Xu K. The genetic basis of selfing rate evolution.
Evolution 2022;
76:883-898. [PMID:
35395695 DOI:
10.1111/evo.14480]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 01/21/2023]
Abstract
Evolution of selfing is common in plant populations, but the genetic basis of selfing rate evolution remains unclear. Although the effects of genetic properties on fixation for mating-unrelated alleles have been investigated, loci that modify the selfing rate (selfing modifiers) differ from mating-unrelated loci in several aspects. Using population genetic models, I investigate the genetic basis of selfing rate evolution. For mating-unrelated alleles, selfing promotes fixation only for recessive mutations, but for selfing modifiers, because the selection coefficient depends on the background selfing rate, selfing can promote fixation even for dominant modifiers. For mating-unrelated alleles, the fixation probability from standing variation is independent of dominance and decreases with an increased background selfing rate. However, for selfing modifiers, the fixation probability peaks at an intermediate selfing rate and when alleles are recessive, because a change of its selection coefficient necessarily involves a change of the inbreeding coefficient, because both depend on the level of inbreeding depression. Furthermore, evolution of selfing involving multiple modifier loci is more likely when selfing is controlled by few large-effect rather than many slight-effect modifiers. I discuss how these characteristics of selfing modifiers have implications for the unidirectional transition from outcrossing to selfing and other empirical patterns.
Collapse