1
|
Tran SM, Howell KJ, Walsh MR. Increased eye size is favoured in Trinidadian killifish experimentally transplanted into low light, high competition environments. J Evol Biol 2024; 37:960-966. [PMID: 38766701 DOI: 10.1093/jeb/voae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Intraspecific variation in vertebrate eye size is well known. Ecological factors such as light availability are often correlated with shifts in relative eye size. However, experimental tests of selection on eye size are lacking. Trinidadian killifish (Anablepsoides hartii) are found in sites that differ in predation intensity. Sites that lack predators are characterized by lower light, high killifish densities, low resource availability, and intense competition for food. We previously found that killifish in sites that lack predators have evolved a larger "relative" eye size (eye size corrected for body size) than fish from sites with predators. Here, we used transplant experiments to test how selection operates on eye size when fish that are adapted to sites with predators are translocated into sites where predators are absent. We observed a significant "population × relative eye size" interaction; the relationship between relative eye size and a proxy for fitness (rates of individual growth) was positive in the transplanted fish. The trend was the opposite for resident fish. Such results provide experimental support that larger eyes enhance fitness and are favoured in environments characterized by low light and high competition.
Collapse
Affiliation(s)
- Stephanie M Tran
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14854, United States
| | - Kaitlyn J Howell
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
| |
Collapse
|
2
|
Dunlap KD, Corbo JH, Vergara MM, Beston SM, Walsh MR. Predation drives the evolution of brain cell proliferation and brain allometry in male Trinidadian killifish, Rivulus hartii. Proc Biol Sci 2019; 286:20191485. [PMID: 31822257 PMCID: PMC6939915 DOI: 10.1098/rspb.2019.1485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/14/2019] [Indexed: 02/03/2023] Open
Abstract
The external environment influences brain cell proliferation, and this might contribute to brain plasticity underlying adaptive behavioural changes. Additionally, internal genetic factors influence the brain cell proliferation rate. However, to date, researchers have not examined the importance of environmental versus genetic factors in causing natural variation in brain cell proliferation. Here, we examine brain cell proliferation and brain growth trajectories in free-living populations of Trinidadian killifish, Rivulus hartii, exposed to contrasting predation environments. Compared to populations without predators, populations in high predation (HP) environments exhibited higher rates of brain cell proliferation and a steeper brain growth trajectory (relative to body size). To test whether these differences in the wild persist in a common garden environment, we reared first-generation fish originating from both predation environments in uniform laboratory conditions. Just as in the wild, brain cell proliferation and brain growth in the common garden were greater in HP populations than in no predation populations. The differences in cell proliferation observed across the brain in both the field and common garden studies indicate that the differences are probably genetically based and are mediated by evolutionary shifts in overall brain growth and life-history traits.
Collapse
Affiliation(s)
- Kent D. Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Joshua H. Corbo
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | | | - Shannon M. Beston
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Matthew R. Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
3
|
Reznick DN, Travis J. Experimental Studies of Evolution and Eco-Evo Dynamics in Guppies (Poecilia reticulata). ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024926] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Guppies in Trinidad range across aquatic environments with fish communities that vary in risk of predation. These communities are often discrete, separated by waterfalls, with high-predation communities downstream and low-predation communities upstream. This gradient is repeated in many rivers; in each one, we see the same divergence between guppy populations in life history, behavior, morphology, and physiology. We have shown that the agent of selection on the life history, behavior, and physiology in low-predation communities is high population density and the cascade of ecological effects that stems from it. In effect, guppy populations modify their ecosystem and, in so doing, impose selection on themselves and shape their own evolution, which further changes the ecosystem. Evolution unfolds rapidly in this system, which has enabled us to study the dynamics of the process, not just its end points. Those studies enable us to answer some very general questions in ecology and evolutionary biology.
Collapse
Affiliation(s)
- David N. Reznick
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California 92521, USA
| | - Joseph Travis
- Department of Biological Sciences, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
4
|
Oke KB, Rolshausen G, LeBlond C, Hendry AP. How Parallel Is Parallel Evolution? A Comparative Analysis in Fishes. Am Nat 2017; 190:1-16. [DOI: 10.1086/691989] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Bassar RD, Simon T, Roberts W, Travis J, Reznick DN. The evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple community. Evolution 2016; 71:373-385. [DOI: 10.1111/evo.13086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Ronald D. Bassar
- Department of Zoology University of Oxford Oxford United Kingdom
| | - Troy Simon
- Odum School of Ecology University of Georgia Athens Georgia
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia
| | - William Roberts
- Department of Biology University of California Riverside California
| | - Joseph Travis
- Department of Biological Science Florida State University Tallahassee Florida
| | - David N. Reznick
- Department of Biology University of California Riverside California
| |
Collapse
|
6
|
Platt ERM, Ord TJ. Population Variation in the Life History of a Land Fish, Alticus arnoldorum, and the Effects of Predation and Density. PLoS One 2015; 10:e0137244. [PMID: 26398191 PMCID: PMC4580579 DOI: 10.1371/journal.pone.0137244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/14/2015] [Indexed: 11/18/2022] Open
Abstract
Life history variation can often reflect differences in age-specific mortality within populations, with the general expectation that reproduction should be shifted away from ages experiencing increased mortality. Investigators of life history in vertebrates frequently focus on the impact of predation, but there is increasing evidence that predation may have unexpected impacts on population density that in turn prompt unexpected changes in life history. There are also other reasons why density might impact life history independently of predation or mortality more generally. We investigated the consequences of predation and density on life history variation among populations of the Pacific leaping blenny, Alticus arnoldorum. This fish from the island of Guam spends its adult life out of the water on rocks in the splash zone, where it is vulnerable to predation and can be expected to be sensitive to changes in population density that impact resource availability. We found populations invested more in reproduction as predation decreased, while growth rate varied primarily in response to population density. These differences in life history among populations are likely plastic given the extensive gene flow among populations revealed by a previous study. The influence of predation and density on life history was unlikely to have operated independently of each other, with predation rate tending to be associated with reduced population densities. Taken together, our results suggest predation and density can have complex influences on life history, and that plastic life history traits could allow populations to persist in new or rapidly changing environments.
Collapse
Affiliation(s)
- Edward R. M. Platt
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington NSW 2052, Australia
| | - Terry J. Ord
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington NSW 2052, Australia
- * E-mail:
| |
Collapse
|
7
|
Travis J, Reznick D, Bassar RD, López-Sepulcre A, Ferriere R, Coulson T. Do Eco-Evo Feedbacks Help Us Understand Nature? Answers From Studies of the Trinidadian Guppy. ADV ECOL RES 2014. [DOI: 10.1016/b978-0-12-801374-8.00001-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Duvernell DD, Meier SL, Schaefer JF, Kreiser BR. Contrasting phylogeographic histories between broadly sympatric topminnows in the Fundulus notatus species complex. Mol Phylogenet Evol 2013; 69:653-63. [PMID: 23887036 DOI: 10.1016/j.ympev.2013.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
Abstract
Sympatrically distributed closely related species provide opportunities for studying evolutionary patterns of diversification. Such studies must account for historical contingencies in interpreting contemporary patterns of variation. Topminnows in the Fundulus notatus species complex are distributed sympatrically across much of the southern and Midwestern United States. Throughout most of their ranges F. olivaceus is often found in headwater stream habitats, and F. notatus is more typically distributed along the margins of larger river habitats. However, in some drainages, ecological associations of the respective species are reversed, with F. notatus populations isolated in headwater streams and F. olivaceus in downstream river habitats. Phylogeographic analyses of AFLP marker and multi-locus sequence data detected historical isolation in F. notatus consistent with pre-Pleistocene drainage patterns. Four F. notatus clades corresponded to (i) the Western Gulf Slope, (ii) the southwestern Ouachita Highlands, (iii) the Mobile Basin, and (iv) central Coastal Plain and Mississippi River Basin. In contrast, a relative lack of range-wide geographic structure in F. olivaceus is consistent with recent range expansion over much of the same geographic area. The southwestern Ouachita Highlands and Mobile Basin F. notatus clades corresponded to regions where ecological associations between the two species are reversed, providing evidence of the independent evolution of variation in contemporary habitat associations. Fundulus olivaceus from several drainages demonstrated introgression of mitochondrial DNA from F. notatus, but none of the sites in this study included individuals with hybrid ancestry in their nuclear genome. Phylogenetic analyses that included only nuclear loci supported the reciprocal monophyly of F. notatus, F. olivaceus and a third narrowly endemic species, Fundulus euryzonus, and supported a sister relationship between F. olivaceus and F. euryzonus.
Collapse
Affiliation(s)
- David D Duvernell
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States.
| | | | | | | |
Collapse
|
9
|
Fraser DF, Lamphere BA. Experimental evaluation of predation as a facilitator of invasion success in a stream fish. Ecology 2013; 94:640-9. [DOI: 10.1890/12-0803.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
El-Sabaawi RW, Kohler TJ, Zandoná E, Travis J, Marshall MC, Thomas SA, Reznick DN, Walsh M, Gilliam JF, Pringle C, Flecker AS. Environmental and organismal predictors of intraspecific variation in the stoichiometry of a neotropical freshwater fish. PLoS One 2012; 7:e32713. [PMID: 22412911 PMCID: PMC3295771 DOI: 10.1371/journal.pone.0032713] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/30/2012] [Indexed: 11/26/2022] Open
Abstract
The elemental composition of animals, or their organismal stoichiometry, is thought to constrain their contribution to nutrient recycling, their interactions with other animals, and their demographic rates. Factors that affect organismal stoichiometry are generally poorly understood, but likely reflect elemental investments in morphological features and life history traits, acting in concert with the environmental availability of elements. We assessed the relative contribution of organismal traits and environmental variability to the stoichiometry of an insectivorous Neotropical stream fish, Rivulus hartii. We characterized the influence of body size, life history phenotype, stage of maturity, and environmental variability on organismal stoichiometry in 6 streams that differ in a broad suite of environmental variables. The elemental composition of R. hartii was variable, and overlapped with the wide range of elemental composition documented across freshwater fish taxa. Average %P composition was ∼3.2%(±0.6), average %N∼10.7%(±0.9), and average %C∼41.7%(±3.1). Streams were the strongest predictor of organismal stoichiometry, and explained up to 18% of the overall variance. This effect appeared to be largely explained by variability in quality of basal resources such as epilithon N∶P and benthic organic matter C∶N, along with variability in invertebrate standing stocks, an important food source for R. hartii. Organismal traits were weak predictors of organismal stoichiometry in this species, explaining when combined up to 7% of the overall variance in stoichiometry. Body size was significantly and positively correlated with %P, and negatively with N∶P, and C∶P, and life history phenotype was significantly correlated with %C, %P, C∶P and C∶N. Our study suggests that spatial variability in elemental availability is more strongly correlated with organismal stoichiometry than organismal traits, and suggests that the stoichiometry of carnivores may not be completely buffered from environmental variability. We discuss the relevance of these findings to ecological stoichiometry theory.
Collapse
Affiliation(s)
- Rana W El-Sabaawi
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|