1
|
Castledine M, Sierocinski P, Inglis M, Kay S, Hayward A, Buckling A, Padfield D. Greater Phage Genotypic Diversity Constrains Arms-Race Coevolution. Front Cell Infect Microbiol 2022; 12:834406. [PMID: 35310856 PMCID: PMC8931298 DOI: 10.3389/fcimb.2022.834406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Antagonistic coevolution between hosts and parasites, the reciprocal evolution of host resistance and parasite infectivity, has important implications in ecology and evolution. The dynamics of coevolution—notably whether host or parasite has an evolutionary advantage—is greatly affected by the relative amount of genetic variation in host resistance and parasite infectivity traits. While studies have manipulated genetic diversity during coevolution, such as by increasing mutation rates, it is unclear how starting genetic diversity affects host–parasite coevolution. Here, we (co)evolved the bacterium Pseudomonas fluorescens SBW25 and two bacteriophage genotypes of its lytic phage SBW25ɸ2 in isolation (one phage genotype) and together (two phage genotypes). Bacterial populations rapidly evolved phage resistance, and phage reciprocally increased their infectivity in response. When phage populations were evolved with bacteria in isolation, bacterial resistance and phage infectivity increased through time, indicative of arms-race coevolution. In contrast, when both phage genotypes were together, bacteria did not increase their resistance in response to increasing phage infectivity. This was likely due to bacteria being unable to evolve resistance to both phage via the same mutations. These results suggest that increasing initial parasite genotypic diversity can give parasites an evolutionary advantage that arrests long-term coevolution. This study has important implications for the applied use of phage in phage therapy and in understanding host–parasite dynamics in broader ecological and evolutionary theory.
Collapse
|
2
|
Castledine M, Padfield D, Sierocinski P, Soria Pascual J, Hughes A, Mäkinen L, Friman VP, Pirnay JP, Merabishvili M, de Vos D, Buckling A. Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. eLife 2022; 11:73679. [PMID: 35188102 PMCID: PMC8912922 DOI: 10.7554/elife.73679] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
With rising antibiotic resistance, there has been increasing interest in treating pathogenic bacteria with bacteriophages (phage therapy). One limitation of phage therapy is the ease at which bacteria can evolve resistance. Negative effects of resistance may be mitigated when resistance results in reduced bacterial growth and virulence, or when phage coevolves to overcome resistance. Resistance evolution and its consequences are contingent on the bacteria-phage combination and their environmental context, making therapeutic outcomes hard to predict. One solution might be to conduct ‘in vitro evolutionary simulations’ using bacteria-phage combinations from the therapeutic context. Overall, our aim was to investigate parallels between in vitro experiments and in vivo dynamics in a human participant. Evolutionary dynamics were similar, with high levels of resistance evolving quickly with limited evidence of phage evolution. Resistant bacteria—evolved in vitro and in vivo—had lower virulence. In vivo, this was linked to lower growth rates of resistant isolates, whereas in vitro phage resistant isolates evolved greater biofilm production. Population sequencing suggests resistance resulted from selection on de novo mutations rather than sorting of existing variants. These results highlight the speed at which phage resistance can evolve in vivo, and how in vitro experiments may give useful insights for clinical evolutionary outcomes.
Collapse
Affiliation(s)
- Meaghan Castledine
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Daniel Padfield
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Pawel Sierocinski
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Jesica Soria Pascual
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Adam Hughes
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Lotta Mäkinen
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | | | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Daniel de Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Angus Buckling
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
3
|
Cairns J, Jousset A, Becks L, Hiltunen T. Effect of mutation supply on population dynamics and trait evolution in an experimental microbial community. Ecol Lett 2021; 25:355-365. [PMID: 34808691 DOI: 10.1111/ele.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Mutation supply can influence evolutionary and thereby ecological dynamics in important ways which have received little attention. Mutation supply influences features of population genetics, such as the pool of adaptive mutations, evolutionary pathways and importance of processes, such as clonal interference. The resultant trait evolutionary dynamics, in turn, can alter population size and species interactions. However, controlled experiments testing for the importance of mutation supply on rapid adaptation and thereby population and community dynamics have primarily been restricted to the first of these aspects. To close this knowledge gap, we performed a serial passage experiment with wild-type Pseudomonas fluorescens and a mutant with reduced mutation rate. Bacteria were grown at two resource levels in combination with the presence of a ciliate predator. A higher mutation supply enabled faster adaptation to the low-resource environment and anti-predatory defence. This was associated with higher population size at the ecological level and better access to high-recurrence mutational targets at the genomic level with higher mutation supply. In contrast, mutation rate did not affect growth under high-resource level. Our results demonstrate that intrinsic mutation rate influences population dynamics and trait evolution particularly when population size is constrained by extrinsic conditions.
Collapse
Affiliation(s)
- Johannes Cairns
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, University of Helsinki, Finland.,Department of Microbiology, University of Helsinki, Finland
| | - Alexandre Jousset
- Key Laboratory of Plant Immunity, Jiangsu Key Laboratory for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, PR China
| | - Lutz Becks
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Ecology, Community Dynamics Group, Plön, Germany.,Limnological Institute University Konstanz, Aquatic Ecology and Evolution, Konstanz, Germany
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Finland.,Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Vu NT, Oh CS. Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants. THE PLANT PATHOLOGY JOURNAL 2020; 36:204-217. [PMID: 32547337 PMCID: PMC7272851 DOI: 10.5423/ppj.rw.04.2020.0074] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 05/07/2023]
Abstract
In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
- Corresponding author. Phone) +82-31-201-2678, FAX) +82-31-204-8116, E-mail) , ORCID Chang-Sik Oh https://orcid.org/0000-0002-2123-862X
| |
Collapse
|
5
|
Fortuna MA, Barbour MA, Zaman L, Hall AR, Buckling A, Bascompte J. Coevolutionary dynamics shape the structure of bacteria-phage infection networks. Evolution 2019; 73:1001-1011. [PMID: 30953575 DOI: 10.1111/evo.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/18/2019] [Indexed: 01/21/2023]
Abstract
Coevolution-reciprocal evolutionary change among interacting species driven by natural selection-is thought to be an important force in shaping biodiversity. This ongoing process takes place within tangled networks of species interactions. In microbial communities, evolutionary change between hosts and parasites occurs at the same time scale as ecological change. Yet, we still lack experimental evidence of the role of coevolution in driving changes in the structure of such species interaction networks. Filling this gap is important because network structure influences community persistence through indirect effects. Here, we quantified experimentally to what extent coevolutionary dynamics lead to contrasting patterns in the architecture of bacteria-phage infection networks. Specifically, we look at the tendency of these networks to be organized in a nested pattern by which the more specialist phages tend to infect only a proper subset of those bacteria infected by the most generalist phages. We found that interactions between coevolving bacteria and phages become less nested over time under fluctuating dynamics, and more nested under arms race dynamics. Moreover, when coevolution results in high average infectivity, phages and bacteria differ more from each other over time under arms race dynamics than under fluctuating dynamics. The tradeoff between the fitness benefits of evolving resistance/infectivity traits and the costs of maintaining them might explain these differences in network structure. Our study shows that the interaction pattern between bacteria and phages at the community level depends on the way coevolution unfolds.
Collapse
Affiliation(s)
- Miguel A Fortuna
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Luis Zaman
- Center for the Study of Complex Systems, Ecology, and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Alex R Hall
- Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland
| | - Angus Buckling
- ESI & CEC, Biosciences, University of Exeter, Penryn, Cornwall, UK
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochem Soc Trans 2018; 46:1605-1613. [DOI: 10.1042/bst20180178] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Meeting global food demands for a growing human population with finite natural resources is a major challenge. Aquaculture and agriculture are critical to satisfy food requirements, yet suffer significant losses from bacterial diseases. Therefore, there is an urgent need to develop novel antimicrobial strategies, which is heightened by increasing antibiotic resistance. Bacteriophages (phages) are viruses that specifically infect bacteria, and phage-derived therapies are promising treatments in the fight against bacterial diseases. Here, we describe multiple ways that phages and phage-based technologies can be used as antimicrobials. Antimicrobial activity can be achieved through lysis of targeted bacteria by virulent phages or lytic enzymes. Alternatively, phages can be engineered for the delivery of lethal genes and other cargoes to kill bacteria and to manipulate the bacterial response to conventional antibiotics. We also briefly highlight research exploring phages as potential biocontrol agents with examples from agriculture and aquaculture.
Collapse
|
7
|
Cai Q, Liang C, Wang S, Hou Y, Gao L, Liu L, He W, Ma W, Mo B, Chen X. The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nat Commun 2018; 9:5080. [PMID: 30498229 PMCID: PMC6265325 DOI: 10.1038/s41467-018-07516-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022] Open
Abstract
Plants evolved an array of disease resistance genes (R genes) to fight pathogens. In the absence of pathogen infection, NBS-LRR genes, which comprise a major subfamily of R genes, are suppressed by a small RNA cascade involving microRNAs (miRNAs) that trigger the biogenesis of phased siRNAs (phasiRNAs) from R gene transcripts. However, whether or how R genes influence small RNA biogenesis is unknown. In this study, we isolate a mutant with global defects in the biogenesis of miRNAs and phasiRNAs in Arabidopsis thaliana and trace the defects to the over accumulation and nuclear localization of an R protein SNC1. We show that nuclear SNC1 represses the transcription of miRNA and phasiRNA loci, probably through the transcriptional corepressor TPR1. Intriguingly, nuclear SNC1 reduces the accumulation of phasiRNAs from three source R genes and concomitantly, the expression of a majority of the ~170R genes is up-regulated. Taken together, this study suggests an R gene-miRNA-phasiRNA regulatory module that amplifies plant immune responses. A small RNA-based signaling cascade prevents the induction of plant resistance genes (R-genes) in the absence of pathogen challenge. Here Cai et al. show that nuclear accumulation of the R protein SNC1 can activate immunity by suppressing small RNA production and releasing R-gene repression.
Collapse
Affiliation(s)
- Qiang Cai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Suikang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Li Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Wenrong He
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
Harrison E, Truman J, Wright R, Spiers AJ, Paterson S, Brockhurst MA. Plasmid carriage can limit bacteria-phage coevolution. Biol Lett 2016; 11:rsbl.2015.0361. [PMID: 26268992 PMCID: PMC4571675 DOI: 10.1098/rsbl.2015.0361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Coevolution with bacteriophages is a major selective force shaping bacterial populations and communities. A variety of both environmental and genetic factors has been shown to influence the mode and tempo of bacteria–phage coevolution. Here, we test the effects that carriage of a large conjugative plasmid, pQBR103, had on antagonistic coevolution between the bacterium Pseudomonas fluorescens and its phage, SBW25ϕ2. Plasmid carriage limited bacteria–phage coevolution; bacteria evolved lower phage-resistance and phages evolved lower infectivity in plasmid-carrying compared with plasmid-free populations. These differences were not explained by effects of plasmid carriage on the costs of phage resistance mutations. Surprisingly, in the presence of phages, plasmid carriage resulted in the evolution of high frequencies of mucoid bacterial colonies. Mucoidy can provide weak partial resistance against SBW25ϕ2, which may have limited selection for qualitative resistance mutations in our experiments. Taken together, our results suggest that plasmids can have evolutionary consequences for bacteria that go beyond the direct phenotypic effects of their accessory gene cargo.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Biology, University of York, York YO10 5DD, UK
| | - Julie Truman
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Rosanna Wright
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | |
Collapse
|
9
|
Wielgoss S, Bergmiller T, Bischofberger AM, Hall AR. Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria. Mol Biol Evol 2016; 33:770-82. [PMID: 26609077 PMCID: PMC4760081 DOI: 10.1093/molbev/msv270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Parasitism creates selection for resistance mechanisms in host populations and is hypothesized to promote increased host evolvability. However, the influence of these traits on host evolution when parasites are no longer present is unclear. We used experimental evolution and whole-genome sequencing of Escherichia coli to determine the effects of past and present exposure to parasitic viruses (phages) on the spread of mutator alleles, resistance, and bacterial competitive fitness. We found that mutator alleles spread rapidly during adaptation to any of four different phage species, and this pattern was even more pronounced with multiple phages present simultaneously. However, hypermutability did not detectably accelerate adaptation in the absence of phages and recovery of fitness costs associated with resistance. Several lineages evolved phage resistance through elevated mucoidy, and during subsequent evolution in phage-free conditions they rapidly reverted to nonmucoid, phage-susceptible phenotypes. Genome sequencing revealed that this phenotypic reversion was achieved by additional genetic changes rather than by genotypic reversion of the initial resistance mutations. Insertion sequence (IS) elements played a key role in both the acquisition of resistance and adaptation in the absence of parasites; unlike single nucleotide polymorphisms, IS insertions were not more frequent in mutator lineages. Our results provide a genetic explanation for rapid reversion of mucoidy, a phenotype observed in other bacterial species including human pathogens. Moreover, this demonstrates that the types of genetic change underlying adaptation to fitness costs, and consequently the impact of evolvability mechanisms such as increased point-mutation rates, depend critically on the mechanism of resistance.
Collapse
Affiliation(s)
| | | | | | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
10
|
O'Brien S, Rodrigues AMM, Buckling A. The evolution of bacterial mutation rates under simultaneous selection by interspecific and social parasitism. Proc Biol Sci 2013; 280:20131913. [PMID: 24197408 PMCID: PMC3826219 DOI: 10.1098/rspb.2013.1913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/09/2013] [Indexed: 02/05/2023] Open
Abstract
Many bacterial populations harbour substantial numbers of hypermutable bacteria, in spite of hypermutation being associated with deleterious mutations. One reason for the persistence of hypermutators is the provision of novel mutations, enabling rapid adaptation to continually changing environments, for example coevolving virulent parasites. However, hypermutation also increases the rate at which intraspecific parasites (social cheats) are generated. Interspecific and intraspecific parasitism are therefore likely to impose conflicting selection pressure on mutation rate. Here, we combine theory and experiments to investigate how simultaneous selection from inter- and intraspecific parasitism affects the evolution of bacterial mutation rates in the plant-colonizing bacterium Pseudomonas fluorescens. Both our theoretical and experimental results suggest that phage presence increases and selection for public goods cooperation (the production of iron-scavenging siderophores) decreases selection for mutator bacteria. Moreover, phages imposed a much greater growth cost than social cheating, and when both selection pressures were imposed simultaneously, selection for cooperation did not affect mutation rate evolution. Given the ubiquity of infectious phages in the natural environment and clinical infections, our results suggest that phages are likely to be more important than social interactions in determining mutation rate evolution.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Biosciences, University of Exeter, Tremough, Penryn, Cornwall TR10 9EZ, UK
| | | | - Angus Buckling
- Department of Biosciences, University of Exeter, Tremough, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
11
|
Mills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 2013; 4:4-16. [PMID: 23022738 PMCID: PMC3555884 DOI: 10.4161/gmic.22371] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human intestinal microbiota is one of the most densely populated ecosystems on Earth, containing up to 10 ( 13) bacteria/g and in some respects can be considered an organ itself given its role in human health. Bacteriophages (phages) are the most abundant replicating entities on the planet and thrive wherever their bacterial hosts exist. They undoubtedly influence the dominant microbial populations in many ecosystems including the human intestine. Within this setting, lysogeny appears to be the preferred life cycle, presumably due to nutrient limitations and lack of suitable hosts protected in biofilms, hence the predator/prey dynamic observed in many ecosystems is absent. On the other hand, free virulent phages in the gut are more common among sufferers of intestinal diseases and have been shown to increase with antibiotic usage. Many of these phages evolve from prophages of intestinal bacteria and emerge under conditions where their bacterial hosts encounter stress suggesting that prophages can significantly alter the microbial community composition. Based on these observations, we propose the "community shuffling" model which hypothesizes that prophage induction contributes to intestinal dysbiosis by altering the ratio of symbionts to pathobionts, enabling pathobiont niche reoccupation. The consequences of the increased phage load on the mammalian immune system are also addressed. While this is an area of intestinal biology which has received little attention, this review assembles evidence from the literature which supports the role of phages as one of the biological drivers behind the composition of the gut microbiota.
Collapse
Affiliation(s)
- Susan Mills
- Teagasc Food Research Centre; Moorepark; Fermoy, County Cork, Ireland
| | - Fergus Shanahan
- Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland,Department of Medicine; University College Cork; National University of Ireland; Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre; Moorepark; Fermoy, County Cork, Ireland,Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland,Department of Microbiology; University College Cork; National University of Ireland; Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre; Moorepark; Fermoy, County Cork, Ireland,Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland,Correspondence to: R. Paul Ross,
| |
Collapse
|
12
|
Dennehy JJ. What Can Phages Tell Us about Host-Pathogen Coevolution? INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:396165. [PMID: 23213618 PMCID: PMC3506893 DOI: 10.1155/2012/396165] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/13/2012] [Indexed: 01/16/2023]
Abstract
The outcomes of host-parasite interactions depend on the coevolutionary forces acting upon them, but because every host-parasite relation is enmeshed in a web of biotic and abiotic interactions across a heterogeneous landscape, host-parasite coevolution has proven difficult to study. Simple laboratory phage-bacteria microcosms can ameliorate this difficulty by allowing controlled, well-replicated experiments with a limited number of interactors. Genetic, population, and life history data obtained from these studies permit a closer examination of the fundamental correlates of host-parasite coevolution. In this paper, I describe the results of phage-bacteria coevolutionary studies and their implications for the study of host-parasite coevolution. Recent experimental studies have confirmed phage-host coevolutionary dynamics in the laboratory and have shown that coevolution can increase parasite virulence, specialization, adaptation, and diversity. Genetically, coevolution frequently proceeds in a manner best described by the Gene for Gene model, typified by arms race dynamics, but certain contexts can result in Red Queen dynamics according to the Matching Alleles model. Although some features appear to apply only to phage-bacteria systems, other results are broadly generalizable and apply to all instances of antagonistic coevolution. With laboratory host-parasite coevolutionary studies, we can better understand the perplexing array of interactions that characterize organismal diversity in the wild.
Collapse
Affiliation(s)
- John J. Dennehy
- Biology Department, Queens College, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
- The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
13
|
Coevolution of bacteria and their viruses. Folia Microbiol (Praha) 2012; 58:177-86. [PMID: 22993102 DOI: 10.1007/s12223-012-0195-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/06/2012] [Indexed: 01/21/2023]
Abstract
Coevolution between bacteria and bacteriophages can be characterized as an infinitive constant evolutionary battle (phage-host arm race), which starts during phage adsorption and penetration into host cell, continues during phage replication inside the cells, and remains preserved also during prophage lysogeny. Bacteriophage may exist inside the bacterial cells in four forms with different evolutionary strategies: as a replicating virus during the lytic cycle, in an unstable carrier state termed pseudolysogeny, as a prophage with complete genome during the lysogeny, or as a defective cryptic prophage. Some defensive mechanisms of bacteria and virus countermeasures are characterized, and some evolutionary questions concerning phage-host relationship are discussed.
Collapse
|
14
|
Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol 2012; 78:5646-52. [PMID: 22660719 DOI: 10.1128/aem.00757-12] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Interest in using bacteriophages to treat bacterial infections (phage therapy) is growing, but there have been few experiments comparing the effects of different treatment strategies on both bacterial densities and resistance evolution. While it is established that multiphage therapy is typically more effective than the application of a single phage type, it is not clear if it is best to apply phages simultaneously or sequentially. We tried single- and multiphage therapy against Pseudomonas aeruginosa PAO1 in vitro, using different combinations of phages either simultaneously or sequentially. Across different phage combinations, simultaneous application was consistently equal or superior to sequential application in terms of reducing bacterial population density, and there was no difference (on average) in terms of minimizing resistance. Phage-resistant bacteria emerged in all experimental treatments and incurred significant fitness costs, expressed as reduced growth rate in the absence of phages. Finally, phage therapy increased the life span of wax moth larvae infected with P. aeruginosa, and a phage cocktail was the most effective short-term treatment. When the ratio of phages to bacteria was very high, phage cocktails cured otherwise lethal infections. These results suggest that while adding all available phages simultaneously tends to be the most successful short-term strategy, there are sequential strategies that are equally effective and potentially better over longer time scales.
Collapse
|