1
|
Mahdjoub H, Khelifa R, Roy J, Sbilordo SH, Zeender V, Perdigón Ferreira J, Gourgoulianni N, Lüpold S. Interplay between male quality and male-female compatibility across episodes of sexual selection. SCIENCE ADVANCES 2023; 9:eadf5559. [PMID: 37774022 PMCID: PMC10541500 DOI: 10.1126/sciadv.adf5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
The processes underlying mate choice profoundly influence the dynamics of sexual selection and the evolution of male sexual traits. Consistent preference for certain phenotypes may erode genetic variation in populations through directional selection, whereas divergent preferences (e.g., genetically compatible mates) provide one mechanism to maintain such variation. However, the relative contributions of these processes across episodes of selection remain unknown. Using Drosophila melanogaster, we followed the fate of male genotypes, previously scored for their overall reproductive value and their compatibility with different female genotypes, across pre- and postmating episodes of selection. When pairs of competitor males differed in their intrinsic quality and their compatibility with the female, both factors influenced outcomes from mating success to paternity but to a varying degree between stages. These results add further dimensions to our understanding of how the interactions between genotypes and forms of selection shape reproductive outcomes and ultimately reproductive trait evolution.
Collapse
Affiliation(s)
- Hayat Mahdjoub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Biology Department, Concordia University, 7141 Sherbrooke St. W., Montreal QC H4B 1R6, Canada
| | - Rassim Khelifa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Biology Department, Concordia University, 7141 Sherbrooke St. W., Montreal QC H4B 1R6, Canada
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jhoniel Perdigón Ferreira
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
|
3
|
Sinclair CS, Lisa SF, Pischedda A. Does sexual experience affect the strength of male mate choice for high-quality females in Drosophila melanogaster? Ecol Evol 2021; 11:16981-16992. [PMID: 34938486 PMCID: PMC8668775 DOI: 10.1002/ece3.8334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/07/2022] Open
Abstract
Although females are traditionally thought of as the choosy sex, there is increasing evidence in many species that males will preferentially court or mate with certain females over others when given a choice. In the fruit fly, Drosophila melanogaster, males discriminate between potential mating partners based on a number of female traits, including species, mating history, age, and condition. Interestingly, many of these male preferences are affected by the male's previous sexual experiences, such that males increase courtship toward types of females that they have previously mated with and decrease courtship toward types of females that have previously rejected them. D. melanogaster males also show courtship and mating preferences for larger females over smaller females, likely because larger females have higher fecundity. It is unknown, however, whether this preference shows behavioral plasticity based on the male's sexual history as we see for other male preferences. Here, we manipulate the sexual experience of D. melanogaster males and test whether this manipulation has any effect on the strength of male mate choice for large females. We find that sexually inexperienced males have a robust courtship preference for large females that is unaffected by previous experience mating with, or being rejected by, females of differing sizes. Given that female body size is one of the most common targets of male mate choice across insect species, our experiments with D. melanogaster may provide insight into how these preferences develop and evolve.
Collapse
Affiliation(s)
| | - Suriya F. Lisa
- Department of BiologyBarnard CollegeColumbia UniversityNew YorkUSA
| | - Alison Pischedda
- Department of BiologyBarnard CollegeColumbia UniversityNew YorkUSA
| |
Collapse
|
4
|
Gómez-Llano M, Scott E, Svensson EI. The importance of pre- and postcopulatory sexual selection promoting adaptation to increasing temperatures. Curr Zool 2021; 67:321-327. [PMID: 34616924 PMCID: PMC8488992 DOI: 10.1093/cz/zoaa059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/27/2020] [Indexed: 11/13/2022] Open
Abstract
Global temperatures are increasing rapidly affecting species globally. Understanding if and how different species can adapt fast enough to keep up with increasing temperatures is of vital importance. One mechanism that can accelerate adaptation and promote evolutionary rescue is sexual selection. Two different mechanisms by which sexual selection can facilitate adaptation are pre- and postcopulatory sexual selection. However, the relative effects of these different forms of sexual selection in promoting adaptation are unknown. Here, we present the results from an experimental study in which we exposed fruit flies Drosophila melanogaster to either no mate choice or 1 of 2 different sexual selection regimes (pre- and postcopulatory sexual selection) for 6 generations, under different thermal regimes. Populations showed evidence of thermal adaptation under precopulatory sexual selection, but this effect was not detected in the postcopulatory sexual selection and the no choice mating regime. We further demonstrate that sexual dimorphism decreased when flies evolved under increasing temperatures, consistent with recent theory predicting more sexually concordant selection under environmental stress. Our results suggest an important role for precopulatory sexual selection in promoting thermal adaptation and evolutionary rescue.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eve Scott
- Faculty of Biology, Medicine and Health, The University of Manchester. Oxford Road, Manchester, M13 9PL, UK.,Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Erik I Svensson
- Biology Department, Lund University, Evolutionary Ecology Unit, Lund, 223 62, Sweden
| |
Collapse
|
5
|
Filice DCS, Bhargava R, Dukas R. Female mating experience and genetic background independently influence male mating success in fruit flies. J Evol Biol 2020; 34:309-318. [PMID: 33128417 DOI: 10.1111/jeb.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 11/29/2022]
Abstract
When the reproductive interests of males and females conflict, males can evolve traits that are harmful to females, and females can coevolve traits to resist this harm. In the fruit fly, Drosophila melanogaster, there is genetic variation in female resistance traits, which can affect the pre- and post-mating success of males that try to mate with them. However, it is not clear to what extent the expression of these phenotypes can be modified by environmental factors such as sociosexual experience. Here, we tested how the genetic background of a female and her previous mating experience interact to affect the mating success of focal males. In the experience phase, we placed females from 28 distinct genetic backgrounds individually either with a single male (low conflict) or with three males (high conflict) for 48 hr. In the subsequent test phase, we measured the mating and post-mating fertilization success of focal males paired individually with each female. We found that focal males paired with females from the high-conflict treatment were less successful at mating, took longer to mate when they were successful, and had a lower proportion of paternity share. Furthermore, we identified significant female genetic variation associated with male mating success. These results indicate that female experience, along with intrinsic genetic factors, can independently influence different fitness components of her subsequent mates and has implications for our understanding of plastic female mating strategies and the evolution of sexually antagonistic traits in males and females.
Collapse
Affiliation(s)
- David C S Filice
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Rajat Bhargava
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Reuven Dukas
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Croshaw DA, Pechmann JHK, Glenn TC. Multiple Paternity Benefits Female Marbled Salamanders by Increasing Survival of Progeny to Metamorphosis. Ethology 2017. [DOI: 10.1111/eth.12597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dean A. Croshaw
- Department of Biological Sciences Florida Gulf Coast University Fort Myers FL USA
- Savannah River Ecology Laboratory Drawer E Aiken SC USA
| | | | - Travis C. Glenn
- Department of Environmental Health Science University of Georgia Athens GA USA
| |
Collapse
|
7
|
Pischedda A, Friberg U, Stewart AD, Miller PM, Rice WR. Sexual selection has minimal impact on effective population sizes in species with high rates of random offspring mortality: An empirical demonstration using fitness distributions. Evolution 2015; 69:2638-47. [PMID: 26374275 PMCID: PMC4605864 DOI: 10.1111/evo.12764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/12/2015] [Indexed: 12/01/2022]
Abstract
The effective population size (N(e)) is a fundamental parameter in population genetics that influences the rate of loss of genetic diversity. Sexual selection has the potential to reduce N(e) by causing the sex-specific distributions of individuals that successfully reproduce to diverge. To empirically estimate the effect of sexual selection on N(e), we obtained fitness distributions for males and females from an outbred, laboratory-adapted population of Drosophila melanogaster. We observed strong sexual selection in this population (the variance in male reproductive success was ∼14 times higher than that for females), but found that sexual selection had only a modest effect on N(e), which was 75% of the census size. This occurs because the substantial random offspring mortality in this population diminishes the effects of sexual selection on N(e), a result that necessarily applies to other high fecundity species. The inclusion of this random offspring mortality creates a scaling effect that reduces the variance/mean ratios for male and female reproductive success and causes them to converge. Our results demonstrate that measuring reproductive success without considering offspring mortality can underestimate Ne and overestimate the genetic consequences of sexual selection. Similarly, comparing genetic diversity among different genomic components may fail to detect strong sexual selection.
Collapse
Affiliation(s)
- Alison Pischedda
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA 93106 USA
| | - Urban Friberg
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, SE-581 83 Linköping, Sweden
| | | | - Paige M. Miller
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA 93106 USA
| | - William R. Rice
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA 93106 USA
| |
Collapse
|
8
|
Singh A, Singh BN. Role of sexual selection in speciation in Drosophila. Genetica 2013; 142:23-41. [PMID: 24362558 DOI: 10.1007/s10709-013-9751-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
Abstract
The power of sexual selection to drive changes in the mate recognition system through divergence in sexually selected traits gives it the potential to be a potent force in speciation. To know how sexual selection can bring such type of divergence in the genus Drosophila, comparative studies based on intra- and inter-sexual selection are documented in this review. The studies provide evidence that both mate choice and male-male competition can cause selection of trait and preference which thereby leads to divergence among species. In the case of intrasexual selection, various kinds of signals play significant role in affecting the species mate recognition system and hence causing divergence between the species. However, intrasexual selection can bring the intraspecific divergence at the level of pre- and post-copulatory stage. This has been better explained through Hawaiian Drosophila which has been suggested a wonderful model system in explaining the events of speciation via sexual selection. This is due to their elaborate mating displays and some kind of ethological isolation persisting among them. Similarly, the genetic basis of sexually selected variations can provide yet another path in understanding the speciation genetics via sexual selection more closely.
Collapse
Affiliation(s)
- Akanksha Singh
- Genetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India,
| | | |
Collapse
|
9
|
Dowling DK, Williams BR, Garcia-Gonzalez F. Maternal sexual interactions affect offspring survival and ageing. J Evol Biol 2013; 27:88-97. [DOI: 10.1111/jeb.12276] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/03/2013] [Accepted: 10/05/2013] [Indexed: 11/26/2022]
Affiliation(s)
- D. K. Dowling
- School of Biological Sciences; Monash University; Melbourne Vic. Australia
| | - B. R. Williams
- School of Biological Sciences; Monash University; Melbourne Vic. Australia
| | - F. Garcia-Gonzalez
- Doñana Biological Station; Spanish Research Council CSIC; Isla de la Cartuja Seville Spain
- Centre for Evolutionary Biology; School of Animal Biology; The University of Western Australia; Nedlands WA Australia
| |
Collapse
|
10
|
|
11
|
Slatyer RA, Mautz BS, Backwell PRY, Jennions MD. Estimating genetic benefits of polyandry from experimental studies: a meta-analysis. Biol Rev Camb Philos Soc 2011; 87:1-33. [PMID: 21545390 DOI: 10.1111/j.1469-185x.2011.00182.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachel A Slatyer
- Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|