1
|
Jay P, Jeffries D, Hartmann FE, Véber A, Giraud T. Why do sex chromosomes progressively lose recombination? Trends Genet 2024; 40:564-579. [PMID: 38677904 DOI: 10.1016/j.tig.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.
Collapse
Affiliation(s)
- Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark; Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| | - Daniel Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Fanny E Hartmann
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Park K, Bae Y. Operator model for evolutionary dynamics. Biosystems 2024; 237:105130. [PMID: 38309419 DOI: 10.1016/j.biosystems.2024.105130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Drift, selection, and mutation are integral evolutionary factors. In this article, operator model is newly suggested to intuitively represent those evolutionary factors into mathematical operators, and to ultimately offer unconventional methodology for understanding evolutionary dynamics. To be specific, each of the drift, selection, and mutation was respectively interpreted as operator which in essence is a random matrix that acts upon the vector which contains population distribution information. The simulation results from the operator model coincided with the previous theoretical results for beneficial mutation accumulation rate in concurrent and successional regimes for asexually reproducing case. Furthermore, beneficial mutation accumulation in strong drift regime for asexually reproducing case was observed from the simulation while allowing the interactions of mutations with diverse selection coefficients. Lastly, methods to justify, reinforce, apply, and expand the operator model were discussed to scrutinize the implications of the model. With the operator model's unique characteristics, the model is expected to broaden perspective and to offer effective methodology for understanding the evolutionary process.
Collapse
Affiliation(s)
- Kangbien Park
- Department of Physics, College of Natural Science, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Yonghee Bae
- Department of Physics, College of Natural Science, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Fernández Álvarez J, León Jurado JM, Navas González FJ, Iglesias Pastrana C, Delgado Bermejo JV. Applicability of an international linear appraisal system in Murciano-Granadina breed: fitting, zoometry correspondence inconsistencies, and improving strategies. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Javier Fernández Álvarez
- aAsociación Nacional de Criadores de Caprino de Raza Murciano-Granadina (CAPRIGRAN), Fuente Vaqueros, Granada, Spain
| | | | - Francisco Javier Navas González
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Córdoba, Spain
- Departamento de Genética, Universidad de Córdoba, Campus Universitario Rabanales, Córdoba, Spain
| | - Carlos Iglesias Pastrana
- Departamento de Genética, Universidad de Córdoba, Campus Universitario Rabanales, Córdoba, Spain
| | | |
Collapse
|
4
|
Abstract
AbstractGenetic rescue is increasingly considered a promising and underused conservation strategy to reduce inbreeding depression and restore genetic diversity in endangered populations, but the empirical evidence supporting its application is limited to a few generations. Here we discuss on the light of theory the role of inbreeding depression arising from partially recessive deleterious mutations and of genetic purging as main determinants of the medium to long-term success of rescue programs. This role depends on two main predictions: (1) The inbreeding load hidden in populations with a long stable demography increases with the effective population size; and (2) After a population shrinks, purging tends to remove its (partially) recessive deleterious alleles, a process that is slower but more efficient for large populations than for small ones. We also carry out computer simulations to investigate the impact of genetic purging on the medium to long term success of genetic rescue programs. For some scenarios, it is found that hybrid vigor followed by purging will lead to sustained successful rescue. However, there may be specific situations where the recipient population is so small that it cannot purge the inbreeding load introduced by migrants, which would lead to increased fitness inbreeding depression and extinction risk in the medium to long term. In such cases, the risk is expected to be higher if migrants came from a large non-purged population with high inbreeding load, particularly after the accumulation of the stochastic effects ascribed to repeated occasional migration events. Therefore, under the specific deleterious recessive mutation model considered, we conclude that additional caution should be taken in rescue programs. Unless the endangered population harbors some distinctive genetic singularity whose conservation is a main concern, restoration by continuous stable gene flow should be considered, whenever feasible, as it reduces the extinction risk compared to repeated occasional migration and can also allow recolonization events.
Collapse
|
5
|
García-Dorado A, Caballero A. Neutral genetic diversity as a useful tool for conservation biology. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01384-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
|
7
|
Hedrick PW, Garcia-Dorado A. Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends Ecol Evol 2016; 31:940-952. [DOI: 10.1016/j.tree.2016.09.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/17/2023]
|
8
|
Sánchez-Molano E, Caballero A, Fernández J. Efficiency of conservation management methods for subdivided populations under local adaptation. ACTA ACUST UNITED AC 2013; 104:554-64. [PMID: 23526788 DOI: 10.1093/jhered/est016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Computer simulations were used to investigate the efficiency of management methods for the conservation of a structured population when local adaptation exists. A subdivided population, with subpopulations adapted to different optima for a quantitative trait under stabilizing selection, was managed in order to maintain the highest genetic diversity in a 10-generation period. Two procedures were compared. For the first, minimum coancestry contributions were carried out independently for each subpopulation, and random migration of individuals was accomplished thereafter. For the second, minimum coancestry contributions from individuals were globally implemented, including an optimal migration design. This optimal method can be adjusted to control local inbreeding to different extents. Adaptation to local optima implies a reduction in the efficiency of the management methods because of the effective failure in the established migrations. For strong selection, the optimal design can be very inefficient, even more than the random migration scheme because the intended migrants have usually low fitness in the recipient subpopulations. However, for more realistic moderate or weak selection, the optimal method is more efficient than random migration, especially if inbreeding depression on fitness is also taken into account. It is concluded that the optimal management method can be recommended in conservation programs with local adaptation of subpopulations, but this issue should be accounted for when designing the management strategies.
Collapse
Affiliation(s)
- Enrique Sánchez-Molano
- Departamento de Mejora Genética, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | | |
Collapse
|
9
|
Avila V, Amador C, García-Dorado A. The purge of genetic load through restricted panmixia in a Drosophila experiment. J Evol Biol 2010; 23:1937-46. [PMID: 20695969 DOI: 10.1111/j.1420-9101.2010.02058.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using Drosophila melanogaster, we explore the consequences of restricted panmixia (RP) on the genetic load caused by segregating deleterious recessive alleles in a population where females mate a full sib with probability about (1/2) and mate randomly otherwise. We find that this breeding structure purges roughly half the load concealed in heterozygous condition. Furthermore, fitness did not increase after panmixia was restored, implying that, during RP, the excess of expressed load induced by inbreeding had also been efficiently purged. We find evidences for adaptation to laboratory conditions and to specific selective pressures imposed by the RP protocol. We discuss some of the consequences of these results, both for the evolution of population breeding structures and for the design of conservation programmes.
Collapse
Affiliation(s)
- V Avila
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
10
|
Regeneration of the variance of metric traits by spontaneous mutation in a Drosophila population. Genet Res (Camb) 2010; 92:91-102. [DOI: 10.1017/s001667231000011x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SummaryIn the C1 population of Drosophila melanogaster of moderate effective size (≈500), which was genetically invariant in its origin, we studied the regeneration by spontaneous mutation of the genetic variance for two metric traits [abdominal (AB) and sternopleural (ST) bristle number] and that of the concealed mutation load for viability, together with their temporal stability, using alternative selection models based on mutational parameters estimated in the C1 genetic background. During generations 381–485 of mutation accumulation (MA), the additive variances of AB and ST approached the levels observed in standing laboratory populations, fluctuating around their expected equilibrium values under neutrality or under relatively weak causal stabilizing selection. This type of selection was required to simultaneously account for the observed additive variance in our population and for those previously reported in natural and laboratory populations, indicating that most mutations affecting bristle traits would only be subjected to weak selective constraints. Although gene action for bristles was essentially additive, transient situations occurred where inbreeding resulted in a depression of the mean and an increase of the additive variance. This was ascribed to the occasional segregation of mutations of large recessive effects. On the other hand, the observed non-lethal inbreeding depression for viability must be explained by the segregation of alleles of considerable and largely recessive deleterious effects, and the corresponding load concealed in the heterozygous condition was found to be temporally stable, as expected from tighter constraints imposed by natural selection.
Collapse
|
11
|
Papaceit M, Avila V, Aguadé M, García-Dorado A. The dynamics of the roo transposable element in mutation-accumulation lines and segregating populations of Drosophila melanogaster. Genetics 2007; 177:511-22. [PMID: 17890368 PMCID: PMC2013678 DOI: 10.1534/genetics.107.076174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We estimated the number of copies for the long terminal repeat (LTR) retrotransposable element roo in a set of long-standing Drosophila melanogaster mutation-accumulation full-sib lines and in two large laboratory populations maintained with effective population size approximately 500, all of them derived from the same isogenic origin. Estimates were based on real-time quantitative PCR and in situ hybridization. Considering previous estimates of roo copy numbers obtained at earlier stages of the experiment, the results imply a strong acceleration of the insertion rate in the accumulation lines. The detected acceleration is consistent with a model where only one (maybe a few) of the approximately 70 roo copies in the ancestral isogenic genome was active and each active copy caused new insertions with a relatively high rate ( approximately 10(-2)), with new inserts being active copies themselves. In the two laboratory populations, however, a stabilized copy number or no accelerated insertion was found. Our estimate of the average deleterious viability effects per accumulated insert [E(s) < 0.003] is too small to account for the latter finding, and we discuss the mechanisms that could contain copy number.
Collapse
Affiliation(s)
- Montserrat Papaceit
- Departamento de Genética, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
12
|
García-Dorado A. Shortcut predictions for fitness properties at the mutation-selection-drift balance and for its buildup after size reduction under different management strategies. Genetics 2007; 176:983-97. [PMID: 17435234 PMCID: PMC1894624 DOI: 10.1534/genetics.106.065730] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 03/10/2007] [Indexed: 11/18/2022] Open
Abstract
For populations at the mutation-selection-drift (MSD) balance, I develop approximate analytical expressions giving expectations for the number of deleterious alleles per gamete, the number of loci at which any individual is homozygous for deleterious alleles, the inbreeding depression rate, and the additive and dominant components of fitness variance. These predictions are compared to diffusion ones, showing good agreement under a wide range of situations. I also give approximated analytical predictions for the changes in mean and additive variance for fitness when a population approaches a new equilibrium after its effective size is reduced to a stable value. Results are derived for populations maintained with equal family contribution or with no management after size reduction, when selection acts through viability or fertility differences. Predictions are compared to previously published results obtained from transition matrices or stochastic simulations, a good qualitative fit being obtained. Predictions are also obtained for populations of various sizes under different sets of plausible mutational parameters. They are compared to available empirical results for Drosophila, and conservation implications are discussed.
Collapse
Affiliation(s)
- Aurora García-Dorado
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|