with its localized, efficient evolution.
Collapse
Affiliation(s)
- Xiao Yi
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Romas Kazlauskas
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Michael Travisano
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
3
|
Mutational and non mutational adaptation of Salmonella enterica to the gall bladder. Sci Rep 2019; 9:5203. [PMID: 30914708 PMCID: PMC6435676 DOI: 10.1038/s41598-019-41600-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
During systemic infection of susceptible hosts, Salmonella enterica colonizes the gall bladder, which contains lethal concentrations of bile salts. Recovery of Salmonella cells from the gall bladder of infected mice yields two types of isolates: (i) bile-resistant mutants; (ii) isolates that survive lethal selection without mutation. Bile-resistant mutants are recovered at frequencies high enough to suggest that increased mutation rates may occur in the gall bladder, thus providing a tentative example of stress-induced mutation in a natural environment. However, most bile-resistant mutants characterized in this study show defects in traits that are relevant for Salmonella colonization of the animal host. Mutation may thus permit short-term adaptation to the gall bladder at the expense of losing fitness for transmission to new hosts. In contrast, non mutational adaptation may have evolved as a fitness-preserving strategy. Failure of RpoS− mutants to colonize the gall bladder supports the involvement of the general stress response in non mutational adaptation.
Collapse
|
4
|
O'Malley MA. Histories of molecules: Reconciling the past. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2016; 55:69-83. [PMID: 26774071 DOI: 10.1016/j.shpsa.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Molecular data and methods have become centrally important to evolutionary analysis, largely because they have enabled global phylogenetic reconstructions of the relationships between organisms in the tree of life. Often, however, molecular stories conflict dramatically with morphology-based histories of lineages. The evolutionary origin of animal groups provides one such case. In other instances, different molecular analyses have so far proved irreconcilable. The ancient and major divergence of eukaryotes from prokaryotic ancestors is an example of this sort of problem. Efforts to overcome these conflicts highlight the role models play in phylogenetic reconstruction. One crucial model is the molecular clock; another is that of 'simple-to-complex' modification. I will examine animal and eukaryote evolution against a backdrop of increasing methodological sophistication in molecular phylogeny, and conclude with some reflections on the nature of historical science in the molecular era of phylogeny.
Collapse
|
5
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
6
|
Abstract
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
7
|
Sommer M. History in the gene: negotiations between molecular and organismal anthropology. JOURNAL OF THE HISTORY OF BIOLOGY 2008; 41:473-528. [PMID: 19244721 DOI: 10.1007/s10739-008-9150-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the advertising discourse of human genetic database projects, of genetic ancestry tracing companies, and in popular books on anthropological genetics, what I refer to as the anthropological gene and genome appear as documents of human history, by far surpassing the written record and oral history in scope and accuracy as archives of our past. How did macromolecules become "documents of human evolutionary history"? Historically, molecular anthropology, a term introduced by Emile Zuckerkandl in 1962 to characterize the study of primate phylogeny and human evolution on the molecular level, asserted its claim to the privilege of interpretation regarding hominoid, hominid, and human phylogeny and evolution vis-à-vis other historical sciences such as evolutionary biology, physical anthropology, and paleoanthropology. This process will be discussed on the basis of three key conferences on primate classification and evolution that brought together exponents of the respective fields and that were held in approximately ten-years intervals between the early 1960s and the 1980s. I show how the anthropological gene and genome gained their status as the most fundamental, clean, and direct records of historical information, and how the prioritizing of these epistemic objects was part of a complex involving the objectivity of numbers, logic, and mathematics, the objectivity of machines and instruments, and the objectivity seen to reside in the epistemic objects themselves.
Collapse
|
8
|
Abstract
Despite the remarkable developments in molecular biology over the past three decades, anthropological genetics has had only limited impact on systematics in human evolution. Genetics offers the opportunity to objectively test taxonomies based on morphology and may be used to supplement conventional approaches to hominid systematics. Our analyses, examining chromosomes and 46 estimates of genetic distance, indicate there may have been only around 4 species on the direct line to modern humans and 5 species in total. This contrasts with current taxonomies recognising up to 23 species. The genetic proximity of humans and chimpanzees has been used to suggest these species are congeneric. Our analysis of genetic distances between them is consistent with this proposal. It is time that chimpanzees, living humans and all fossil humans be classified in Homo. The creation of new genera can no longer be a solution to the complexities of fossil morphologies. Published genetic distances between common chimpanzees and bonobos, along with evidence for interbreeding, suggest they should be assigned to a single species. The short distance between humans and chimpanzees also places a strict limit on the number of possible evolutionary 'side branches' that might be recognised on the human lineage. All fossil taxa were genetically very close to each other and likely to have been below congeneric genetic distances seen for many mammals. Our estimates of genetic divergence suggest that periods of around 2 million years are required to produce sufficient genetic distance to represent speciation. Therefore, Neanderthals and so-called H. erectus were genetically so close to contemporary H. sapiens they were unlikely to have been separate species. Thus, it is likely there was only one species of human (H. sapiens) for most of the last 2 million years. We estimate the divergence time of H. sapiens from 16 genetic distances to be around 1.7 Ma which is consistent with evidence for the earliest migration out of Africa. These findings call into question the mitochondrial "African Eve" hypothesis based on a far more recent origin for H. sapiens and show that humans did not go through a bottleneck in their recent evolutionary history. Given the large offset in evolutionary rates of molecules and morphology seen in human evolution, Homo species are likely to be characterised by high levels of morphological variation and low levels of genetic variability. Thus, molecular data suggest the limits for intraspecific morphological variation used by many palaeoanthropologists have been set too low. The role of phenotypic plasticity has been greatly underestimated in human evolution. We call into question the use of mtDNA for studies of human evolution. This DNA is under strong selection, which violates the assumption of selective neutrality. This issue should be addressed by geneticists, including a reassessment of its use for molecular clocks. There is a need for greater cooperation between palaeoanthropologists and anthropological geneticists to better understand human evolution and to bring palaeoanthropology into the mainstream of evolutionary biology.
Collapse
Affiliation(s)
- D Curnoe
- Department of Archaeology and Natural History, Research School of Pacific and Asian Studies, Australian National University, Canberra ACT 0200, Australia.
| | | |
Collapse
|
9
|
Wright BE, Longacre A, Reimers JM. Hypermutation in derepressed operons of Escherichia coli K12. Proc Natl Acad Sci U S A 1999; 96:5089-94. [PMID: 10220423 PMCID: PMC21821 DOI: 10.1073/pnas.96.9.5089] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This article presents evidence that starvation for leucine in an Escherichia coli auxotroph triggers metabolic activities that specifically target the leu operon for derepression, increased rates of transcription, and mutation. Derepression of the leu operon was a prerequisite for its activation by the signal nucleotide, guanosine tetraphosphate, which accumulates in response to nutritional stress (the stringent response). A quantitative correlation was established between leuB mRNA abundance and leuB- reversion rates. To further demonstrate that derepression increased mutation rates, the chromosomal leu operon was placed under the control of the inducible tac promoter. When the leu operon was induced by isopropyl-D-thiogalactoside, both leuB mRNA abundance and leuB- reversion rates increased. These investigations suggest that guanosine tetraphosphate may contribute as much as attenuation in regulating leu operon expression and that higher rates of mutation are specifically associated with the derepressed leu operon.
Collapse
Affiliation(s)
- B E Wright
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | |
Collapse
|
10
|
Eisses KT. Concurrent teratogenic and mutagenic action of 2-methoxyethanol inDrosophila melanogaster larvae resulted in similar phenotypes: Close resemblance to directed mutations. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1520-6866(1999)19:3<183::aid-tcm2>3.0.co;2-i] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Abstract
A decade of research on adaptive mutation has revealed a plethora of mutagenic mechanisms that may be important in evolution. The DNA synthesis associated with recombination could be an important source of spontaneous mutation in cells that are not proliferating. The movement of insertion elements can be responsive to environmental conditions. Insertion elements not only activate and inactivate genes, they also provide sequence homology that allows large-scale genomic rearrangements. Some conjugative plasmids can recombine with their host's chromosome, and may acquire chromosomal genes that could then spread through the population and even to other species. Finally, a subpopulation of transient hypermutators could be a source of multiple variant alleles, providing a mechanism for rapid evolution under adverse conditions.
Collapse
Affiliation(s)
- P L Foster
- Department of Biology, Indiana University, Bloomington 47405, USA.
| |
Collapse
|
12
|
Wright BE, Minnick MF. Reversion rates in a leuB auxotroph of Escherichia coli K-12 correlate with ppGpp levels during exponential growth. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):847-854. [PMID: 9084168 DOI: 10.1099/00221287-143-3-847] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two isogenic strains of Escherichia coli K-12 differing only in relA, as well as two spoT transductants of the relA- strain, were examined with respect to ppGpp levels and reversion rates of a leuB- allele under nine different conditions. A positive correlation was established between reversion rates and the steady-state concentration of ppGpp during exponential growth. The leuB genes from two leuB- strains (isogenic except for relA) were cloned and sequenced and found to contain a single mutation, namely, a C-to-T transition at nucleotide 857. This mutation resulted in a serine-to-leucine substitution at amino acid residue 286 of the LeuB protein. PCR products that encompassed the leuB lesion were generated from 53 revertants and then sequenced. Of these revertants, 36 were found to contain nucleotide substitutions that would result in a serine (wild type), valine or methionine at amino acid residue 286 of LeuB, and nearly all of them exhibited generation times similar to wild type. Seventeen of the analysed revertants were found to be suppressors that retained the encoded leucine at residue 286. The majority of the suppressor mutants exhibited generation times that were significantly longer than wild type.
Collapse
Affiliation(s)
| | - Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula, Ml 59812-1002, USA
| |
Collapse
|
13
|
Abstract
Several investigators have recently reported that significant numbers of appropriately adapted mutants can be induced in bacterial and yeast strains by exposing stationary phase cells to specific environmental challenges. The resulting mutants are said to be both selection-induced and demonstrably non-random in origin; if this interpretation is correct, it is in direct conflict with the conventional neo-Darwinian view, which is that spontaneous mutants are truly random in origin and arise without the intervention of any overtly adaptive forces. We believe that there are alternative ways of accounting for the appearance of many (and probably all) of the additional mutants which proponents of the adaptive mutation theory claim are observed only after they applied the appropriate selective pressure. Having reviewed the available evidence, we consider that most (if not all) of the sorts of mutants which are said to have been induced following exposure of stationary-phase cells to intense selective pressure are equally likely to have been generated during the operation of certain well-known, conventional (and essentially random) cellular DNA repair processes. Evidence in support of our view can be found in the mainstream literature on the origins of spontaneous mutations. We also note that some of the molecular models which have recently been proposed to explain the production of selection-induced mutations preferentially (or even only) in genes of adaptive significance may turn out to be of considerable interest in their own right, even although the mutants whose origins they were intended to explain may turn out to have arisen in a manner which is totally independent of the conditions used for their selection.
Collapse
Affiliation(s)
- D G MacPhee
- School of Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|
14
|
Affiliation(s)
- C O'hUigin
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Tübingen, Germany
| |
Collapse
|
15
|
Abstract
When populations of microorganisms are subjected to certain nonlethal selections, useful mutants arise among the nongrowing cells whereas useless mutants do not. This phenomenon, known as adaptive, directed, or selection-induced mutation, challenges the long-held belief that mutations only arise at random and without regard for utility. In recent years a growing number of studies have examined adaptive mutation in both bacteria and yeast. Although conflicts and controversies remain, the weight of the evidence indicates that adaptive mutation cannot be explained by trivial artifacts and that nondividing cells accumulate mutations in the absence of genomic replication. Because this process tends to produce only useful mutations, the cells appear to have a mechanism for preventing useless genetic changes from occurring or for eliminating them after they occur. The model that most readily explains the evidence is that cells under stress produce genetic variants continuously and at random, but these variants are immortalized as mutations only if they allow the cell to grow.
Collapse
Affiliation(s)
- P L Foster
- Department of Environmental Health, Boston University School of Public Health, Massachusetts 02118
| |
Collapse
|
16
|
|