1
|
Porzio NS, Crottini A, Leite RN, Mota PG. Song determined by phylogeny and body mass in two differently constrained groups of birds: manakins and cardinals. BMC Ecol Evol 2024; 24:109. [PMID: 39160456 PMCID: PMC11331619 DOI: 10.1186/s12862-024-02298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
The songs of birds are complex signals that may have several functions and vary widely among species. Different ecological, behavioural and morphological factors, as well as phylogeny, have been associated as predictors of the evolution of song structure. However, the importance of differences in development, despite their relevance, has seldom been considered. Here, we analysed the evolution of song in two families of songbirds that differ in song development, manakins (suboscines) and cardinals (oscines), with their phylogeny, morphology, and ecology. Our results show that song characteristics had higher phylogenetic signal in cardinals than in manakins, suggesting higher evolutionary lability in the suboscines. Body mass was the main predictor of song parameters in manakins, and together with habitat type, had a major effect on cardinals' song structure. Precipitation and altitude were also associated with some song characteristics in cardinals. Our results bring unexpected insights into birdsong evolution, in which non-learners (manakins) revealed greater evolutionary lability than song learners (cardinals).
Collapse
Affiliation(s)
- Natália S Porzio
- Departamento de Ciências da Vida, Faculdade de Ciências E Tecnologia, Universidade de Coimbra, 3000-456, Coimbra, Portugal.
- CIBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade Do Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Angelica Crottini
- CIBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade Do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre S/N, 4169- 007, Porto, Portugal
| | - Rafael N Leite
- Graduate Program in Genetics, Conservation and Evolutionary Biology, National Institute for Amazonian Research, Manaus, AM, Brazil
| | - Paulo G Mota
- Departamento de Ciências da Vida, Faculdade de Ciências E Tecnologia, Universidade de Coimbra, 3000-456, Coimbra, Portugal
- CIBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade Do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
2
|
Nicolaï MPJ, Van Hecke B, Rogalla S, Debruyn G, Bowie RCK, Matzke NJ, Hackett SJ, D'Alba L, Shawkey MD. The Evolution of Multiple Color Mechanisms Is Correlated with Diversification in Sunbirds (Nectariniidae). Syst Biol 2024; 73:343-354. [PMID: 38289860 DOI: 10.1093/sysbio/syae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colors may enable more precise and/or easier species recognition and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of coloration on diversification is well-studied, the influence of the mechanisms that produce those colors (e.g., pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined color data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel color mechanisms increases diversification in sunbirds, one of the most colorful bird clades. Results suggest that: (1) the evolution of novel color mechanisms expands the visual sensory niche, increasing the number of achievable colors, (2) structural coloration diverges more readily across the body than pigment-based coloration, enabling an increase in color complexity, (3) novel color mechanisms might minimize trade-offs between natural and sexual selection such that color can function both as camouflage and conspicuous signal, and (4) despite structural colors being more colorful and mobile, only melanin-based coloration is positively correlated with net diversification. Together, these findings explain why color distances increase with an increasing number of sympatric species, even though packing of color space predicts otherwise.
Collapse
Affiliation(s)
- Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Bert Van Hecke
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Svana Rogalla
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena, 48940 Leioa, Spain
| | - Gerben Debruyn
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Liliana D'Alba
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Matthew D Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
3
|
Eliason CM, Hains T, McCullough J, Andersen MJ, Hackett SJ. Genomic novelty within a "great speciator" revealed by a high-quality reference genome of the collared kingfisher (Todiramphus chloris collaris). G3 (BETHESDA, MD.) 2022; 12:jkac260. [PMID: 36156134 PMCID: PMC9635628 DOI: 10.1093/g3journal/jkac260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Islands are natural laboratories for studying patterns and processes of evolution. Research on island endemic birds has revealed elevated speciation rates and rapid phenotypic evolution in several groups (e.g. white-eyes, Darwin's finches). However, understanding the evolutionary processes behind these patterns requires an understanding of how genotypes map to novel phenotypes. To date, there are few high-quality reference genomes for species found on islands. Here, we sequence the genome of one of Ernst Mayr's "great speciators," the collared kingfisher (Todiramphus chloris collaris). Utilizing high molecular weight DNA and linked-read sequencing technology, we assembled a draft high-quality genome with highly contiguous scaffolds (scaffold N50 = 19 Mb). Based on universal single-copy orthologs, we estimated a gene space completeness of 96.6% for the draft genome assembly. The population demographic history analyses reveal a distinct pattern of contraction and expansion in population size throughout the Pleistocene. Comparative genomic analysis of gene family evolution revealed that species-specific and rapidly expanding gene families in the collared kingfisher (relative to other Coraciiformes) are mainly involved in the ErbB signaling pathway and focal adhesion. Todiramphus kingfishers are a species-rich group that has become a focus of speciation research. This draft genome will be a platform for future taxonomic, phylogeographic, and speciation research in the group. For example, target genes will enable testing of changes in sensory structures associated with changes in vision and taste genes across kingfishers.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL 60605, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Taylor Hains
- Department of Ecology and Evolution, Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jenna McCullough
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael J Andersen
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
- Department of Ecology and Evolution, Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Lin SW, Lopardo L, Uhl G. Diversification through gustatory courtship: an X-ray micro-computed tomography study on dwarf spiders. Front Zool 2021; 18:51. [PMID: 34583721 PMCID: PMC8480068 DOI: 10.1186/s12983-021-00435-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual selection has been considered to promote diversification and speciation. Sexually dimorphic species have been used to explore the supposed effect, however, with mixed results. In dwarf spiders (Erigoninae), many species are sexually dimorphic-males possess marked prosomal modifications. These male traits vary from moderate elevations to bizarre shapes in various prosomal regions. Previous studies established that male dwarf spiders produce substances in these prosomal modifications that are taken up by the females. These substances can act as nuptial gifts, which increase the mating probability of males and the oviposition rate in females. Therefore, these dimorphic traits have evolved in the context of sexual selection. Here, we explore the evolutionary lability of this gustatory trait complex with the aim of assessing the role of this trait complex in species divergence by investigating (1) if erigonine modified prosomata are inherently linked to nuptial-gift-producing glands, (2) if the evolution of the glands evolution preceded that of the modified prosomal shapes, and by assessing (3) the occurrence of convergent/divergent evolution and cryptic differentiation. RESULTS We reconstructed the position and extent of the glandular tissue along with the muscular anatomy in the anterior part of the prosoma of 76 erigonine spiders and three outgroup species using X-ray micro-computed tomography. In all but one case, modified prosomata are associated with gustatory glands. We incorporated the location of glands and muscles into an existing matrix of somatic and genitalic morphological traits of these taxa and reanalyzed their phylogenetic relationship. Our analysis supports that the possession of glandular equipment is the ancestral state and that the manifold modifications of the prosomal shape have evolved convergently multiple times. We found differences in gland position between species with both modified and unmodified prosomata, and reported on seven cases of gland loss. CONCLUSIONS Our findings suggest that the occurrence of gustatory glands in sexually monomorphic ancestors has set the stage for the evolution of diverse dimorphic external modifications in dwarf spiders. Differences among congeners suggest that the gland position is highly susceptible to evolutionary changes. The multiple incidences might reflect costs of glandular tissue maintenance and nuptial feeding. Our results indicate divergent evolutionary patterns of gustatory-courtship-related traits, and thus a likely facilitating effect of sexual selection on speciation.
Collapse
Affiliation(s)
- Shou-Wang Lin
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany.
| | - Lara Lopardo
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | - Gabriele Uhl
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat Ecol Evol 2020; 5:101-110. [PMID: 33106601 DOI: 10.1038/s41559-020-01321-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/04/2020] [Indexed: 01/09/2023]
Abstract
Several theories predict that rates of phenotypic evolution should be related to the rate at which new lineages arise. However, drawing general conclusions regarding the coupling between these fundamental evolutionary rates has been difficult due to the inconsistent nature of previous results combined with uncertainty over the most appropriate methodology with which to investigate such relationships. Here we propose and compare the performance of several different approaches for testing associations between lineage-specific rates of speciation and phenotypic evolution using phylogenetic data. We then use the best-performing method to test relationships between rates of speciation and body size evolution in five major vertebrate clades (amphibians, birds, mammals, ray-finned fish and squamate reptiles) at two phylogenetic scales. Our results provide support for the long-standing view that rates of speciation and morphological evolution are generally positively related at broad macroevolutionary scales, but they also reveal a substantial degree of heterogeneity in the strength and direction of these associations at finer scales across the vertebrate tree of life.
Collapse
|
6
|
Price‐Waldman RM, Shultz AJ, Burns KJ. Speciation rates are correlated with changes in plumage color complexity in the largest family of songbirds. Evolution 2020; 74:1155-1169. [DOI: 10.1111/evo.13982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Rosalyn M. Price‐Waldman
- Department of BiologySan Diego State University San Diego California 92182
- Department of Ecology and Evolutionary BiologyPrinceton University Princeton NJ 08544
| | - Allison J. Shultz
- Ornithology DepartmentNatural History Museum of Los Angeles County Los Angeles California 90007
| | - Kevin J. Burns
- Department of BiologySan Diego State University San Diego California 92182
| |
Collapse
|
7
|
Miles MC, Fuxjager MJ. Synergistic selection regimens drive the evolution of display complexity in birds of paradise. J Anim Ecol 2018; 87:1149-1159. [PMID: 29637997 DOI: 10.1111/1365-2656.12824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
Integrated visual displays that combine gesture with colour are nearly ubiquitous in the animal world, where they are shaped by sexual selection for their role in courtship and competition. However, few studies assess how multiple selection regimens operate on different components of these complex phenotypes on a macroevolutionary scale. Here, we study this issue by assessing how both sexual and ecological selection work together to influence visual display complexity in the birds of paradise. We first find that sexual dichromatism is highest in lekking species, which undergo more intense sexual selection by female choice, than non-lekking species. At the same time, species in which males directly compete with one another at communal display courts have more carotenoid-based ornaments and fewer melanin ornaments. Meanwhile, display habitat influences gestural complexity. Species that dance in the cluttered understorey have more complex dances than canopy-displaying species. Taken together, our results illustrate how distinct selection regimens each operate on individual elements comprising a complex display. This supports a modular model of display evolution, wherein the ultimate integrated display is the product of synergy between multiple factors that select for different types of phenotypic complexity.
Collapse
Affiliation(s)
- Meredith C Miles
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | | |
Collapse
|
8
|
Ingram T, Harrison A, Mahler DL, Castañeda MDR, Glor RE, Herrel A, Stuart YE, Losos JB. Comparative tests of the role of dewlap size in Anolis lizard speciation. Proc Biol Sci 2017; 283:rspb.2016.2199. [PMID: 28003450 DOI: 10.1098/rspb.2016.2199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/17/2016] [Indexed: 02/01/2023] Open
Abstract
Phenotypic traits may be linked to speciation in two distinct ways: character values may influence the rate of speciation or diversification in the trait may be associated with speciation events. Traits involved in signal transmission, such as the dewlap of Anolis lizards, are often involved in the speciation process. The dewlap is an important visual signal with roles in species recognition and sexual selection, and dewlaps vary among species in relative size as well as colour and pattern. We compile a dataset of relative dewlap size digitized from photographs of 184 anole species from across the genus' geographical range. We use phylogenetic comparative methods to test two hypotheses: that larger dewlaps are associated with higher speciation rates, and that relative dewlap area diversifies according to a speciational model of evolution. We find no evidence of trait-dependent speciation, indicating that larger signals do not enhance any role the dewlap has in promoting speciation. Instead, we find a signal of mixed speciational and gradual trait evolution, with a particularly strong signal of speciational change in the dewlaps of mainland lineages. This indicates that dewlap size diversifies in association with the speciation process, suggesting that divergent selection may play a role in the macroevolution of this signalling trait.
Collapse
Affiliation(s)
- Travis Ingram
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Alexis Harrison
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - D Luke Mahler
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, 3031, Toronto, Ontario, Canada M5S 3B2
| | - María Del Rosario Castañeda
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Richard E Glor
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité, UMR 7179 C.N.R.S/M.N.H.N., 57 rue Cuvier, Case postale 55, 75231 Paris Cedex 5, France
| | - Yoel E Stuart
- Department of Integrative Biology, University of Texas at Austin, One University Station C0990, Austin, TX 78712, USA
| | - Jonathan B Losos
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Ligon RA, Simpson RK, Mason NA, Hill GE, McGraw KJ. Evolutionary innovation and diversification of carotenoid‐based pigmentation in finches. Evolution 2016; 70:2839-2852. [DOI: 10.1111/evo.13093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Russell A. Ligon
- School of Life Sciences Arizona State University Tempe Arizona 85287
- Laboratory of Ornithology Cornell University Ithaca New York 14850
| | | | - Nicholas A. Mason
- Laboratory of Ornithology Cornell University Ithaca New York 14850
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| | - Geoffrey E. Hill
- Department of Biological Sciences Auburn University Auburn Alabama 36849
| | - Kevin J. McGraw
- School of Life Sciences Arizona State University Tempe Arizona 85287
| |
Collapse
|
10
|
Gomes ACR, Sorenson MD, Cardoso GC. Speciation is associated with changing ornamentation rather than stronger sexual selection. Evolution 2016; 70:2823-2838. [DOI: 10.1111/evo.13088] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Ana Cristina R. Gomes
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto Campus Agrário de Vairão 4485–661 Vairão Portugal
| | | | - Gonçalo C. Cardoso
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto Campus Agrário de Vairão 4485–661 Vairão Portugal
| |
Collapse
|
11
|
Maia R, Rubenstein DR, Shawkey MD. Selection, constraint, and the evolution of coloration in African starlings. Evolution 2016; 70:1064-79. [DOI: 10.1111/evo.12912] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/27/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Rafael Maia
- Department of Biology, Integrated Bioscience Program; University of Akron; Akron Ohio 44325
- Department of Ecology, Evolution, and Environmental Biology; Columbia University; New York New York 10027
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution, and Environmental Biology; Columbia University; New York New York 10027
- Center for Integrative Animal Behavior; Columbia University; New York New York 10027
| | - Matthew D. Shawkey
- Department of Biology, Integrated Bioscience Program; University of Akron; Akron Ohio 44325
- Department of Biology, Terrestrial Ecology Unit; University of Ghent; Ledeganckstraat 35 9000 Ghent Belgium
| |
Collapse
|
12
|
Huang H, Rabosky DL. Sexual Selection and Diversification: Reexamining the Correlation between Dichromatism and Speciation Rate in Birds. Am Nat 2014; 184:E101-14. [DOI: 10.1086/678054] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Cardoso GC, Batalha HR, Reis S, Lopes RJ. Increasing sexual ornamentation during a biological invasion. Behav Ecol 2014. [DOI: 10.1093/beheco/aru068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Leitão AV, Monteiro AH, Mota PG. Ultraviolet reflectance influences female preference for colourful males in the European serin. Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1623-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre PH, Graham CH, Graves GR, Jønsson KA, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C. An Update of Wallace’s Zoogeographic Regions of the World. Science 2012; 339:74-8. [PMID: 23258408 DOI: 10.1126/science.1228282] [Citation(s) in RCA: 516] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modern attempts to produce biogeographic maps focus on the distribution of species, and the maps are typically drawn without phylogenetic considerations. Here, we generate a global map of zoogeographic regions by combining data on the distributions and phylogenetic relationships of 21,037 species of amphibians, birds, and mammals. We identify 20 distinct zoogeographic regions, which are grouped into 11 larger realms. We document the lack of support for several regions previously defined based on distributional data and show that spatial turnover in the phylogenetic composition of vertebrate assemblages is higher in the Southern than in the Northern Hemisphere. We further show that the integration of phylogenetic information provides valuable insight on historical relationships among regions, permitting the identification of evolutionarily unique regions of the world.
Collapse
Affiliation(s)
- Ben G Holt
- Center for Macroecology, Evolution, and Climate, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Matthews LJ. The recognition signal hypothesis for the adaptive evolution of religion : a phylogenetic test with Christian denominations. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2012; 23:218-49. [PMID: 22623139 DOI: 10.1007/s12110-012-9138-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent research on the evolution of religion has focused on whether religion is an unselected by-product of evolutionary processes or if it is instead an adaptation by natural selection. Adaptive hypotheses for religion include direct fitness benefits from improved health and indirect fitness benefits mediated by costly signals and/or cultural group selection. Herein, I propose that religious denominations achieve indirect fitness gains for members through the use of ecologically arbitrary beliefs, rituals, and moral rules that function as recognition markers of cultural inheritance analogous to kin and species recognition of genetic inheritance in biology. This recognition signal hypotheses could act in concert with either costly signaling or cultural group selection to produce evolutionarily altruistic behaviors within denominations. Using a cultural phylogenetic analysis, I show that a large set of religious behaviors among extant Christian denominations supports the prediction of the recognition signal hypothesis that characters change more frequently near historical schisms. By incorporating demographic data into the model, I show that more-distinctive denominations, as measured through dissimilar characteristics, appear to be protected from intrusion by nonmembers in mixed-denomination households, and that they may be experiencing greater biological growth of their populations even in the present day.
Collapse
|
17
|
Eliason CM, Shawkey MD. A photonic heterostructure produces diverse iridescent colours in duck wing patches. J R Soc Interface 2012; 9:2279-89. [PMID: 22491981 DOI: 10.1098/rsif.2012.0118] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The colours of birds are diverse but limited relative to the colours they can perceive. This mismatch may be partially caused by the properties of their colour-production mechanisms. Aside from pigments, several classes of highly ordered nanostructures (thin films, amorphous three-dimensional arrays) can produce a range of colours. However, the variability of any single nanostructural class has rarely been explored. Dabbling ducks are a speciose clade with substantial interspecific variation in the iridescent coloration of their wing patches (specula). Here, we use electron microscopy, spectrophotometry, polarization and refractive index-matching experiments, and optical modelling to examine these colours. We show that, in all species examined, speculum colour is produced by a photonic heterostructure consisting of both a single thin-film of keratin and a two-dimensional hexagonal lattice of melanosomes in feather barbules. Although the range of possible variations of this heterostructure is theoretically broad, only relatively close-packed, energetically stable variants producing more saturated colours were observed, suggesting that ducks are either physically constrained to these configurations or are under selection for the colours that they produce. These data thus reveal a previously undescribed biophotonic structure and suggest that both physical variability and constraints within single nanostructural classes may help explain the broader patterns of colour across Aves.
Collapse
Affiliation(s)
- Chad M Eliason
- Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, OH, USA.
| | | |
Collapse
|
18
|
Matthews LJ. Variations in sexual behavior among capuchin monkeys function for conspecific mate recognition: a phylogenetic analysis and a new hypothesis for female proceptivity in tufted capuchins. Am J Primatol 2011; 74:287-98. [DOI: 10.1002/ajp.21004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/02/2011] [Accepted: 08/14/2011] [Indexed: 11/10/2022]
|
19
|
Kraaijeveld K, Kraaijeveld-Smit FJL, Maan ME. Sexual selection and speciation: the comparative evidence revisited. Biol Rev Camb Philos Soc 2011; 86:367-77. [DOI: 10.1111/j.1469-185x.2010.00150.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Prager M, Andersson S. CONVERGENT EVOLUTION OF RED CAROTENOID COLORATION IN WIDOWBIRDS AND BISHOPS (EUPLECTES SPP.). Evolution 2010; 64:3609-19. [DOI: 10.1111/j.1558-5646.2010.01081.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
ARBUTHNOTT D, ELLIOT MG, McPEEK MA, CRESPI BJ. Divergent patterns of diversification in courtship and genitalic characters of Timema walking-sticks. J Evol Biol 2010; 23:1399-411. [DOI: 10.1111/j.1420-9101.2010.02000.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Cardoso GC, Mota PG. Evolution of female carotenoid coloration by sexual constraint in Carduelis finches. BMC Evol Biol 2010; 10:82. [PMID: 20334705 PMCID: PMC2865479 DOI: 10.1186/1471-2148-10-82] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 03/25/2010] [Indexed: 11/11/2022] Open
Abstract
Background Females often express the same ornaments as males to a similar or lesser degree. Female ornaments can be adaptive, but little is known regarding their origins and mode of evolution. Current utility does not imply evolutionary causation, and therefore it is possible that female ornamentation evolved due to selection on females, as a correlated response to selection on males (sexual constraint), or a combination of both. We tested these ideas simulating simple models for the evolution of male and female correlated traits, and compared their predictions against the coloration of finches in the genus Carduelis. Results For carotenoid-based ornamental coloration, a model of sexual constraint on females fits the Carduelis data well. The two alternative models (sexual constraint on males, and mutual constraint) were rejected as causing the similarities in carotenoid coloration between males and females. For melanin coloration, the correlation between the sexes was weaker, indicating that males and females evolved independently to a greater extent. Conclusions This indicates that sexual constraint on females was an important mechanism for the evolution of ornamental carotenoid coloration in females, but less so for melanin coloration. This does not mean that female carotenoid coloration is non-adaptive or maladaptive, because sexual dichromatism could evolve if it were maladaptive. It suggests, however, that most evolution of female carotenoid coloration was male-driven and, when adaptive, may not be an adaptation stricto sensu.
Collapse
Affiliation(s)
- Gonçalo C Cardoso
- Department of Zoology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | | |
Collapse
|
23
|
|
24
|
Uy JAC, Moyle RG, Filardi CE. PLUMAGE AND SONG DIFFERENCES MEDIATE SPECIES RECOGNITION BETWEEN INCIPIENT FLYCATCHER SPECIES OF THE SOLOMON ISLANDS. Evolution 2009; 63:153-64. [DOI: 10.1111/j.1558-5646.2008.00530.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|