1
|
Mitra S, Sultana SA, Prova SR, Uddin TM, Islam F, Das R, Nainu F, Sartini S, Chidambaram K, Alhumaydhi FA, Emran TB, Simal-Gandara J. Investigating forthcoming strategies to tackle deadly superbugs: current status and future vision. Expert Rev Anti Infect Ther 2022; 20:1309-1332. [PMID: 36069241 DOI: 10.1080/14787210.2022.2122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Superbugs are microorganisms that cause disease and have increased resistance to the treatments typically used against infections. Recently, antibiotic resistance development has been more rapid than the pace at which antibiotics are manufactured, leading to refractory infections of pathogenic bacteria. Scientists are concerned that a particularly virulent and lethal "superbug" will one day join the ranks of existing bacteria that cause incurable diseases, resulting in a global health disaster on the scale of the Black Death. AREAS COVERED Therefore, this study highlights the current developments in the management of antibiotic-resistant bacteria and recommends strategies for further regulating antibiotic-resistant microorganisms associated with the healthcare system. This review also addresses the origins, prevalence, and pathogenicity of superbugs, and the design of antibacterial against these growing multidrug-resistant organisms from a medical perspective. EXPERT OPINION It is recommended that antimicrobial resistance (AMR) should be addressed by limiting human-to-human transmission of resistant strains, lowering the use of broad-spectrum antibiotics, and developing novel antimicrobials. Using the risk-factor domains framework from this study would assure that not only clinical but also community and hospital-specific factors are covered, lowering the chance of confounders. Extensive subjective research is necessary to fully understand the underlying factors and uncover previously unexplored areas.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sifat Ara Sultana
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Shajuthi Rahman Prova
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | - Sartini Sartini
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.,Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
2
|
Friedman R. Drug resistance in cancer: molecular evolution and compensatory proliferation. Oncotarget 2017; 7:11746-55. [PMID: 26909596 PMCID: PMC4914245 DOI: 10.18632/oncotarget.7459] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/08/2016] [Indexed: 01/31/2023] Open
Abstract
Targeted therapies have revolutionized cancer treatment. Unfortunately, their success is limited due to the development of drug resistance within the tumor, which is an evolutionary process. Understanding how drug resistance evolves is a prerequisite to a better success of targeted therapies. Resistance is usually explained as a response to evolutionary pressure imposed by treatment. Thus, evolutionary understanding can and should be used in the design and treatment of cancer. In this article, drug-resistance to targeted therapies is reviewed from an evolutionary standpoint. The concept of apoptosis-induced compensatory proliferation (AICP) is developed. It is shown that AICP helps to explain some of the phenomena that are observed experimentally in cancers. Finally, potential drug targets are suggested in light of AICP.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, Sweden
| |
Collapse
|
3
|
Bartell JA, Blazier AS, Yen P, Thøgersen JC, Jelsbak L, Goldberg JB, Papin JA. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat Commun 2017; 8:14631. [PMID: 28266498 PMCID: PMC5344303 DOI: 10.1038/ncomms14631] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/18/2017] [Indexed: 01/13/2023] Open
Abstract
Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.
Collapse
Affiliation(s)
- Jennifer A. Bartell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Anna S. Blazier
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Phillip Yen
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Juliane C. Thøgersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
- Emory+Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Jason A. Papin
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
4
|
|
5
|
Granato ET, Harrison F, Kümmerli R, Ross-Gillespie A. Do Bacterial "Virulence Factors" Always Increase Virulence? A Meta-Analysis of Pyoverdine Production in Pseudomonas aeruginosa As a Test Case. Front Microbiol 2016; 7:1952. [PMID: 28018298 PMCID: PMC5149528 DOI: 10.3389/fmicb.2016.01952] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/21/2016] [Indexed: 01/05/2023] Open
Abstract
Bacterial traits that contribute to disease are termed “virulence factors” and there is much interest in therapeutic approaches that disrupt such traits. What remains less clear is whether a virulence factor identified as such in a particular context is also important in infections involving different host and pathogen types. Here, we address this question using a meta-analytic approach. We statistically analyzed the infection outcomes of 81 experiments associated with one well-studied virulence factor—pyoverdine, an iron-scavenging compound secreted by the opportunistic pathogen Pseudomonas aeruginosa. We found that this factor is consistently involved with virulence across different infection contexts. However, the magnitude of the effect of pyoverdine on virulence varied considerably. Moreover, its effect on virulence was relatively minor in many cases, suggesting that pyoverdine is not indispensable in infections. Our works supports theoretical models from ecology predicting that disease severity is multifactorial and context dependent, a fact that might complicate our efforts to identify the most important virulence factors. More generally, our study highlights how comparative approaches can be used to quantify the magnitude and general importance of virulence factors, key knowledge informing future anti-virulence treatment strategies.
Collapse
Affiliation(s)
- Elisa T Granato
- Department of Plant and Microbial Biology, University of Zurich Zurich, Switzerland
| | - Freya Harrison
- School of Life Sciences, University of Warwick Coventry, UK
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich Zurich, Switzerland
| | - Adin Ross-Gillespie
- Department of Plant and Microbial Biology, University of ZurichZurich, Switzerland; SIB Swiss Institute of BioinformaticsLausanne, Switzerland
| |
Collapse
|
6
|
Weigert M, Ross-Gillespie A, Leinweber A, Pessi G, Brown SP, Kümmerli R. Manipulating virulence factor availability can have complex consequences for infections. Evol Appl 2016; 10:91-101. [PMID: 28035238 PMCID: PMC5192820 DOI: 10.1111/eva.12431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Given the rise of bacterial resistance against antibiotics, we urgently need alternative strategies to fight infections. Some propose we should disarm rather than kill bacteria, through targeted disruption of their virulence factors. It is assumed that this approach (i) induces weak selection for resistance because it should only minimally impact bacterial fitness, and (ii) is specific, only interfering with the virulence factor in question. Given that pathogenicity emerges from complex interactions between pathogens, hosts and their environment, such assumptions may be unrealistic. To address this issue in a test case, we conducted experiments with the opportunistic human pathogen Pseudomonas aeruginosa, where we manipulated the availability of a virulence factor, the iron‐scavenging pyoverdine, within the insect host Galleria mellonella. We observed that pyoverdine availability was not stringently predictive of virulence and affected bacterial fitness in nonlinear ways. We show that this complexity could partly arise because pyoverdine availability affects host responses and alters the expression of regulatorily linked virulence factors. Our results reveal that virulence factor manipulation feeds back on pathogen and host behaviour, which in turn affects virulence. Our findings highlight that realizing effective and evolutionarily robust antivirulence therapies will ultimately require deeper engagement with the intrinsic complexity of host–pathogen systems.
Collapse
Affiliation(s)
- Michael Weigert
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland; Microbiology Department of Biology I Ludwig Maximilians University Munich Martinsried Germany
| | - Adin Ross-Gillespie
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland; Bioinformatics Core Facility SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Anne Leinweber
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| | - Sam P Brown
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| |
Collapse
|
7
|
Vale PF, McNally L, Doeschl-Wilson A, King KC, Popat R, Domingo-Sananes MR, Allen JE, Soares MP, Kümmerli R. Beyond killing: Can we find new ways to manage infection? EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:148-57. [PMID: 27016341 PMCID: PMC4834974 DOI: 10.1093/emph/eow012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/14/2016] [Indexed: 01/06/2023]
Abstract
The antibiotic pipeline is running dry and infectious disease remains a major threat to public health. An efficient strategy to stay ahead of rapidly adapting pathogens should include approaches that replace, complement or enhance the effect of both current and novel antimicrobial compounds. In recent years, a number of innovative approaches to manage disease without the aid of traditional antibiotics and without eliminating the pathogens directly have emerged. These include disabling pathogen virulence-factors, increasing host tissue damage control or altering the microbiota to provide colonization resistance, immune resistance or disease tolerance against pathogens. We discuss the therapeutic potential of these approaches and examine their possible consequences for pathogen evolution. To guarantee a longer half-life of these alternatives to directly killing pathogens, and to gain a full understanding of their population-level consequences, we encourage future work to incorporate evolutionary perspectives into the development of these treatments.
Collapse
Affiliation(s)
- Pedro F Vale
- Centre for Immunity, Infection and Evolution Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Luke McNally
- Centre for Immunity, Infection and Evolution Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Roman Popat
- Centre for Immunity, Infection and Evolution Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Maria R Domingo-Sananes
- Institute for Genetics and Development of Rennes - CNRS UMR 6290, 2, Avenue Du Pr. Léon Bernard, Rennes 35043, France
| | - Judith E Allen
- Centre for Immunity, Infection and Evolution Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Miguel P Soares
- Instituto Gulbenkian De Ciência, Rua Da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| |
Collapse
|
8
|
Abstract
The discovery of antibiotics as specific and effective drugs against infectious agents has generated the belief that the famous Paul Erlich theory on magic bullet should be applied to cancer as well. However, after around 60 years of failures in finding a magic bullet against cancer, a question appears mandatory: does the magic bullet against cancer really exist? In trying to understand more on the issue, we propose three discoveries are coming from a nonmainstream approach against cancer. Tumor is acidic, and tumor acidity impairs drugs entering within tumor cells and isolates tumors from the rest of the body. Proton pumps are key in allowing tumor cells to live in the acidic microenvironment. A class of antiacidic drugs, proton pump inhibitors (PPIs), were shown to have a potent anti-tumor effect, through inhibition of proton pumps in tumor cells. PPIs are indeed prodrugs needing acidity to be activated into the active molecule. So they use protonation by H+ as an activating mechanism, while the vast majority of drugs are totally neutralized by protonation. An anti-tumor therapy based on PPI showed to be effective both in vitro and in vivo. Differently from normal cells, cancer cells meet their energy needs in great part by fermentation, and it appears conceivable that hypoxia and low nutrient transform tumor cells into fermenting anaerobes. This suggests that cancer cells are more similar to unicellular organisms, aimed at surviving in a continuous fighting, rather than cooperating, with other cells, as it occurs in the normal homeostasis of our body. We have shown that cancer cells take their fuel by "cannibalizing" other cells, either dead or alive, especially when starved and in acidic condition. This finding led to the discovery of a new oncogene TM9SF4 that human malignant cell shares with amoebas. The evidence is accumulating that almost all the cells release extracellular vehicles (EVs), from micro- to nanosize, which shuttle a variety of molecules. Tumor cells, particularly when stressed in their hostile microenvironment, release high levels of EVs, able to interact with target cells in various ways, within an organ or at a distance. They may represent both valuable tumor biomarker and shuttles for drugs with anti-tumor properties. This article wants to burst a real change in future anti-cancer strategies, based on the idea that tumors are much more common features than specific molecular targets.
Collapse
Affiliation(s)
- Stefano Fais
- a Anti-tumor Drug Section, Department of Therapeutic Research, Medicines Evaluation Istituto Superiore di Sanità (National Institute of Health) , Rome , Italy
| |
Collapse
|
9
|
Abstract
Although it is widely accepted that most cancers exhibit some degree of intratumour heterogeneity, we are far from understanding the dynamics that operate among subpopulations within tumours. There is growing evidence that cancer cells behave as communities, and increasing attention is now being directed towards the cooperative behaviour of subclones that can influence disease progression. As expected, these interactions can add a greater layer of complexity to therapeutic interventions in heterogeneous tumours, often leading to a poor prognosis. In this Review, we highlight studies that demonstrate such interactions in cancer and postulate ways to overcome them with better-designed therapeutic strategies.
Collapse
Affiliation(s)
- Doris P Tabassum
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. [2] BBS Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kornelia Polyak
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. [2] BBS Program, Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [4] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
10
|
Opinion: Control vs. eradication: applying infectious disease treatment strategies to cancer. Proc Natl Acad Sci U S A 2015; 112:937-8. [PMID: 25628412 DOI: 10.1073/pnas.1420297111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Gerdt JP, Blackwell HE. Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. ACS Chem Biol 2014; 9:2291-9. [PMID: 25105594 PMCID: PMC4201345 DOI: 10.1021/cb5004288] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The growing threat of antibiotic resistance necessitates the development of novel antimicrobial therapies. Antivirulence agents that target group-beneficial traits in microorganisms (i.e., phenotypes that help the cells surrounding the producer cell instead of selfishly benefiting only the producer cell) represent a new antimicrobial approach that may be robust against the spread of resistant mutants. One prominent group-beneficial antivirulence target in bacteria is quorum sensing (QS). While scientists are producing new QS inhibitors (QSIs) at an increasing pace for use as research tools and potential therapeutic leads, substantial work remains in empirically demonstrating a robustness against resistance. Herein we report the results of in vitro competition studies in Pseudomonas aeruginosa that explicitly confirm that two separate barriers can impede the spread of resistance to QSIs: (1) insufficient native QS signal levels prevent rare QSI-resistant bacteria from expressing their QS regulon, and (2) group-beneficial QS-regulated phenotypes produced by resistant bacteria are susceptible to cheating by QSI-sensitive neighbors, even when grown on a solid substrate with limited mixing to mimic infected tissue. These results underscore the promise of QSIs and other antivirulence molecules that target group beneficial traits as resistance-robust antimicrobial treatments and provide support for their further development.
Collapse
Affiliation(s)
- Joseph P. Gerdt
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| |
Collapse
|
12
|
Pepper JW. The evolution of bacterial social life: From the ivory tower to the front lines of public health. EVOLUTION MEDICINE AND PUBLIC HEALTH 2014; 2014:65-8. [PMID: 24627463 PMCID: PMC3981165 DOI: 10.1093/emph/eou010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug resistant bacteria are a huge and growing threat to public health. A solution exists in theory, but had not yet been put to a practical test. In this paper, it is put to a test, and performs successfully. As predicted by theory, using a drug that targets bacteria's shared secreted ‘public goods’ molecules instead of cell components, did not drive the bacterial evolution of drug resistance, and therefore retained its effectiveness. This result holds great promise for better drugs and vaccines against many infectious diseases, and also for better cancer therapies. Drug-resistant bacteria are a huge and growing threat to public health. A solution exists in theory, but had not yet been put to a practical test. The accompanying paper by Ross-Gillespie et al., the theory is put to a test and performs successfully. As predicted, using a drug that targets bacteria's shared secreted ‘public goods’ molecules instead of cell components did not drive the bacterial evolution of drug resistance, and therefore retained its effectiveness. This result holds great promise for better drugs and vaccines against many infectious diseases, and also for better cancer therapies.
Collapse
Affiliation(s)
- John W Pepper
- National Cancer Institute, Division of Cancer Prevention, Biometry Research Group, 9609 Medical Center Drive, MSC 9789 Room 5E634, Rockville, MD 20892 and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
13
|
Ross-Gillespie A, Weigert M, Brown SP, Kümmerli R. Gallium-mediated siderophore quenching as an evolutionarily robust antibacterial treatment. EVOLUTION MEDICINE AND PUBLIC HEALTH 2014; 2014:18-29. [PMID: 24480613 PMCID: PMC3935367 DOI: 10.1093/emph/eou003] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Conventional antibiotics select strongly for resistance and are consequently losing efficacy worldwide. Extracellular quenching of shared virulence factors could represent a more promising strategy because (i) it reduces the available routes to resistance (as extracellular action precludes any mutations blocking a drug's entry into cells or hastening its exit) and (ii) it weakens selection for resistance, as fitness benefits to emergent mutants are diluted across all cells in a cooperative collective. Here, we tested this hypothesis empirically. METHODOLOGY We used gallium to quench the iron-scavenging siderophores secreted and shared among pathogenic Pseudomonas aeruginosa bacteria, and quantitatively monitored its effects on growth in vitro. We assayed virulence in acute infections of caterpillar hosts (Galleria mellonella), and tracked resistance emergence over time using experimental evolution. RESULTS Gallium strongly inhibited bacterial growth in vitro, primarily via its siderophore quenching activity. Moreover, bacterial siderophore production peaked at intermediate gallium concentrations, indicating additional metabolic costs in this range. In vivo, gallium attenuated virulence and growth-even more so than in infections with siderophore-deficient strains. Crucially, while resistance soon evolved against conventional antibiotic treatments, gallium treatments retained their efficacy over time. CONCLUSIONS Extracellular quenching of bacterial public goods could offer an effective and evolutionarily robust control strategy.
Collapse
Affiliation(s)
- Adin Ross-Gillespie
- Institute of Plant Biology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Swiss Federal Institute of Aquatic Science and Technology (Eawag), Environmental Microbiology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, West Mains Road, Ashworth Laboratories, Edinburgh EH9 3JT, UK
| | | | | | | |
Collapse
|
14
|
Girard V, Dieryckx C, Job C, Job D. Secretomes: The fungal strike force. Proteomics 2013; 13:597-608. [DOI: 10.1002/pmic.201200282] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Vincent Girard
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| | - Cindy Dieryckx
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| | - Claudette Job
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| | - Dominique Job
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| |
Collapse
|
15
|
Pepper JW. Drugs that target pathogen public goods are robust against evolved drug resistance. Evol Appl 2012; 5:757-61. [PMID: 23144661 PMCID: PMC3492900 DOI: 10.1111/j.1752-4571.2012.00254.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/09/2012] [Indexed: 11/29/2022] Open
Abstract
Pathogen drug resistance is a central problem in medicine and public health. It arises through somatic evolution, by mutation and selection among pathogen cells within a host. Here, we examine the hypothesis that evolution of drug resistance could be reduced by developing drugs that target the secreted metabolites produced by pathogen cells instead of directly targeting the cells themselves. Using an agent-based computational model of an evolving population of pathogen cells, we test this hypothesis and find support for it. We also use our model to explain this effect within the framework of standard evolutionary theory. We find that in our model, the drugs most robust against evolved drug resistance are those that target the most widely shared external products, or ‘public goods’, of pathogen cells. We also show that these drugs exert a weak selective pressure for resistance because they create only a weak correlation between drug resistance and cell fitness. The same principles apply to design of vaccines that are robust against vaccine escape. Because our theoretical results have crucial practical implications, they should be tested by empirical experiments.
Collapse
Affiliation(s)
- John W Pepper
- Division of Cancer Prevention, National Cancer Institute Bethesda, MD, USA ; Santa Fe Institute Santa Fe, NM, USA
| |
Collapse
|
16
|
Parizi LF, Githaka NW, Logullo C, Konnai S, Masuda A, Ohashi K, da Silva Vaz I. The quest for a universal vaccine against ticks: Cross-immunity insights. Vet J 2012; 194:158-65. [DOI: 10.1016/j.tvjl.2012.05.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/19/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
|
17
|
Nonacs P, Kapheim KM. Modeling Disease Evolution with Multilevel Selection: HIV as a Quasispecies Social Genome. ACTA ACUST UNITED AC 2012. [DOI: 10.4303/jem/235553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Abstract
As tumors outgrow their blood supply and become oxygen deprived, they switch to less energetically efficient but oxygen-independent anaerobic glucose metabolism. However, cancer cells maintain glycolytic phenotype even in the areas of ample oxygen supply (Warburg effect). It has been hypothesized that the competitive advantage that glycolytic cells get over aerobic cells is achieved through secretion of lactic acid, which is a by-product of glycolysis. It creates acidic microenvironment around the tumor that can be toxic to normal somatic cells. This interaction can be seen as a prisoner's dilemma: from the point of view of metabolic payoffs, it is better for cells to cooperate and become better competitors but neither cell has an incentive to unilaterally change its metabolic strategy. In this paper a novel mathematical technique, which allows reducing an otherwise infinitely dimensional system to low dimensionality, is used to demonstrate that changing the environment can take the cells out of this equilibrium and that it is cooperation that can in fact lead to the cell population committing evolutionary suicide.
Collapse
Affiliation(s)
- Irina Kareva
- Mathematical, Computational Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America.
| |
Collapse
|
19
|
What can ecology teach us about cancer? Transl Oncol 2011; 4:266-70. [PMID: 21966543 DOI: 10.1593/tlo.11154] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 12/31/2022] Open
Abstract
In 2008, Pienta et al. (Transl Oncol. 2008;1:158-164) introduced the term ecological therapy for cancer treatment and, in particular, emphasized that destruction of the tumor microenvironment would be more effective than just killing the cells that inhabit it. Proposed here is an expansion on the idea of ecological therapy of cancer, incorporating 1) literature on species invasion, i.e., a right cancerous clone needs to be at the right place at the right time to actually invade its environment, and 2) the literature on niche construction, that is, the idea that once a tumor is formed, cancer cells they modify their microenvironment (niche construction) by changing pH through glycolysis, secreting growth factors and recruiting tumor-associated macrophages to promote cell growth, activating fibroblasts, evading predation from immune system, making the cancer that much more difficult to eradicate. Paleontological literature suggests that the largestmass extinctions occurred when environmental stress that would weaken the population was coupled with some pulse destructive event that caused extensive mortality. To have the same effect on cells in the tumor, rather than, or at least in addition to, killing the cells, one would also need to target the niche that they created for themselves.
Collapse
|
20
|
Aktipis CA, Maley CC, Pepper JW. Dispersal evolution in neoplasms: the role of disregulated metabolism in the evolution of cell motility. Cancer Prev Res (Phila) 2011; 5:266-75. [PMID: 21930797 DOI: 10.1158/1940-6207.capr-11-0004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, we apply the theoretical framework of dispersal evolution to understand the emergence of invasive and metastatic cells. We investigate whether the dysregulated metabolism characteristic of cancer cells may play a causal role in selection for cell motility, and thus to the tissue invasion and metastasis that define cancer. With an agent-based computational model, we show that cells with higher metabolism evolve to have higher rates of movement and that "neoplastic" cells with higher metabolism rates are able to persist in a population of "normal" cells with low metabolic rates, but only if increased metabolism is accompanied by increased motility. This is true even when the cost of motility is high. These findings suggest that higher rates of cell metabolism lead to selection for motile cells in premalignant neoplasms, which may preadapt cells for subsequent invasion and metastasis. This has important implications for understanding the progression of cancer from less invasive to more invasive cell types.
Collapse
Affiliation(s)
- C Athena Aktipis
- Department of Ecology and Evolutionary Biology, University of Arizona, P.O. Box 210088, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
21
|
Keller TE, Molineux IJ, Bull JJ. Viral resistance evolution fully escapes a rationally designed lethal inhibitor. Mol Biol Evol 2009; 26:2041-6. [PMID: 19494036 DOI: 10.1093/molbev/msp111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viruses are notoriously capable of evolving resistance to drugs. However, if the endpoint of resistance evolution is only partial escape, a feasible strategy should be to stack drugs, so the combined effect of partial inhibition by several drugs results in net inhibition. Assessing the feasibility of this approach requires quantitative data on viral fitness before and after evolution of resistance to a drug, as done here with bacteriophage T7. An inhibitory gene expressed from a phage promoter aborts wild-type T7 infections. The effect is so severe that the phage population declines when exposed to the inhibitor but expands a billion-fold per hour in its absence. In prior work, T7 evolved modest resistance to this inhibitor, an expected result. Given the nature of the inhibitor, that it used the phage's own promoter to target the phage's destruction, we anticipated that resistance evolution would be limited as the phage may need to evolve a new regulatory system, with simultaneous changes in its RNA polymerase (RNAP) and many of its promoters to fully escape inhibition. We show here that further adaptation of the partially resistant phage led to complete resistance. Resistance evolution was due to three mutations in the RNAP gene and two other genes; unexpectedly, no changes were observed in promoters. Consideration of other mechanisms of T7 inhibition leaves hope that permanent inhibition of viral growth with drugs can in principle be achieved.
Collapse
Affiliation(s)
- Thomas E Keller
- Section of Integrative Biology, The University of Texas at Austin, USA.
| | | | | |
Collapse
|
22
|
Melnick N, Rajam G, Carlone GM, Sampson JS, Ades EW. Evaluation of a novel therapeutic approach to treating severe pneumococcal infection using a mouse model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:806-10. [PMID: 19386795 PMCID: PMC2691041 DOI: 10.1128/cvi.00120-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/06/2009] [Accepted: 04/16/2009] [Indexed: 11/20/2022]
Abstract
P4, a 28-amino-acid peptide, is a eukaryotic cellular activator that enhances specific in vitro opsonophagocytic killing of multiple bacterial pathogens. In a previous study, we successfully recreated this phenomenon in mice in vivo by using a two-dose regimen of P4 and pathogen-specific antibodies, which significantly reduced moribundity in mice. For the present study, we hypothesized that the inclusion of a low-dose antibiotic would make it possible to treat the infected mice with a single dose containing a mixture of P4 and a pathogen-specific antibody. A single dose consisting of P4, intravenous immunoglobulin (IVIG), and ceftriaxone effectively reduced moribundity compared to that of untreated controls (n = 10) by 75% (P < 0.05) and rescued all (10 of 10) infected animals (P < 0.05). If rescued animals were reinfected with Streptococcus pneumoniae and treated with a single dose containing P4, IVIG, and ceftriaxone, they could be rerescued. This observation of the repeated successful use of P4 combination therapy demonstrates a low risk of tolerance development. Additionally, we examined the polymorphonuclear leukocytes (PMN) derived from infected mice and observed that P4 enhanced in vitro opsonophagocytic killing (by >80% over the control level; P < 0.05). This finding supports our hypothesis that PMN are activated by P4 during opsonophagocytosis and the recovery of mice from pneumococcal infection. P4 peptide-based combination therapy may offer an alternative and rapid immunotherapy to treat fulminant pneumococcal infection.
Collapse
Affiliation(s)
- Nikkol Melnick
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | |
Collapse
|
23
|
Pepper JW, Scott Findlay C, Kassen R, Spencer SL, Maley CC. Cancer research meets evolutionary biology. Evol Appl 2009; 2:62-70. [PMID: 25567847 PMCID: PMC3352411 DOI: 10.1111/j.1752-4571.2008.00063.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/02/2008] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that Darwin's theory of evolution by natural selection provides insights into the etiology and treatment of cancer. On a microscopic scale, neoplastic cells meet the conditions for evolution by Darwinian selection: cell reproduction with heritable variability that affects cell survival and replication. This suggests that, like other areas of biological and biomedical research, Darwinian theory can provide a general framework for understanding many aspects of cancer, including problems of great clinical importance. With the availability of raw molecular data increasing rapidly, this theory may provide guidance in translating data into understanding and progress. Several conceptual and analytical tools from evolutionary biology can be applied to cancer biology. Two clinical problems may benefit most from the application of Darwinian theory: neoplastic progression and acquired therapeutic resistance. The Darwinian theory of cancer has especially profound implications for drug development, both in terms of explaining past difficulties, and pointing the way toward new approaches. Because cancer involves complex evolutionary processes, research should incorporate both tractable (simplified) experimental systems, and also longitudinal observational studies of the evolutionary dynamics of cancer in laboratory animals and in human patients. Cancer biology will require new tools to control the evolution of neoplastic cells.
Collapse
Affiliation(s)
- John W Pepper
- Department of Ecology and Evolutionary Biology, University of Arizona Tucson, AZ, USA ; The Santa Fe Institute Santa Fe, NM, USA
| | - C Scott Findlay
- Department of Biology, University of Ottawa Ottawa, ON, Canada ; Institute of Environment, University of Ottawa Ottawa, ON, Canada ; Program in Cancer Therapeutics, Ottawa Hospital Cancer Centre Ottawa, ON, Canada
| | - Rees Kassen
- Department of Biology, University of Ottawa Ottawa, ON, Canada ; Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Sabrina L Spencer
- Computational and Systems Biology, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Carlo C Maley
- Molecular and Cellular Oncogenesis Program, The Wistar Institute Philadelphia, PA, USA
| |
Collapse
|