1
|
Abstract
Gastropod molluscs are among the most diverse and abundant animals in the oceans, and are successful colonizers of terrestrial and freshwater environments. Past phylogenetic efforts to resolve gastropod relationships resulted in a range of conflicting hypotheses. Here, we use phylogenomics to address deep relationships between the five major gastropod lineages—Caenogastropoda, Heterobranchia, Neritimorpha, Patellogastropoda and Vetigastropoda—and provide one congruent and well-supported topology. We substantially expand taxon sampling for outgroups and for previously underrepresented gastropod lineages, presenting new transcriptomes for neritimorphs and patellogastropods. We conduct analyses under maximum-likelihood, Bayesian inference and a coalescent-based approach, accounting for the most pervasive sources of systematic errors in large datasets: compositional heterogeneity, site heterogeneity, heterotachy, variation in evolutionary rates among genes, matrix completeness, outgroup choice and gene tree conflict. We find that vetigastropods and patellogastropods are sister taxa, and that neritimorphs are the sister group to caenogastropods and heterobranchs. We name these two major unranked clades Psilogastropoda and Angiogastropoda, respectively. We additionally provide the first genomic-scale data for internal relationships of neritimorphs and patellogastropods. Our results highlight the need for reinterpreting the evolution of morphological and developmental characters in gastropods, especially for inferring their ancestral states.
Collapse
Affiliation(s)
- Tauana Junqueira Cunha
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University , 26 Oxford Street, Cambridge, MA 02138 , USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University , 26 Oxford Street, Cambridge, MA 02138 , USA
| |
Collapse
|
2
|
Kristof A, de Oliveira AL, Kolbin KG, Wanninger A. Neuromuscular development in Patellogastropoda (Mollusca: Gastropoda) and its importance for reconstructing ancestral gastropod bodyplan features. J ZOOL SYST EVOL RES 2015; 54:22-39. [PMID: 26869747 PMCID: PMC4747121 DOI: 10.1111/jzs.12112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Within Gastropoda, limpets (Patellogastropoda) are considered the most basal branching taxon and its representatives are thus crucial for research into evolutionary questions. Here, we describe the development of the neuromuscular system in Lottia cf. kogamogai. In trochophore larvae, first serotonin‐like immunoreactivity (lir) appears in the apical organ and in the prototroch nerve ring. The arrangement and number of serotonin‐lir cells in the apical organ (three flask‐shaped, two round cells) are strikingly similar to those in putatively derived gastropods. First, FMRFamide‐lir appears in veliger larvae in the Anlagen of the future adult nervous system including the cerebral and pedal ganglia. As in other gastropods, the larvae of this limpet show one main and one accessory retractor as well as a pedal retractor and a prototroch muscle ring. Of these, only the pedal retractor persists until after metamorphosis and is part of the adult shell musculature. We found a hitherto undescribed, paired muscle that inserts at the base of the foot and runs towards the base of the tentacles. An apical organ with flask‐shaped cells, one main and one accessory retractor muscle is commonly found among gastropod larvae and thus might have been part of the last common ancestor.
Collapse
Affiliation(s)
- Alen Kristof
- Department of Integrative Zoology, University of Vienna, Vienna Austria
| | | | - Konstantin G Kolbin
- Laboratory of Cell Differentiation, A.V. Zhirmunsky Institute for Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok Russian Federation
| | - Andreas Wanninger
- Department of Integrative Zoology, University of Vienna, Vienna Austria
| |
Collapse
|
3
|
Feldmeyer B, Greshake B, Funke E, Ebersberger I, Pfenninger M. Positive selection in development and growth rate regulation genes involved in species divergence of the genus Radix. BMC Evol Biol 2015; 15:164. [PMID: 26281847 PMCID: PMC4539673 DOI: 10.1186/s12862-015-0434-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/24/2015] [Indexed: 01/09/2023] Open
Abstract
Background Life history traits like developmental time, age and size at maturity are directly related to fitness in all organisms and play a major role in adaptive evolution and speciation processes. Comparative genomic or transcriptomic approaches to identify positively selected genes involved in species divergence can help to generate hypotheses on the driving forces behind speciation. Here we use a bottom-up approach to investigate this hypothesis by comparative analysis of orthologous transcripts of four closely related European Radix species. Results Snails of the genus Radix occupy species specific distribution ranges with distinct climatic niches, indicating a potential for natural selection driven speciation based on ecological niche differentiation. We then inferred phylogenetic relationships among the four Radix species based on whole mt-genomes plus 23 nuclear loci. Three different tests to infer selection and changes in amino acid properties yielded a total of 134 genes with signatures of positive selection. The majority of these genes belonged to the functional gene ontology categories “reproduction” and “genitalia” with an overrepresentation of the functions “development” and “growth rate”. Conclusions We show here that Radix species divergence may be primarily enforced by selection on life history traits such as (larval-) development and growth rate. We thus hypothesise that life history differences may confer advantages under the according climate regimes, e.g., species occupying warmer and dryer habitats might have a fitness advantage with fast developing susceptible life stages, which are more tolerant to habitat desiccation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0434-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Feldmeyer
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, Frankfurt am Main, 60325, Germany. .,Evolutionary Biology, Johannes Gutenberg University Mainz, Müllerweg 6, Mainz, 55099, Germany.
| | - Bastian Greshake
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, Frankfurt am Main, 60325, Germany. .,Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Maxvon-Laue Str. 13, Frankfurt am Main, 60438, Germany.
| | - Elisabeth Funke
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, Frankfurt am Main, 60325, Germany.
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Maxvon-Laue Str. 13, Frankfurt am Main, 60438, Germany.
| | - Markus Pfenninger
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, Frankfurt am Main, 60325, Germany.
| |
Collapse
|
4
|
Mueller CA, Eme J, Burggren WW, Roghair RD, Rundle SD. Challenges and opportunities in developmental integrative physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:113-24. [PMID: 25711780 DOI: 10.1016/j.cbpa.2015.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/20/2023]
Abstract
This review explores challenges and opportunities in developmental physiology outlined by a symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal environmental conditions can alter morphological and physiological phenotypes in juveniles or adults, and capacities for developmental plasticity are common phenomena. Human neonates with body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly hypertension and cardiovascular disease. There are many rewarding areas of current and future research in comparative developmental physiology. We present key mechanisms, models, and experimental designs that can be used across taxa to investigate patterns in, and implications of, the development of animal phenotypes. Intraspecific variation in the timing of developmental events can be increased through developmental plasticity (heterokairy), and could provide the raw material for selection to produce heterochrony--an evolutionary change in the timing of developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal development represent a vulnerable period in the life history of an animal, when the developing organism may be unable to actively mitigate environmental perturbations. 'Critical windows' are periods of susceptibility or vulnerability to environmental or maternal challenges, periods when recovery from challenge is possible, and periods when the phenotype or epigenome has been altered. Developmental plasticity may allow survival in an altered environment, but it also has possible long-term consequences for the animal. "Catch-up growth" in humans after the critical perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive phenotype (one of many examples of "fetal programing"). Grand challenges for developmental physiology include integrating variation in developmental timing within and across generations, applying multiple stressor dosages and stressor exposure at different developmental timepoints, assessment of epigenetic and parental influences, developing new animal models and techniques, and assessing and implementing these designs and models in human health and development.
Collapse
Affiliation(s)
- C A Mueller
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Eme
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - W W Burggren
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA.
| | - R D Roghair
- Stead Family Department of Pediatrics, University of Iowa, 1270 CBRB JPP, Iowa City, IA 52242, USA.
| | - S D Rundle
- Marine Biology and Ecology Research Centre, Plymouth University, 611 Davy Building Drake Circus, Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
5
|
Kranz AM, Tollenaere A, Norris BJ, Degnan BM, Degnan SM. Identifying the germline in an equally cleaving mollusc: Vasa and Nanos expression during embryonic and larval development of the vetigastropod Haliotis asinina. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:267-79. [PMID: 20095031 DOI: 10.1002/jez.b.21336] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Members of the Vasa and Nanos gene families are important for the specification and development of the germline in diverse animals. Here, we determine spatial and temporal expression of Vasa and Nanos to investigate germline development in the vetigastropod Haliotis asinina. This is the first time these genes have been examined in an equally cleaving lophotrochozoan species. We find that HasVasa and HasNanos have largely overlapping, but not identical, expression patterns during embryonic and larval development, with both being maternally expressed and localized to the micromere cell lineages during cleavage. As embryonic development continues, HasVasa and HasNanos become progressively more enriched in the dorsal quadrant of the embryo. By the trochophore stage, both HasVasa and HasNanos are expressed in the putative mesodermal bands of the larva. This differs from the unequally cleaving gastropod Illyanasa obsoleta, in which IoVasa and IoNanos expression is detectable only in the early embryo and not during gastrulation and larval development. Our results suggest that the H. asinina germline arises from the 4d cell lineage and that primordial germ cells (PGCs) are not specified exclusively by maternally inherited determinants (preformation). As such, we infer that inductive signals (epigenesis) play an important role in specifying PGCs in H. asinina. We hypothesize that HasVasa is expressed in a population of undifferentiated multipotent cells, from which the PGCs are segregated later during development.
Collapse
Affiliation(s)
- Alexandrea M Kranz
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
6
|
Henry JJ, Collin R, Perry KJ. The slipper snail, Crepidula: an emerging lophotrochozoan model system. THE BIOLOGICAL BULLETIN 2010; 218:211-229. [PMID: 20570845 DOI: 10.1086/bblv218n3p211] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent developmental and genomic research focused on "slipper snails" in the genus Crepidula has positioned Crepidula fornicata as a de facto model system for lophotrochozoan development. Here we review recent developments, as well as earlier reports demonstrating the widespread use of this system in studies of development and life history. Recent studies have resulted in a well-resolved fate map of embryonic cell lineage, documented mechanisms for axis determination and D quadrant specification, preliminary gene expression patterns, and the successful application of loss- and gain-of-function assays. The recent development of expressed sequence tags and preliminary genomics work will promote the use of this system, particularly in the area of developmental biology. A wealth of comparative information on phylogenetic relationships, variation in mode of development within the family, and numerous studies on larval biology and metamorphosis, primarily in Crepidula fornicata, make these snails a powerful tool for studies of the evolution of the mechanisms of development in the Mollusca and Lophotrochozoa. By bringing a review of the current state of knowledge of Crepidula life histories and development together with some detailed experimental methods, we hope to encourage further use of this system in various fields of investigation.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
7
|
Page LR. Molluscan larvae: Pelagic juveniles or slowly metamorphosing larvae? THE BIOLOGICAL BULLETIN 2009; 216:216-225. [PMID: 19556590 DOI: 10.1086/bblv216n3p216] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Asking the right questions about evolution of development, larval morphology, and life history requires knowledge of ancestral state. Two hypotheses dominate current opinion about the ancestral life cycle of bilaterians: the "larva-first" and the "intercalation" hypotheses. Until recently, the larva-first hypothesis was preeminent. This proposes that the original indirect life cycle of bilaterians included a planktotrophic larva followed by a benthic adult. Phylogenetic evidence suggests that a planktotrophic larva is plesiomorphic for echinoderms. A preponderance of developmental studies on echinoderms may have fostered a tendency to extrapolate conclusions about echinoderm development to other clades, particularly the concept that larval and juvenile/adult bodies are mostly separate entities. However, some of the recent reconstructions of bilaterian phylogeny suggest that nonfeeding larvae may have been ancestral for bilaterians, and these may have been intercalated into a life cycle that was originally direct. I review comparative data on molluscan development that suggests the trochophore-like stage is little more than a gastrula with transient structures (prototroch and apical sensory organ) to allow a temporary planktonic phase during development. Most lineage founder cells of molluscan embryos generate progeny that develop through the veliger stage into structures of the juvenile, which becomes benthic when the prototroch and apical sensory organ are lost. In light of this, the model of separate larval and juvenile bodies with the latter developing from nests of multipotent cells within the larva is inappropriate for molluscs. The intercalation hypothesis may be a better model for interpreting development of molluscs and other lophotrochozoans.
Collapse
Affiliation(s)
- Louise R Page
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, British Columbia V8W 3N5, Canada.
| |
Collapse
|
8
|
Goulding MQ. Cell lineage of the Ilyanassa embryo: evolutionary acceleration of regional differentiation during early development. PLoS One 2009; 4:e5506. [PMID: 19430530 PMCID: PMC2676505 DOI: 10.1371/journal.pone.0005506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 03/06/2009] [Indexed: 11/18/2022] Open
Abstract
Cell lineage studies in mollusk embryos have documented numerous variations on the lophotrochozoan theme of spiral cleavage. In the experimentally tractable embryo of the mud snail Ilyanassa, cell lineage has previously been described only up to the 29-cell stage. Here I provide a chronology of cell divisions in Ilyanassa to the stage of 84 cells (about 16 hours after first cleavage at 23°C), and show spatial arrangements of identified nuclei at stages ranging from 27 to 84 cells. During this period the spiral cleavage pattern gives way to a bilaterally symmetric, dorsoventrally polarized pattern of mitotic timing and geometry. At the same time, the mesentoblast cell 4d rapidly proliferates to form twelve cells lying deep to the dorsal ectoderm. The onset of epiboly coincides with a period of mitotic quiescence throughout the ectoderm. As in other gastropod embryos, cell cycle lengths vary widely and predictably according to cell identity, and many of the longest cell cycles occur in small daughters of highly asymmetric divisions. While Ilyanassa shares many features of embryonic cell lineage with two other caenogastropod genera, Crepidula and Bithynia, it is distinguished by a general tendency toward earlier and more pronounced diversification of cell division pattern along axes of later differential growth.
Collapse
Affiliation(s)
- Morgan Q Goulding
- Section of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
9
|
Williams EA, Craigie A, Yeates A, Degnan SM. Articulated coralline algae of the genus Amphiroa are highly effective natural inducers of settlement in the tropical abalone Haliotis asinina. THE BIOLOGICAL BULLETIN 2008; 215:98-107. [PMID: 18723641 DOI: 10.2307/25470687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The initiation of metamorphosis in marine invertebrates is strongly linked to the environment. Planktonic larvae typically are induced to settle and metamorphose by external cues such as coralline algae (Corallinaceae, Rhodophyta). Although coralline algae are globally abundant, invertebrate larvae of many taxa settle in response to a very limited suite of species. This specificity impacts population structure, as only locations with the appropriate coralline species can attract new recruits. Abalone (Gastropoda, Haliotidae) are among those taxa in which closely related species are known to respond to different coralline algae. Here we identify highly inductive natural cues of the tropical abalone Haliotis asinina. In contrast to reports for other abalone, the greatest proportion of H. asinina larvae are induced to settle and metamorphose (92.8% to 100% metamorphosis by 48 h postinduction) by articulated corallines of the genus Amphiroa. Comparison with field distribution data for different corallines suggests larvae are likely to be settling on the seaward side of the reef crest. We then compare the response of six different H. asinina larval families to five different coralline species to demonstrate that induction by the best inductive cue (Amphiroa spp.) effectively extinguishes substantial intraspecific variation in the timing of settlement.
Collapse
Affiliation(s)
- Elizabeth A Williams
- School of Integrative Biology, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
10
|
Page LR. Novel embryogenesis in a nudibranch gastropod: segregation, expulsion, and abandonment of deeply pigmented egg cytoplasm. THE BIOLOGICAL BULLETIN 2007; 213:303-306. [PMID: 18083969 DOI: 10.2307/25066647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Louise R Page
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada.
| |
Collapse
|
11
|
Gonzales EE, van der Zee M, Dictus WJAG, van den Biggelaar J. Brefeldin A or monensin inhibits the 3D organizer in gastropod, polyplacophoran, and scaphopod molluscs. Dev Genes Evol 2007; 217:105-18. [PMID: 17120024 DOI: 10.1007/s00427-006-0118-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022]
Abstract
In molluscs, the 3D vegetal blastomere acts as a developmental signaling center, or organizer, and is required to establish bilateral symmetry in the embryo. 3D is similar to organizing centers in other metazoans, but detailed comparisons are difficult, in part because its organizing function is poorly understood. To elucidate 3D function in a standardized fashion, we used monensin and brefeldin A (BFA) to rapidly and reversibly interfere with protein processing and secretion, thereby inhibiting the signaling interactions that underlie its specification and patterning. In the gastropods, Patella vulgata and Lymnaea stagnalis, the polyplacophoran, Mopalia muscosa, and the scaphopod, Antalis entalis, treatments initiated before the organizer-dependent onset of bilateral cleavage resulted in radialization of subsequent development. In radialized P. vulgata, L. stagnalis, and M. muscosa, organizer specification was blocked, and embryos failed to make the transition to bilateral cleavage. In all four species, the subsequent body plan was radially symmetric and was similarly organized about a novel aboral-oral axis. Our results demonstrate that brefeldin A (BFA) and monensin can be used to inhibit 3D's organizing function in a comparative fashion and that, at least in M. muscosa, the organizer-dependent developmental architecture of the embryo predicts subsequent patterns of morphogenetic movements in gastrulation and, ultimately, the layout of the adult body plan.
Collapse
Affiliation(s)
- Eric E Gonzales
- Department of Developmental Biology, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
12
|
Nielsen C. Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 302:35-68. [PMID: 14760653 DOI: 10.1002/jez.b.20001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The trochophora concept and the literature on cleavage patterns and differentiation of ectodermal structures in annelids ("polychaetes") and molluscs are reviewed. The early development shows some variation within both phyla, and the cephalopods have a highly modified development. Nevertheless, there are conspicuous similarities between the early development of the two phyla, related to the highly conserved spiral cleavage pattern. Apical and cerebral ganglia have almost identical origin in the two phyla, and the cell-lineage of the prototroch is identical, except for minor variations between species. The cell-lineage of the metatrochs is almost unknown, but the telotroch of annelids and the "telotroch" of the gastropod Patella originate from the 2d-cell, as does the gastrotroch in the few species which have been studied. The segmented annelid body, i.e. the region behind the peristome, develops through addition of new ectoderm from a ring of 2d-cells just in front of the telotroch. This whole region is thus derived from 2d-cells. Conversely, the mollusc body is covered by descendants of cells from both the C and D quadrants and a growth zone is not apparent. This supports the notion that the molluscs are not segmented like the annelids, and that the repeated structures seen in polyplacophorans and monoplacophorans do not represent a segmentation homologous to that of the annelids.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum (University of Copenhagen), Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
O'Brien EK, Degnan BM. Expression of Pax258 in the gastropod statocyst: insights into the antiquity of metazoan geosensory organs. Evol Dev 2003; 5:572-8. [PMID: 14984039 DOI: 10.1046/j.1525-142x.2003.03062.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most animals have sensory systems that allow them to balance and orient relative to the pull of gravity. Structures responsible for these functions range from very simple statocysts found in many aquatic invertebrates to the complex inner ear of mammals. Previous studies suggest that the specialized mechanosensory structures responsible for balance in vertebrates and insects may be homologous based on the requirement and expression of group II Pax genes (i.e., Pax-2/5/8 genes). Here we report the expression of a Pax-258 gene in the statocysts and other chemosensory and mechanosensory cells during the development of the gastropod mollusk Haliotis asinina, a member of the Lophotrochozoa. Based on the phylogenetic distribution of geosensory systems and the consistent expression of Pax-258 in the cells that form these systems, we propose that Pax-258, along with POU-III and -IV genes, has an ancient and conserved role in the formation of structures responsible for balance and geotaxis in eumetazoans.
Collapse
Affiliation(s)
- Elizabeth K O'Brien
- Department of Zoology and Entomology, University of Queensland, Brisbane, Qld 4072, Australia
| | | |
Collapse
|
14
|
Parries SC, Page LR. Larval development and metamorphic transformation of the feeding system in the kleptoparasitic snailTrichotropis cancellata(Mollusca, Caenogastropoda). CAN J ZOOL 2003. [DOI: 10.1139/z03-154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trichotropis cancellata Hinds, 1849 has a planktonic larval stage that feeds on microalgae and a benthic stage that feeds both by ctenidial suspension feeding and by stealing food ("kleptoparasitism") from several species of suspension-feeding, tube-dwelling polychaete worms. We used scanning electron microscopy, histological sections, and observations on live animals to document the sequence and timing of morphogenetic events during larval and metamorphic development of T. cancellata. These data were compared with other accounts of gastropod development to test for differences in the timing of developmental events among feeding larvae of two major gastropod clades: the caeno gastropods and heterobranchs. In T. cancellata, as in feeding larvae of previously studied caenogastropods, components of the post-metamorphic body plan differentiate at an earlier stage of larval development (relative to times of hatching and ability to undergo metamorphosis) than in feeding heterobranch larvae. Metamorphosis of T. cancellata was induced by polychaete hosts of this snail's kleptoparasitic benthic stage, and young juveniles of T. cancellata could steal food from these polychaetes within a day after snail metamorphosis began. Rapid onset of kleptoparasitic feeding following metamorphosis of T. cancellata was permitted by development of a specialized feeding structure, the pseudo proboscis, during the larval stage. This novel embellishment of larval development was likely preceded during evolution by selective larval induction by polychaete hosts.
Collapse
|
15
|
Abstract
Cell lineage data for 30 exemplar gastropod taxa representing all major subclades and the outgroup Polyplacophora were examined for phylogenetic signal using cladistic analysis. Most cell lineages show phyletic trends of acceleration or retardation relative to the outgroup and more basal ingroup taxa, and when coded this variation is phylo-genetically informative. PAUP analyses of a cell lineage data set under three sets of character ordering assumptions produced similar tree topologies. The topologies of the strict consensus trees for both ordered and Dollo (near irreversibility of character transformations) character assumptions were similar, whereas the unordered character assumption recovers the least phyletic information. The cell lineage cladograms are also in agreement with the fossil record of the timing and sequence of gastropod subclade origination. A long branch lies between the Patellogastropoda+Vetigastropoda grade and the Neritopsina+Apogastropoda clade. The geological timing of this long branch is correlated with the first large-scale terrestrially derived eutrophication of the near-shore marine habitat, and one possible explanation for this branch may be a developmental shift associated with the evolution of feeding larvae in response to the more productive conditions in the near-shore water column. Although character transformations are highly ordered in this data set, developmental rate characters (like all other morphological and molecular characters) are also subject to homoplasy. Finally, this study further supports the hypothesis that early development of gastropod molluscs has conserved a strong phyletic signal for about half a billion years.
Collapse
Affiliation(s)
- David R Lindberg
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
16
|
Hinman VF, O'Brien EK, Richards GS, Degnan BM. Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev 2003; 5:508-21. [PMID: 12950629 DOI: 10.1046/j.1525-142x.2003.03056.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the spatial expression patterns of five anterior Hox genes during larval development of the gastropod mollusc Haliotis asinina, an unsegmented spiralian lophotrochozoan. Molecular alignments and phylogenetic analysis indicate that these genes are homologues of Drosophila HOM-C genes labial, proboscipedia, zen, Deformed, and Sex combs reduced; the abalone genes are named Has-Hox1, -Hox2, -Hox3, -Hox4, and -Hox5. Has-Hox transcripts are first detected in the free-swimming trochophore larval stage and restricted to the posttrochal ectoderm. Has-Hox2, -Hox3, and -Hox4 are expressed in bilaterally symmetrical and overlapping patterns in presumptive neuroectodermal cells on the ventral side of the trochophore. Has-Hox1 expression is restricted to a ring of cells on the dorsoposterior surface, corresponding to the outer mantle edge where new larval shell is being synthesized. There appears to be little change in the expression domains of these Has-Hox genes in pre- and posttorsional veliger larvae, with expression maintained in ectodermal and neuroectodermal tissues. Has-Hox2, -Hox3, -Hox4, and-Hox5 appear to be expressed in a colinear manner in the ganglia and connectives in the twisted nervous system. This pattern is not evident in older larvae. Has-Hox1 and-Hox4 are expressed in the margin of the mantle in the posttorsional veliger, suggesting that Hox genes play a role in gastropod shell formation.
Collapse
Affiliation(s)
- Veronica F Hinman
- Department of Zoology and Entomology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
17
|
Kano Y, Chiba S, Kase T. Major adaptive radiation in neritopsine gastropods estimated from 28S rRNA sequences and fossil records. Proc Biol Sci 2002; 269:2457-65. [PMID: 12495489 PMCID: PMC1691182 DOI: 10.1098/rspb.2002.2178] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A well-supported phylogeny of the Neritopsina, a gastropod superorder archaic in origin, radiated ecologically and diverse in morphology, is reconstructed based on partial 28S rRNA sequences. The result (Neritopsidae (Hydrocenidae (Helicinidae + Neritiliidae) (Neritidae + Phenacolepadidae))) is highly congruent with the fossil records and the character distribution of reproductive tracts in extant taxa. We suggest that the Neritopsina originated in subtidal shallow waters, invaded the land and became fully terrestrial at least three times in different clades, by the extinct Dawsonellidae in the Late Palaeozoic and by the Helicinidae and Hydrocenidae in the Mesozoic. Invasion of fresh- and brackish waters is prevalent among the Neritopsina as the Jurassic and freshwater ancestory is most probable for helicinids. The Phenacolepadidae, a group exclusively inhabiting dysoxic environments, colonized deep-sea hydrothermal vents and seeps in the Late Cretaceous or Early Cenozoic. Submarine caves have served as refuges for the archaic Neritopsidae since the Early to Middle Cenozoic, and the marine neritopsine slug Titiscania represents a highly specialized but relatively recent offshoot of this family. The Neritiliidae is another clade to be found utilizing submarine caves as shelter by the Oligocene; once adapted to the completely dark environment, but some neritiliids have immigrated to surface freshwater habitats.
Collapse
Affiliation(s)
- Yasunori Kano
- Department of Geology, National Science Museum, 3-23-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan.
| | | | | |
Collapse
|
18
|
|
19
|
Guralnick RP, Lindberg DR. CELL LINEAGE DATA AND SPIRALIAN EVOLUTION: A REPLY TO NIELSEN AND MEIER. Evolution 2002. [DOI: 10.1554/0014-3820(2002)056[2558:cldase]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Schierenberg E. Three sons of fortune: early embryogenesis, evolution and ecology of nematodes. Bioessays 2001; 23:841-7. [PMID: 11536296 DOI: 10.1002/bies.1119] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Comparative analysis of nematode development has revealed considerable variations in how the fates of embryonic cells are specified. Such early variations seem enigmatic as they do not influence the resultant structure or performance of the emerging animal. Three different nematode species are used to consider why alternative ways to reach the same goal may have been established during evolution and why early steps of embryogenesis are particularly variable. A scenario is sketched with a shift from late to early cell specification, along with an increase in maternal contribution and developmental tempo and a decrease in regulative potential expressing different developmental strategies. Future studies of larger numbers of species are needed to assess the extent of such variations and to understand more fully the underlying mechanisms, rules and driving forces.
Collapse
Affiliation(s)
- E Schierenberg
- Zoologisches Institut, Universität Köln, 50933 Köln, Germany.
| |
Collapse
|
21
|
Guralnick RP, Lindberg DR. RECONNECTING CELL AND ANIMAL LINEAGES: WHAT DO CELL LINEAGES TELL US ABOUT THE EVOLUTION AND DEVELOPMENT OF SPIRALIA? Evolution 2001. [DOI: 10.1554/0014-3820(2001)055[1501:rcaalw]2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Dolinski C, Baldwin JG, Thomas WK. Comparative survey of early embryogenesis of Secernentea (Nematoda), with phylogenetic implications. CAN J ZOOL 2001. [DOI: 10.1139/z00-179] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insight into the evolution of class Secernentea (Nematoda) for the purpose of providing a phylogenetic context for the model Caenorhabditis elegans is being gained from the use of molecular character sets. Such phylogenies provide a framework for mapping the evolution of diversity in some early-development characters for 70 species and 19 families of Secernentea. These characters include (i) whether AB and P1 blastomeres initially develop at the same (synchronous) or different (asynchronous) rates, (ii) whether AB and P1 are initially aligned along the linear axis of the embryo (tandem pattern) or obliquely (rhomboidal pattern), and (iii) whether the founder germ cell, P4, is established early, i.e., by the sixth cleavage, or later. Evolutionary polarity of characters was evaluated through outgroup comparisons. From our data the following inferences are made. The derived character, late establishment of P4, evolved primarily in the ancestor of the monophyletic groups Diplogastrina, Rhabditina, and Panagrolaimidae. Asynchronous development is convergent, defining one clade of Tylenchina as well as Cephalobina, and also arising independently in Aphelenchina. The rhomboidal embryo is ancestral to the tandem-pattern embryo that defines a second clade of Tylenchina. Early-embryo characters are congruent with the polyphyly of Cephalobina and Aphelenchina, as has been demonstrated by molecular phylogenies. Many aspects of early embryogenesis, rather than being highly conserved, evolve at a rate appropriate to defining taxa within Secernentea.
Collapse
|
23
|
|
24
|
Degnan BM, Degnan SM, Fentenany G, Morse DE. A Mox homeobox gene in the gastropod mollusc Haliotis rufescens is differentially expressed during larval morphogenesis and metamorphosis. FEBS Lett 1997; 411:119-22. [PMID: 9247155 DOI: 10.1016/s0014-5793(97)00571-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have isolated a homeobox-containing cDNA from the gastropod mollusc Haliotis rufescens that is most similar to members of the Mox homeobox gene class. The derived Haliotis homeodomain sequence is 85% identical to mouse and frog Mox-2 homeodomains and 88.9% identical to the partial cnidarian cnox5-Hm homeodomain. Quantitative reverse transcription-polymerase chain reaction analysis of mRNA accumulation reveals that this gene, called HruMox, is expressed in the larva, but not in the early embryo. Transcripts are most prevalent during larval morphogenesis from trochophore to veliger. There are also transient increases in transcript prevalence 1 and 3 days after the intitiation of metamorphosis from veliger to juvenile. The identification of a molluscan Mox homeobox gene that is more closely related to vertebrate genes than other protostome (e.g. Drosophila) genes suggests the Mox class of homeobox genes may consist of several different families that have been conserved through evolution.
Collapse
Affiliation(s)
- B M Degnan
- Marine Biotechnology Center and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara 93106, USA.
| | | | | | | |
Collapse
|