1
|
Cecalev D, Viçoso B, Galupa R. Compensation of gene dosage on the mammalian X. Development 2024; 151:dev202891. [PMID: 39140247 PMCID: PMC11361640 DOI: 10.1242/dev.202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
Collapse
Affiliation(s)
- Daniela Cecalev
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Beatriz Viçoso
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Rafael Galupa
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| |
Collapse
|
2
|
Single-cell analysis reveals X upregulation is not global in pre-gastrulation embryos. iScience 2022; 25:104465. [PMID: 35707719 PMCID: PMC9189126 DOI: 10.1016/j.isci.2022.104465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
In mammals, transcriptional inactivation of one X chromosome in female compensates for the dosage of X-linked gene expression between the sexes. Additionally, it is believed that the upregulation of active X chromosome in male and female balances the dosage of X-linked gene expression relative to autosomal genes, as proposed by Ohno. However, the existence of X chromosome upregulation (XCU) remains controversial. Here, we have profiled gene-wise dynamics of XCU in pre-gastrulation mouse embryos at single-cell level and found that XCU is dynamically linked with X chromosome inactivation (XCI); however, XCU is not global like XCI. Moreover, we show that upregulated genes are enriched with activating marks and have enhanced burst frequency. Finally, our In-silico model predicts that recruitment probabilities of activating factors and a surge of these factors upon X-inactivation trigger XCU. Altogether, our study provides significant insight into the gene-wise dynamics and mechanistic basis of XCU during early development and extends support for Ohno’s hypothesis. X-upregulation coincides with X chromosome inactivation in pre-gastrulation embryos X-upregulation is not chromosome-wide like X-inactivation Upregulated genes have enhanced burst frequency and are enriched with activating marks A surge of activating factors on X-inactivation triggers X-upregulation
Collapse
|
3
|
Muyle A, Marais GAB, Bačovský V, Hobza R, Lenormand T. Dosage compensation evolution in plants: theories, controversies and mechanisms. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210222. [PMID: 35306896 PMCID: PMC8935305 DOI: 10.1098/rstb.2021.0222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a minority of flowering plants, separate sexes are genetically determined by sex chromosomes. The Y chromosome has a non-recombining region that degenerates, causing a reduced expression of Y genes. In some species, the lower Y expression is accompanied by dosage compensation (DC), a mechanism that re-equalizes male and female expression and/or brings XY male expression back to its ancestral level. Here, we review work on DC in plants, which started as early as the late 1960s with cytological approaches. The use of transcriptomics fired a controversy as to whether DC existed in plants. Further work revealed that various plants exhibit partial DC, including a few species with young and homomorphic sex chromosomes. We are starting to understand the mechanisms responsible for DC in some plants, but in most species, we lack the data to differentiate between global and gene-by-gene DC. Also, it is unknown why some species evolve many dosage compensated genes while others do not. Finally, the forces that drive DC evolution remain mysterious, both in plants and animals. We review the multiple evolutionary theories that have been proposed to explain DC patterns in eukaryotes with XY or ZW sex chromosomes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France
| | - Gabriel A B Marais
- Laboratoire 'Biométrie et Biologie Evolutive', CNRS/Université Lyon 1, Lyon, France.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Thomas Lenormand
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
4
|
Lenormand T, Roze D. Y recombination arrest and degeneration in the absence of sexual dimorphism. Science 2022; 375:663-666. [PMID: 35143289 DOI: 10.1126/science.abj1813] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Current theory proposes that degenerated sex chromosomes-such as the mammalian Y-evolve through three steps: (i) recombination arrest, linking male-beneficial alleles to the Y chromosome; (ii) Y degeneration, resulting from the inefficacy of selection in the absence of recombination; and (iii) dosage compensation, correcting the resulting low expression of X-linked genes in males. We investigate a model of sex chromosome evolution that incorporates the coevolution of cis and trans regulators of gene expression. We show that the early emergence of dosage compensation favors the maintenance of Y-linked inversions by creating sex-antagonistic regulatory effects. This is followed by degeneration of these nonrecombining inversions caused by regulatory divergence between the X and Y chromosomes. In contrast to current theory, the whole process occurs without any selective pressure related to sexual dimorphism.
Collapse
Affiliation(s)
| | - Denis Roze
- CNRS, IRL 3614, Roscoff, France.,Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
5
|
Muyle A, Bachtrog D, Marais GAB, Turner JMA. Epigenetics drive the evolution of sex chromosomes in animals and plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200124. [PMID: 33866802 DOI: 10.1098/rstb.2020.0124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Aline Muyle
- University of California Irvine, Irvine, CA 92697, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriel A B Marais
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France.,LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
6
|
Gao X, Li Y, Adetula AA, Wu Y, Chen H. Analysis of new retrogenes provides insight into dog adaptive evolution. Ecol Evol 2019; 9:11185-11197. [PMID: 31641464 PMCID: PMC6802060 DOI: 10.1002/ece3.5620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
The origin and subsequent evolution of new genes have been considered as an important source of genetic and phenotypic diversity in organisms. Dog breeds show great phenotypic diversity for morphological, physiological, and behavioral traits. However, the contributions of newly originated retrogenes, which provide important genetic bases for dog species differentiation and adaptive traits, are largely unknown. Here, we analyzed the dog genome to identify new RNA-based duplications and comprehensively investigated their origin, evolution, functions in adaptive traits, and gene movement processes. First, we totally identified 3,025 retrocopies including 476 intact retrogenes, 2,518 retropseudogenes, and 31 chimerical retrogenes. Second, selective pressure along with ESTs expression analysis showed that most of the intact retrogenes were significantly under stronger purifying selection and subjected to more functional constraints when compared to retropseudogenes. Furthermore, a large number of retrocopies and chimerical retrogenes that occurred approximately 22 million years ago implied a burst of retrotransposition in the dog genome after the divergence time between dog and its closely related species red fox. Interestingly, GO and pathway analyses showed that new retrogenes had expanded in glutathione biosynthetic/metabolic process which likely provided important genetic basis for dogs' adaptation to scavenge human waste dumps. Finally, consistent with the results in human and mouse, a significant excess of functional retrogenes movement on and off the X chromosome in the dog confirmed a general pattern of gene movement process in mammals which was likely driven by natural selection or sexual antagonism. Together, these results increase our understanding that new retrogenes can reshape the dog genome and provide further exploration of the molecular mechanisms underlying the dogs' adaptive evolution.
Collapse
Affiliation(s)
- Xiang Gao
- Center LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yan Li
- Department of Infectious DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Adeyinka A. Adetula
- Key Laboratory of Agricultural Animal Genetics, Breeding, and ReproductionHuazhong Agricultural UniversityWuhanChina
| | - Yu Wu
- Oilfield Community D-1-902WuhanChina
| | - Hong Chen
- Department of Scientific ResearchRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
7
|
Gu L, Walters JR. Evolution of Sex Chromosome Dosage Compensation in Animals: A Beautiful Theory, Undermined by Facts and Bedeviled by Details. Genome Biol Evol 2018; 9:2461-2476. [PMID: 28961969 PMCID: PMC5737844 DOI: 10.1093/gbe/evx154] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Many animals with genetic sex determination harbor heteromorphic sex chromosomes, where the heterogametic sex has half the gene dose of the homogametic sex. This imbalance, if reflected in the abundance of transcripts or proteins, has the potential to deleteriously disrupt interactions between X-linked and autosomal loci in the heterogametic sex. Classical theory predicts that molecular mechanisms will evolve to provide dosage compensation that recovers expression levels comparable to ancestral expression prior to sex chromosome divergence. Such dosage compensating mechanisms may also, secondarily, result in balanced sex-linked gene expression between males and females. However, numerous recent studies addressing sex chromosome dosage compensation (SCDC) in a diversity of animals have yielded a surprising array of patterns concerning dosage compensation in the heterogametic sex, as well as dosage balance between sexes. These results substantially contradict longstanding theory, catalyzing both novel perspectives and new approaches in dosage compensation research. In this review, we summarize the theory, analytical approaches, and recent results concerning evolutionary patterns of SCDC in animals. We also discuss methodological challenges and discrepancies encountered in this research, which often underlie conflicting results. Finally, we discuss what outstanding questions and opportunities exist for future research on SCDC.
Collapse
Affiliation(s)
- Liuqi Gu
- Department of Ecology & Evolution, University of Kansas
| | | |
Collapse
|
8
|
Veitia RA, Veyrunes F, Bottani S, Birchler JA. X chromosome inactivation and active X upregulation in therian mammals: facts, questions, and hypotheses. J Mol Cell Biol 2015; 7:2-11. [PMID: 25564545 DOI: 10.1093/jmcb/mjv001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
X chromosome inactivation is a mechanism that modulates the expression of X-linked genes in eutherian females (XX). Ohno proposed that to achieve a proper balance between X-linked and autosomal genes, those on the active X should also undergo a 2-fold upregulation. Although some support for Ohno's hypothesis has been provided through the years, recent genomic studies testing this hypothesis have brought contradictory results and fueled debate. Thus far, there are as many results in favor as against Ohno's hypothesis, depending on the nature of the datasets and the various assumptions and thresholds involved in the analyses. However, they have confirmed the importance of dosage balance between X-linked and autosomal genes involved in stoichiometric relationships. These facts as well as questions and hypotheses are discussed below.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Paris, France Université Paris Diderot, Paris, France
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, CNRS/Université Montpellier II, Montpellier, France
| | - Samuel Bottani
- Université Paris Diderot, Paris, France Matière et Systèmes Complexes, Paris, France
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Pessia E, Engelstädter J, Marais GAB. The evolution of X chromosome inactivation in mammals: the demise of Ohno's hypothesis? Cell Mol Life Sci 2014; 71:1383-94. [PMID: 24173285 PMCID: PMC11113734 DOI: 10.1007/s00018-013-1499-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022]
Abstract
Ohno's hypothesis states that dosage compensation in mammals evolved in two steps: a twofold hyperactivation of the X chromosome in both sexes to compensate for gene losses on the Y chromosome, and silencing of one X (X-chromosome inactivation, XCI) in females to restore optimal dosage. Recent tests of this hypothesis have returned contradictory results. In this review, we explain this ongoing controversy and argue that a novel view on dosage compensation evolution in mammals is starting to emerge. Ohno's hypothesis may be true for a few, dosage-sensitive genes only. If so few genes are compensated, then why has XCI evolved as a chromosome-wide mechanism? This and several other questions raised by the new data in mammals are discussed, and future research directions are proposed.
Collapse
Affiliation(s)
- Eugénie Pessia
- Laboratoire de Biométrie et Biologie Évolutive, Centre National de la Recherche Scientifique, Université Lyon 1, Bat. Gregor Mendel, 16 rue Raphaël Dubois, 69622, Villeurbanne Cedex, France,
| | | | | |
Collapse
|
10
|
Connallon T, Clark AG. Sex-differential selection and the evolution of X inactivation strategies. PLoS Genet 2013; 9:e1003440. [PMID: 23637618 PMCID: PMC3630082 DOI: 10.1371/journal.pgen.1003440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/24/2013] [Indexed: 11/25/2022] Open
Abstract
X inactivation—the transcriptional silencing of one X chromosome copy per female somatic cell—is universal among therian mammals, yet the choice of which X to silence exhibits considerable variation among species. X inactivation strategies can range from strict paternally inherited X inactivation (PXI), which renders females haploid for all maternally inherited alleles, to unbiased random X inactivation (RXI), which equalizes expression of maternally and paternally inherited alleles in each female tissue. However, the underlying evolutionary processes that might account for this observed diversity of X inactivation strategies remain unclear. We present a theoretical population genetic analysis of X inactivation evolution and specifically consider how conditions of dominance, linkage, recombination, and sex-differential selection each influence evolutionary trajectories of X inactivation. The results indicate that a single, critical interaction between allelic dominance and sex-differential selection can select for a broad and continuous range of X inactivation strategies, including unequal rates of inactivation between maternally and paternally inherited X chromosomes. RXI is favored over complete PXI as long as alleles deleterious to female fitness are sufficiently recessive, and the criteria for RXI evolution is considerably more restrictive when fitness variation is sexually antagonistic (i.e., alleles deleterious to females are beneficial to males) relative to variation that is deleterious to both sexes. Evolutionary transitions from PXI to RXI also generally increase mean relative female fitness at the expense of decreased male fitness. These results provide a theoretical framework for predicting and interpreting the evolution of chromosome-wide expression of X-linked genes and lead to several useful predictions that could motivate future studies of allele-specific gene expression variation. With the exception of its most primitive members, mammal species practice X inactivation, where one copy of each X chromosome pair is silenced in each cell of the female body. The particular copy of the X that is silenced nevertheless shows considerable variability among species, and the evolutionary causes for this variability remain unclear. Here, we show that X inactivation strategies are likely to evolve in response to the sex-differential fitness properties of X-linked genetic variation. Genetic variation with similar effects on male and female fitness will generally favor the evolution of random X inactivation, potentially including preferential inactivation of the maternally inherited X chromosome. Variation with opposing fitness effects in each sex (“sexually antagonistic” variation, which includes mutations that both decrease female fitness and enhance male fitness) selects for preferential or complete inactivation of the paternally inherited X. Paternally biased X inactivation patterns appear to be common in nature, which suggests that sexually antagonistic genetic variation might be an important factor underlying the evolution of X inactivation. The theory provides a conceptual framework for understanding the evolution of X inactivation strategies and generates several novel predictions that may soon be tested with modern genome sequencing technologies.
Collapse
Affiliation(s)
- Tim Connallon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.
| | | |
Collapse
|
11
|
Gschwend AR, Weingartner LA, Moore RC, Ming R. The sex-specific region of sex chromosomes in animals and plants. Chromosome Res 2012; 20:57-69. [PMID: 22105696 DOI: 10.1007/s10577-011-9255-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Our understanding of the evolution of sex chromosomes has increased greatly in recent years due to a number of molecular evolutionary investigations in divergent sex chromosome systems, and these findings are reshaping theories of sex chromosome evolution. In particular, the dynamics of the sex-determining region (SDR) have been demonstrated by recent findings in ancient and incipient sex chromosomes. Radical changes in genomic structure and gene content in the male specific region of the Y chromosome between human and chimpanzee indicated rapid evolution in the past 6 million years, defying the notion that the pace of evolution in the SDR was fast at early stages but slowed down overtime. The chicken Z and the human X chromosomes appeared to have acquired testis-expressed genes and expanded in intergenic regions. Transposable elements greatly contributed to SDR expansion and aided the trafficking of genes in the SDR and its X or Z counterpart through retrotransposition. Dosage compensation is not a destined consequence of sex chromosomes as once thought. Most X-linked microRNA genes escape silencing and are expressed in testis. Collectively, these findings are challenging many of our preconceived ideas of the evolutionary trajectory and fates of sex chromosomes.
Collapse
Affiliation(s)
- Andrea R Gschwend
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
12
|
Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci U S A 2012; 109:5346-51. [PMID: 22392987 DOI: 10.1073/pnas.1116763109] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How and why female somatic X-chromosome inactivation (XCI) evolved in mammals remains poorly understood. It has been proposed that XCI is a dosage-compensation mechanism that evolved to equalize expression levels of X-linked genes in females (2X) and males (1X), with a prior twofold increase in expression of X-linked genes in both sexes ("Ohno's hypothesis"). Whereas the parity of X chromosome expression between the sexes has been clearly demonstrated, tests for the doubling of expression levels globally along the X chromosome have returned contradictory results. However, changes in gene dosage during sex-chromosome evolution are not expected to impact on all genes equally, and should have greater consequences for dosage-sensitive genes. We show that, for genes encoding components of large protein complexes (≥ 7 members)--a class of genes that is expected to be dosage-sensitive--expression of X-linked genes is similar to that of autosomal genes within the complex. These data support Ohno's hypothesis that XCI acts as a dosage-compensation mechanism, and allow us to refine Ohno's model of XCI evolution. We also explore the contribution of dosage-sensitive genes to X aneuploidy phenotypes in humans, such as Turner (X0) and Klinefelter (XXY) syndromes. X aneuploidy in humans is common and is known to have mild effects because most of the supernumerary X genes are inactivated and not affected by aneuploidy. Only genes escaping XCI experience dosage changes in X-aneuploidy patients. We combined data on dosage sensitivity and XCI to compute a list of candidate genes for X-aneuploidy syndromes.
Collapse
|
13
|
Mank JE, Hosken DJ, Wedell N. Some inconvenient truths about sex chromosome dosage compensation and the potential role of sexual conflict. Evolution 2011; 65:2133-44. [PMID: 21790564 DOI: 10.1111/j.1558-5646.2011.01316.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sex chromosome dosage compensation was once thought to be required to balance gene expression levels between sex-linked and autosomal genes in the heterogametic sex. Recent evidence from a range of animals has indicated that although sex chromosome dosage compensation exists in some clades, it is far from a necessary companion to sex chromosome evolution, and is in fact rather rare in animals. This raises questions about why complex dosage compensation mechanisms arise in some clades when they are not strictly needed, and suggests that the role of sex-specific selection in sex chromosome gene regulation should be reassessed. We show there exists a tremendous diversity in the mechanisms that regulate gene dosage and argue that sexual conflict may be an overlooked agent responsible for some of the variation seen in sex chromosome gene dose regulation.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, UK.
| | | | | |
Collapse
|
14
|
Walters JR, Hardcastle TJ. Getting a full dose? Reconsidering sex chromosome dosage compensation in the silkworm, Bombyx mori. Genome Biol Evol 2011; 3:491-504. [PMID: 21508430 PMCID: PMC3296447 DOI: 10.1093/gbe/evr036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dosage compensation—equalizing gene expression levels in response to differences in
gene dose or copy number—is classically considered to play a critical role in the
evolution of heteromorphic sex chromosomes. As the X and Y diverge through degradation and
gene loss on the Y (or the W in female-heterogametic ZW taxa), it is expected that dosage
compensation will evolve to correct for sex-specific differences in gene dose. Although
this is observed in some organisms, recent genome-wide expression studies in other taxa
have revealed striking exceptions. In particular, reports that both birds and the silkworm
moth (Bombyx mori) lack dosage compensation have spurred speculation that
this is the rule for all female-heterogametic taxa. Here, we revisit the issue of dosage
compensation in silkworm by replicating and extending the previous analysis. Contrary to
previous reports, our efforts reveal a pattern typically associated with dosage
compensated taxa: the global male:female expression ratio does not differ between the Z
and autosomes. We believe the previous report of unequal male:female ratios on the Z
reflects artifacts of microarray normalization in conjunction with not testing a major
assumption that the male:female global expression ratio was unbiased for autosomal loci.
However, we also find that the global Z chromosome expression is significantly reduced
relative to autosomes, a pattern not expected in dosage compensated taxa. This combination
of male:female parity with an overall reduction in expression for sex-linked loci is not
consistent with the prevailing evolutionary theory of sex chromosome evolution and dosage
compensation.
Collapse
Affiliation(s)
- James R Walters
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
15
|
Vicoso B, Bachtrog D. Progress and prospects toward our understanding of the evolution of dosage compensation. Chromosome Res 2009; 17:585-602. [PMID: 19626444 PMCID: PMC2758192 DOI: 10.1007/s10577-009-9053-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In many eukaryotic organisms, gender is determined by a pair of heteromorphic sex chromosomes. Degeneration of the non-recombining Y chromosome is a general facet of sex chromosome evolution. Selective pressure to restore expression levels of X-linked genes relative to autosomes accompanies Y-chromosome degeneration, thus driving the evolution of dosage compensation mechanisms. This review focuses on evolutionary aspects of dosage compensation, in light of recent advances in comparative and functional genomics that have substantially increased our understanding of the molecular mechanisms of dosage compensation and how it evolved. We review processes involved in sex chromosome evolution, and discuss the dynamic interaction between Y degeneration and the acquisition of dosage compensation. We compare mechanisms of dosage compensation and the origin of dosage compensation genes between different taxa and comment on sex chromosomes that apparently lack compensation mechanisms. Finally, we discuss how dosage compensation systems can also influence the evolution of well-established sex chromosomes.
Collapse
Affiliation(s)
- Beatriz Vicoso
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
16
|
Patten MM, Haig D. MAINTENANCE OR LOSS OF GENETIC VARIATION UNDER SEXUAL AND PARENTAL ANTAGONISM AT A SEX-LINKED LOCUS. Evolution 2009; 63:2888-95. [DOI: 10.1111/j.1558-5646.2009.00764.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Vermaak D, Bayes JJ, Malik HS. A surrogate approach to study the evolution of noncoding DNA elements that organize eukaryotic genomes. J Hered 2009; 100:624-36. [PMID: 19635763 DOI: 10.1093/jhered/esp063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Comparative genomics provides a facile way to address issues of evolutionary constraint acting on different elements of the genome. However, several important DNA elements have not reaped the benefits of this new approach. Some have proved intractable to current day sequencing technology. These include centromeric and heterochromatic DNA, which are essential for chromosome segregation as well as gene regulation, but the highly repetitive nature of the DNA sequences in these regions make them difficult to assemble into longer contigs. Other sequences, like dosage compensation X chromosomal sites, origins of DNA replication, or heterochromatic sequences that encode piwi-associated RNAs, have proved difficult to study because they do not have recognizable DNA features that allow them to be described functionally or computationally. We have employed an alternate approach to the direct study of these DNA elements. By using proteins that specifically bind these noncoding DNAs as surrogates, we can indirectly assay the evolutionary constraints acting on these important DNA elements. We review the impact that such "surrogate strategies" have had on our understanding of the evolutionary constraints shaping centromeres, origins of DNA replication, and dosage compensation X chromosomal sites. These have begun to reveal that in contrast to the view that such structural DNA elements are either highly constrained (under purifying selection) or free to drift (under neutral evolution), some of them may instead be shaped by adaptive evolution and genetic conflicts (these are not mutually exclusive). These insights also help to explain why the same elements (e.g., centromeres and replication origins), which are so complex in some eukaryotic genomes, can be simple and well defined in other where similar conflicts do not exist.
Collapse
Affiliation(s)
- Danielle Vermaak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
18
|
Abstract
Intralocus sexual conflict arises when there are sex-specific optima for a trait that is expressed in both sexes and when the constraint of a shared gene pool prevents males and females from reaching their optima independently. This situation may result in a negative intersexual correlation for fitness. Here I first discuss key differences between intra- and interlocus conflict, the type of sexual conflict that arises in mating interactions between males and females. I then review the experimental evidence for the existence of genomewide sexually antagonistic variation and discuss how intralocus conflict can be resolved. Substantial genomewide sexually antagonistic variation exists in Drosophila melanogaster lab populations. Yet, in the same species, sex-specific gene regulation appears to evolve rapidly, suggesting that the obstacles to the resolution of intralocus conflict are minor. The fact that negative intersexual correlations for fitness are observed even if sexual dimorphism can evolve rapidly suggests that intralocus conflict is highly dynamic. The final part of this review examines the evolutionary consequences of intralocus sexual conflict for the evolution of the sex chromosomes, sexual selection, and sex determination. Intralocus conflict helps to explain many of the peculiar features of the sex chromosomes and has shaped the functional bias and expression biases of sex-linked genes. The genomic distribution of sexually selected genes, in particular, affects sexual selection in various ways. The presence of sexually antagonistic variation can strongly interfere with the good genes' process of sexual selection and erode the genetic benefits of mate choice. Regarding sex determination, this review concentrates on evolutionary transitions between different sex determination mechanisms. Such transitions have occurred frequently in several taxa. Theory and empirical data suggest an important role for intralocus conflict in triggering switches between sex determination systems.
Collapse
|
19
|
Mank JE. The W, X, Y and Z of sex-chromosome dosage compensation. Trends Genet 2009; 25:226-33. [PMID: 19359064 DOI: 10.1016/j.tig.2009.03.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/07/2009] [Accepted: 03/09/2009] [Indexed: 01/23/2023]
Abstract
In species with highly differentiated sex chromosomes, imbalances in gene dosage between the sexes can affect overall organismal fitness. Regulatory mechanisms were discovered in several unrelated animals, which counter gene-dose differences between females and males, and these early findings suggested that dosage-compensating mechanisms were required for sex-chromosome evolution. However, recent reports in birds and moths contradict this view because these animals locally compensate only a few genes on the sex chromosomes, leaving the majority with different expression levels in males and females. These findings warrant a re-examination of the evolutionary forces underlying dosage compensation.
Collapse
Affiliation(s)
- Judith E Mank
- University of Oxford, Department of Zoology, Edward Grey Institute, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
20
|
Abstract
A typical pattern in sex chromosome evolution is that Y chromosomes are small and have lost many of their genes. One mechanism that might explain the degeneration of Y chromosomes is Muller's ratchet, the perpetual stochastic loss of linkage groups carrying the fewest number of deleterious mutations. This process has been investigated theoretically mainly for asexual, haploid populations. Here, I construct a model of a sexual population where deleterious mutations arise on both X and Y chromosomes. Simulation results of this model demonstrate that mutations on the X chromosome can considerably slow down the ratchet. On the other hand, a lower mutation rate in females than in males, background selection, and the emergence of dosage compensation are expected to accelerate the process.
Collapse
|