1
|
Paquin F, Cristescu ME, Blier PU, Lemieux H, Dufresne F. Cumulative effects of mutation accumulation on mitochondrial function and fitness. Mitochondrion 2024; 80:101976. [PMID: 39486563 DOI: 10.1016/j.mito.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The impact of mutations on the mitochondria deserves specific interest due to the crucial role played by these organelles on numerous cellular functions. This study examines the effects of repeated bottlenecks on mitochondrial function and fitness. Daphnia pulex mutation accumulation lines (MA) lines were maintained for over 120 generations under copper and no copper conditions. Following the MA propagation, Daphnia from MA lines were raised under optimal and high temperatures for two generations before assessing mitochondrial and phenotypic traits. Spontaneous mutation accumulation under copper led to a later age at maturity and lowered fecundity in the MA lines. Mitochondrial respiration was found to be 10% lower in all mutation accumulation (MA) lines as compared to the non-MA control. MtDNA copy number was elevated in MA lines compared to the control under optimal temperature suggesting a compensatory mechanism. Three MA lines propagated under low copper had very low mtDNA copy number and fitness, suggesting mutations might have affected genes involved in mtDNA replication or mitochondrial biogenesis. Overall, our study suggests that mutation accumulation had an impact on life history traits, mtDNA copy number, and mitochondrial respiration. Some phenotypic effects were magnified under high temperatures. MtDNA copy number appears to be an important mitigation factor to allow mitochondria to cope with mutation accumulation up to a certain level beyond which it can no longer compensate.
Collapse
Affiliation(s)
- Frédérique Paquin
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, Québec H3A 1B1, Canada
| | - Pierre U Blier
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Hélène Lemieux
- Department of Medicine, Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta T6C 4G9, Canada
| | - France Dufresne
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|
2
|
Brand JA, Garcia-Gonzalez F, Dowling DK, Wong BBM. Mitochondrial genetic variation as a potential mediator of intraspecific behavioural diversity. Trends Ecol Evol 2024; 39:199-212. [PMID: 37839905 DOI: 10.1016/j.tree.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Mitochondrial genes play an essential role in energy metabolism. Variation in the mitochondrial DNA (mtDNA) sequence often exists within species, and this variation can have consequences for energy production and organismal life history. Yet, despite potential links between energy metabolism and the expression of animal behaviour, mtDNA variation has been largely neglected to date in studies investigating intraspecific behavioural diversity. We outline how mtDNA variation and interactions between mitochondrial and nuclear genotypes may contribute to the expression of individual-to-individual behavioural differences within populations, and why such effects may lead to sex differences in behaviour. We contend that integration of the mitochondrial genome into behavioural ecology research may be key to fully understanding the evolutionary genetics of animal behaviour.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station-CSIC, Seville, Spain; Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Arnqvist G, Rowe L. Ecology, the pace-of-life, epistatic selection and the maintenance of genetic variation in life-history genes. Mol Ecol 2023; 32:4713-4724. [PMID: 37386734 DOI: 10.1111/mec.17062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Evolutionary genetics has long struggled with understanding how functional genes under selection remain polymorphic in natural populations. Taking as a starting point that natural selection is ultimately a manifestation of ecological processes, we spotlight an underemphasized and potentially ubiquitous ecological effect that may have fundamental effects on the maintenance of genetic variation. Negative frequency dependency is a well-established emergent property of density dependence in ecology, because the relative profitability of different modes of exploiting or utilizing limiting resources tends to be inversely proportional to their frequency in a population. We suggest that this may often generate negative frequency-dependent selection (NFDS) on major effect loci that affect rate-dependent physiological processes, such as metabolic rate, that are phenotypically manifested as polymorphism in pace-of-life syndromes. When such a locus under NFDS shows stable intermediate frequency polymorphism, this should generate epistatic selection potentially involving large numbers of loci with more minor effects on life-history (LH) traits. When alternative alleles at such loci show sign epistasis with a major effect locus, this associative NFDS will promote the maintenance of polygenic variation in LH genes. We provide examples of the kind of major effect loci that could be involved and suggest empirical avenues that may better inform us on the importance and reach of this process.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Swedish Collegium of Advanced Study, Uppsala, Sweden
| |
Collapse
|
4
|
Dowling DK, Wolff JN. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. Genetics 2023; 224:iyad036. [PMID: 37171259 PMCID: PMC10324950 DOI: 10.1093/genetics/iyad036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/05/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
5
|
Zhang W, Lin L, Ding Y, Zhang F, Zhang J. Comparative Mitogenomics of Jumping Spiders with First Complete Mitochondrial Genomes of Euophryini (Araneae: Salticidae). INSECTS 2023; 14:517. [PMID: 37367333 DOI: 10.3390/insects14060517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Salticidae is the most species-rich family of spiders with diverse morphology, ecology and behavior. However, the characteristics of the mitogenomes within this group are poorly understood with relatively few well-characterized complete mitochondrial genomes. In this study, we provide completely annotated mitogenomes for Corythalia opima and Parabathippus shelfordi, which represent the first complete mitogenomes of the tribe Euophryini of Salticidae. The features and characteristics of the mitochondrial genomes are elucidated for Salticidae by thoroughly comparing the known well-characterized mitogenomes. The gene rearrangement between trnL2 and trnN was found in two jumping spider species, Corythalia opima and Heliophanus lineiventris Simon, 1868. Additionally, the rearrangement of nad1 to between trnE and trnF found in Asemonea sichuanensis Song & Chai, 1992 is the first protein-coding gene rearrangement in Salticidae, which may have an important phylogenetic implication for the family. Tandem repeats of various copy numbers and lengths were discovered in three jumping spider species. The codon usage analyses showed that the evolution of codon usage bias in salticid mitogenomes was affected by both selection and mutational pressure, but selection may have played a more important role. The phylogenetic analyses provided insight into the taxonomy of Colopsus longipalpis (Żabka, 1985). The data presented in this study will improve our understanding of the evolution of mitochondrial genomes within Salticidae.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Long Lin
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuhui Ding
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
6
|
Nagarajan-Radha V, Beekman M. G × G × E effect on phenotype expression in a non-conventional model organism, the unicellular slime mould Physarum polycephalum. Biol Lett 2023; 19:20220494. [PMID: 36789533 PMCID: PMC9929494 DOI: 10.1098/rsbl.2022.0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
In metazoans, the expression of key phenotypic traits is sensitive to two- and three-way interactions between variation in mitochondrial DNA, nuclear DNA and the external environment. Whether gene-by-environment interactions affect phenotypes in single-celled eukaryotes is poorly studied, except in a few species of yeast and fungi. We developed a genetic panel of the unicellular slime mould, Physarum polycephalum containing strains differing in mitochondrial and nuclear DNA haplotypes. The panel also included two strains harbouring a selfishly replicating mitochondrial-fusion (mF) plasmid that could affect phenotype expression. We assayed movement and growth rate differences among the strains across two temperature regimes: 24° and 28°C. We found that the slime mould's growth rate, but not movement, is affected by G × G × E interactions. Predictably, mtDNA × nDNA interactions significantly affected both traits. The inter-trait correlation across the strains in each temperature regime was positive. Surprisingly, the mF plasmid had no negative effects on our chosen traits. Our study is the first to demonstrate genetic regulation of phenotype expression in a unicellular slime mould. The genetic effect on phenotypes manifests via epistatic interactions with the thermal environment, thus shedding new light on the role of G × G × E interactions in trait evolution in protists.
Collapse
Affiliation(s)
- Venkatesh Nagarajan-Radha
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, Sydney NSW, 2006, Australia
| | - Madeleine Beekman
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, Sydney NSW, 2006, Australia
| |
Collapse
|
7
|
Menail HA, Cormier SB, Ben Youssef M, Jørgensen LB, Vickruck JL, Morin P, Boudreau LH, Pichaud N. Flexible Thermal Sensitivity of Mitochondrial Oxygen Consumption and Substrate Oxidation in Flying Insect Species. Front Physiol 2022; 13:897174. [PMID: 35547573 PMCID: PMC9081799 DOI: 10.3389/fphys.2022.897174] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mitochondria have been suggested to be paramount for temperature adaptation in insects. Considering the large range of environments colonized by this taxon, we hypothesized that species surviving large temperature changes would be those with the most flexible mitochondria. We thus investigated the responses of mitochondrial oxidative phosphorylation (OXPHOS) to temperature in three flying insects: the honeybee (Apis mellifera carnica), the fruit fly (Drosophila melanogaster) and the Colorado potato beetle (Leptinotarsa decemlineata). Specifically, we measured oxygen consumption in permeabilized flight muscles of these species at 6, 12, 18, 24, 30, 36, 42 and 45°C, sequentially using complex I substrates, proline, succinate, and glycerol-3-phosphate (G3P). Complex I respiration rates (CI-OXPHOS) were very sensitive to temperature in honeybees and fruit flies with high oxygen consumption at mid-range temperatures but a sharp decline at high temperatures. Proline oxidation triggers a major increase in respiration only in potato beetles, following the same pattern as CI-OXPHOS for honeybees and fruit flies. Moreover, both succinate and G3P oxidation allowed an important increase in respiration at high temperatures in honeybees and fruit flies (and to a lesser extent in potato beetles). However, when reaching 45°C, this G3P-induced respiration rate dropped dramatically in fruit flies. These results demonstrate that mitochondrial functions are more resilient to high temperatures in honeybees compared to fruit flies. They also indicate an important but species-specific mitochondrial flexibility for substrate oxidation to sustain high oxygen consumption levels at high temperatures and suggest previously unknown adaptive mechanisms of flying insects’ mitochondria to temperature.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Mariem Ben Youssef
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | | | - Jess L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Pier Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Luc H Boudreau
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
8
|
Lemieux H, Blier PU. Exploring Thermal Sensitivities and Adaptations of Oxidative Phosphorylation Pathways. Metabolites 2022; 12:metabo12040360. [PMID: 35448547 PMCID: PMC9025460 DOI: 10.3390/metabo12040360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Temperature shifts are a major challenge to animals; they drive adaptations in organisms and species, and affect all physiological functions in ectothermic organisms. Understanding the origin and mechanisms of these adaptations is critical for determining whether ectothermic organisms will be able to survive when faced with global climate change. Mitochondrial oxidative phosphorylation is thought to be an important metabolic player in this regard, since the capacity of the mitochondria to produce energy greatly varies according to temperature. However, organism survival and fitness depend not only on how much energy is produced, but, more precisely, on how oxidative phosphorylation is affected and which step of the process dictates thermal sensitivity. These questions need to be addressed from a new perspective involving a complex view of mitochondrial oxidative phosphorylation and its related pathways. In this review, we examine the effect of temperature on the commonly measured pathways, but mainly focus on the potential impact of lesser-studied pathways and related steps, including the electron-transferring flavoprotein pathway, glycerophosphate dehydrogenase, dihydroorotate dehydrogenase, choline dehydrogenase, proline dehydrogenase, and sulfide:quinone oxidoreductase. Our objective is to reveal new avenues of research that can address the impact of temperature on oxidative phosphorylation in all its complexity to better portray the limitations and the potential adaptations of aerobic metabolism.
Collapse
Affiliation(s)
- Hélène Lemieux
- Faculty Saint-Jean, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6C 4G9, Canada
- Correspondence: (H.L.); (P.U.B.)
| | - Pierre U. Blier
- Department Biologie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
- Correspondence: (H.L.); (P.U.B.)
| |
Collapse
|
9
|
Erić P, Patenković A, Erić K, Tanasković M, Davidović S, Rakić M, Savić Veselinović M, Stamenković-Radak M, Jelić M. Temperature-Specific and Sex-Specific Fitness Effects of Sympatric Mitochondrial and Mito-Nuclear Variation in Drosophila obscura. INSECTS 2022; 13:insects13020139. [PMID: 35206713 PMCID: PMC8880146 DOI: 10.3390/insects13020139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Does variation in the mitochondrial DNA sequence influence the survival and reproduction of an individual? What is the purpose of genetic variation of the mitochondrial DNA between individuals from the same population? As a simple laboratory model, Drosophila species can give us the answer to this question. Creating experimental lines with different combinations of mitochondrial and nuclear genomic DNA and testing how successful these lines were in surviving in different experimental set-ups enables us to deduce the effect that both genomes have on fitness. This study on D. obscura experimentally validates theoretical models that explain the persistence of mitochondrial DNA variation within populations. Our results shed light on the various mechanisms that maintain this type of variation. Finally, by conducting the experiments on two experimental temperatures, we have shown that environmental variations can support mitochondrial DNA variation within populations. Abstract The adaptive significance of sympatric mitochondrial (mtDNA) variation and the role of selective mechanisms that maintain it are debated to this day. Isofemale lines of Drosophila obscura collected from four populations were backcrossed within populations to construct experimental lines, with all combinations of mtDNA Cyt b haplotypes and nuclear genetic backgrounds (nuDNA). Individuals of both sexes from these lines were then subjected to four fitness assays (desiccation resistance, developmental time, egg-to-adult viability and sex ratio) on two experimental temperatures to examine the role of temperature fluctuations and sex-specific selection, as well as the part that interactions between the two genomes play in shaping mtDNA variation. The results varied across populations and fitness components. In the majority of comparisons, they show that sympatric mitochondrial variants affect fitness. However, their effect should be examined in light of interactions with nuDNA, as mito-nuclear genotype was even more influential on fitness across all components. We found both sex-specific and temperature-specific differences in mitochondrial and mito-nuclear genotype ranks in all fitness components. The effect of temperature-specific selection was found to be more prominent, especially in desiccation resistance. From the results of different components tested, we can also infer that temperature-specific mito-nuclear interactions rather than sex-specific selection on mito-nuclear genotypes have a more substantial role in preserving mtDNA variation in this model species.
Collapse
Affiliation(s)
- Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
- Correspondence: ; Tel.: +381-112-078-334
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
| | - Mina Rakić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”–National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (K.E.); (M.T.); (S.D.); (M.R.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Marija Savić Veselinović
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Marina Stamenković-Radak
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.S.-R.); (M.J.)
| |
Collapse
|
10
|
Martin KE, Currie S, Pichaud N. Mitochondrial physiology and responses to elevated hydrogen sulphide in two isogenic lineages of an amphibious mangrove fish. J Exp Biol 2021; 224:jeb.241216. [PMID: 33688059 DOI: 10.1242/jeb.241216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Hydrogen sulphide (H2S) is toxic and can act as a selective pressure on aquatic organisms, facilitating a wide range of adaptations for life in sulphidic environments. Mangrove rivulus (Kryptolebias marmoratus) inhabit mangrove swamps and have developed high tolerance to environmental H2S. They are hermaphroditic and can self-fertilize, producing distinct isogenic lineages with different sensitivity to H2S. Here, we tested the hypothesis that observed differences in responses to H2S are the result of differences in mitochondrial functions. For this purpose, we performed two experimental series, testing (1) the overall mitochondrial oxidizing capacities and (2) the kinetics of apparent H2S mitochondrial oxidation and inhibition in two distinct lineages of mangrove rivulus, originally collected from Belize and Honduras. We used permeabilized livers from both lineages, measured mitochondrial oxidation, and monitored changes during gradual increases of sulphide. Ultimately, we determined that each lineage has a distinct strategy for coping with elevated H2S, indicating divergences in mitochondrial function and metabolism. The Honduras lineage has higher anaerobic capacity substantiated by higher lactate dehydrogenase activity and higher apparent H2S oxidation rates, likely enabling them to tolerate H2S by escaping aquatic H2S in a terrestrial environment. However, Belize fish have increased cytochrome c oxidase and citrate synthase activities as well as increased succinate contribution to mitochondrial respiration, allowing them to tolerate higher levels of aquatic H2S without inhibition of mitochondrial oxygen consumption. Our study reveals distinct physiological strategies in genetic lineages of a single species, indicating possible genetic and/or functional adaptations to sulphidic environments at the mitochondrial level.
Collapse
Affiliation(s)
- Keri E Martin
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Suzanne Currie
- Department of Biology, Acadia University, Wolfville, NS, Canada, B4P 2R6
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, University of Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
11
|
Jørgensen LB, Overgaard J, Hunter-Manseau F, Pichaud N. Dramatic changes in mitochondrial substrate use at critically high temperatures: a comparative study using Drosophila. J Exp Biol 2021; 224:jeb.240960. [PMID: 33563650 DOI: 10.1242/jeb.240960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Ectotherm thermal tolerance is critical to species distribution, but at present the physiological underpinnings of heat tolerance remain poorly understood. Mitochondrial function is perturbed at critically high temperatures in some ectotherms, including insects, suggesting that heat tolerance of these animals is linked to failure of oxidative phosphorylation (OXPHOS) and/or ATP production. To test this hypothesis, we measured mitochondrial oxygen consumption rate in six Drosophila species with different heat tolerance using high-resolution respirometry. Using a substrate-uncoupler-inhibitor titration protocol, we examined specific steps of the electron transport system to study how temperatures below, bracketing and above organismal heat limits affect mitochondrial function and substrate oxidation. At benign temperatures (19 and 30°C), complex I-supported respiration (CI-OXPHOS) was the most significant contributor to maximal OXPHOS. At higher temperatures (34, 38, 42 and 46°C), CI-OXPHOS decreased considerably, ultimately to very low levels at 42 and 46°C. The enzymatic catalytic capacity of complex I was intact across all temperatures and accordingly the decreased CI-OXPHOS is unlikely to be caused directly by hyperthermic denaturation/inactivation of complex I. Despite the reduction in CI-OXPHOS, maximal OXPHOS capacity was maintained in all species, through oxidation of alternative substrates - proline, succinate and, particularly, glycerol-3-phosphate - suggesting important mitochondrial flexibility at temperatures exceeding the organismal heat limit. Interestingly, this failure of CI-OXPHOS and compensatory oxidation of alternative substrates occurred at temperatures that correlated with species heat tolerance, such that heat-tolerant species could defend 'normal' mitochondrial function at higher temperatures than sensitive species. Future studies should investigate why CI-OXPHOS is perturbed and how this potentially affects ATP production rates.
Collapse
Affiliation(s)
| | - Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
12
|
Mitochondrial metabolism assessment of lycaon-dog fetuses in interspecies somatic cell nuclear transfer. Theriogenology 2021; 165:18-27. [PMID: 33611171 DOI: 10.1016/j.theriogenology.2021.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022]
Abstract
Many studies have reported that interspecies somatic cell nuclear transfer (iSCNT) is considered the prominent method in preserving endangered animals. However, the development rate of iSCNT embryos is low, and there are limited studies on the molecular mechanism of the iSCNT process. This study evaluated the developmental potential of interspecies lycaon (Lycaon pictus)-dog embryos and assessed the mitochondrial content and metabolism of the produced cloned lycaon-dog fetus. Of 678 collected oocytes, 516 were subjected to nuclear transfer, and 419 reconstructed embryos with male lycaon fibroblasts were transferred into 27 surrogates. Of 720 oocytes, 568 were subjected to nuclear transfer and 469 reconstructed embryos with female lycaon fibroblasts were transferred into 31 surrogates. Two recipients who received female reconstructed embryos were identified as pregnant at 30 days. However, fetal retardation with no cardiac activity was observed at 46 days. Microsatellite analysis confirmed that the cloned lycaon-dog fetus was genetically identical to the lycaon donor cell, whereas mitochondrial sequencing analysis revealed that oocyte donor dogs transmitted their mtDNA. We assessed the oxygen consumption rate and mitochondrial content of the aborted lycaon-dog fetus to shed some light on the aborted fetus's cellular metabolism. The oxygen consumption rates in the lycaon-dog fetal fibroblasts were lower than those in adult dog, lycaon and cloned dog fetal fibroblasts. Furthermore, lycaon-dog fetal fibroblasts showed decreased proportions of live and active mitochondria compared with other groups. Overall, we hypothesized that nuclear-mitochondrial incompatibility affects pyruvate metabolism and that these processes cause intrauterine fetal death.
Collapse
|
13
|
Pichaud N, Ekström A, Breton S, Sundström F, Rowinski P, Blier PU, Sandblom E. Adjustments of cardiac mitochondrial phenotype in a warmer thermal habitat is associated with oxidative stress in European perch, Perca fluviatilis. Sci Rep 2020; 10:17697. [PMID: 33077851 PMCID: PMC7572411 DOI: 10.1038/s41598-020-74788-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are playing key roles in setting the thermal limits of fish, but how these organelles participate in selection mechanisms during extreme thermal events associated with climate warming in natural populations is unclear. Here, we investigated the thermal effects on mitochondrial metabolism, oxidative stress, and mitochondrial gene expression in cardiac tissues of European perch (Perca fluviatilis) collected from an artificially heated ecosystem, the "Biotest enclosure", and an adjacent reference area in the Baltic sea with normal temperatures (~ 23 °C and ~ 16 °C, respectively, at the time of capture in summer). Fish were sampled one month after a heat wave that caused the Biotest temperatures to peak at ~ 31.5 °C, causing significant mortality. When assayed at 23 °C, Biotest perch maintained high mitochondrial capacities, while reference perch displayed depressed mitochondrial functions relative to measurements at 16 °C. Moreover, mitochondrial gene expression of nd4 (mitochondrial subunit of complex I) was higher in Biotest fish, likely explaining the increased respiration rates observed in this population. Nonetheless, cardiac tissue from Biotest perch displayed higher levels of oxidative damage, which may have resulted from their chronically warm habitat, as well as the extreme temperatures encountered during the preceding summer heat wave. We conclude that eurythermal fish such as perch are able to adjust and maintain mitochondrial capacities of highly aerobic organs such as the heart when exposed to a warming environment as predicted with climate change. However, this might come at the expense of exacerbated oxidative stress, potentially threatening performance in nature.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada. .,Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden. .,Department of Biology, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada.
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, H2V 2S9, Canada
| | - Fredrik Sundström
- Department of Ecology and Genetics, Uppsala University, 752 36, Uppsala, Sweden
| | - Piotr Rowinski
- Department of Ecology and Genetics, Uppsala University, 752 36, Uppsala, Sweden
| | - Pierre U Blier
- Department of Biology, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| |
Collapse
|
14
|
Gangloff EJ, Schwartz TS, Klabacka R, Huebschman N, Liu AY, Bronikowski AM. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Exp Gerontol 2020; 137:110967. [DOI: 10.1016/j.exger.2020.110967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
|
15
|
Bettinazzi S, Rodríguez E, Milani L, Blier PU, Breton S. Metabolic remodelling associated with mtDNA: insights into the adaptive value of doubly uniparental inheritance of mitochondria. Proc Biol Sci 2020; 286:20182708. [PMID: 30963924 DOI: 10.1098/rspb.2018.2708] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondria produce energy through oxidative phosphorylation (OXPHOS), which depends on the expression of both nuclear and mitochondrial DNA (mtDNA). In metazoans, a striking exception from strictly maternal inheritance of mitochondria is doubly uniparental inheritance (DUI). This unique system involves the maintenance of two highly divergent mtDNAs (F- and M-type, 8-40% of nucleotide divergence) associated with gametes, and occasionally coexisting in somatic tissues. To address whether metabolic differences underlie this condition, we characterized the OXPHOS activity of oocytes, spermatozoa, and gills of different species through respirometry. DUI species express different gender-linked mitochondrial phenotypes in gametes and partly in somatic tissues. The M-phenotype is specific to sperm and entails (i) low coupled/uncoupled respiration rates, (ii) a limitation by the phosphorylation system, and (iii) a null excess capacity of the final oxidases, supporting a strong control over the upstream complexes. To our knowledge, this is the first example of a phenotype resulting from direct selection on sperm mitochondria. This metabolic remodelling suggests an adaptive value of mtDNA variations and we propose that bearing sex-linked mitochondria could assure the energetic requirements of different gametes, potentially linking male-energetic adaptation, mitotype preservation and inheritance, as well as resistance to both heteroplasmy and ageing.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- 1 Département de Sciences Biologiques, Université de Montréal , Montréal, QC, Canada H2V 2S9
| | - Enrique Rodríguez
- 2 Département de Biologie, Université du Québec , Rimouski, QC, Canada G5L 3A1
| | - Liliana Milani
- 3 Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna , Bologna 40126 , Italia
| | - Pierre U Blier
- 2 Département de Biologie, Université du Québec , Rimouski, QC, Canada G5L 3A1
| | - Sophie Breton
- 1 Département de Sciences Biologiques, Université de Montréal , Montréal, QC, Canada H2V 2S9
| |
Collapse
|
16
|
Christen F, Dufresne F, Leduc G, Dupont-Cyr BA, Vandenberg GW, Le François NR, Tardif JC, Lamarre SG, Blier PU. Thermal tolerance and fish heart integrity: fatty acids profiles as predictors of species resilience. CONSERVATION PHYSIOLOGY 2020; 8:coaa108. [PMID: 33408863 PMCID: PMC7771578 DOI: 10.1093/conphys/coaa108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 05/05/2023]
Abstract
The cardiovascular system is a major limiting system in thermal adaptation, but the exact physiological mechanisms underlying responses to thermal stress are still not completely understood. Recent studies have uncovered the possible role of reactive oxygen species production rates of heart mitochondria in determining species' upper thermal limits. The present study examines the relationship between individual response to a thermal challenge test (CTmax), susceptibility to peroxidation of membrane lipids, heart fatty acid profiles and cardiac antioxidant enzyme activities in two salmonid species from different thermal habitats (Salvelinus alpinus, Salvelinus fontinalis) and their hybrids. The susceptibility to peroxidation of membranes in the heart was negatively correlated with individual thermal tolerance. The same relationship was found for arachidonic and eicosapentaenoic acid. Total H2O2 buffering activity of the heart muscle was higher for the group with high thermal resistance. These findings underline a potential general causative relationship between sensitivity to oxidative stress, specific fatty acids, antioxidant activity in the cardiac muscle and thermal tolerance in fish and likely other ectotherms. Heart fatty acid profile could be indicative of species resilience to global change, and more importantly the plasticity of this trait could predict the adaptability of fish species or populations to changes in environmental temperature.
Collapse
Affiliation(s)
- Felix Christen
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - France Dufresne
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Gabriel Leduc
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Bernard A Dupont-Cyr
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Grant W Vandenberg
- Département de Sciences Animales, Université Laval, Québec, Québec, G1V 0A6, Canada
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, H1T 1C8, Canada
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Pierre U Blier
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
- Corresponding author: Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada.
| |
Collapse
|
17
|
Bettinazzi S, Nadarajah S, Dalpé A, Milani L, Blier PU, Breton S. Linking paternally inherited mtDNA variants and sperm performance. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190177. [PMID: 31787040 DOI: 10.1098/rstb.2019.0177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Providing robust links between mitochondrial genotype and phenotype is of major importance given that mitochondrial DNA (mtDNA) variants can affect reproductive success. Because of the strict maternal inheritance (SMI) of mitochondria in animals, haplotypes that negatively affect male fertility can become fixed in populations. This phenomenon is known as 'mother's curse'. Doubly uniparental inheritance (DUI) of mitochondria is a stable exception in bivalves, which entails two mtDNA lineages that evolve independently and are transmitted separately through oocytes and sperm. This makes the DUI mitochondrial lineages subject to different sex-specific selective sieves during mtDNA evolution, thus DUI is a unique model to evaluate how direct selection on sperm mitochondria could contribute to male reproductive fitness. In this study, we tested the impact of mtDNA variants on sperm performance and bioenergetics in DUI and SMI species. Analyses also involved measures of sperm performance following inhibition of main energy pathways and sperm response to oocyte presence. Compared to SMI, DUI sperm exhibited (i) low speed and linearity, (ii) a strict OXPHOS-dependent strategy of energy production, and (iii) a partial metabolic shift towards fermentation following egg detection. Discussion embraces the adaptive value of mtDNA variation and suggests a link between male-energetic adaptation, fertilization success and paternal mitochondria preservation. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H2V 2S9
| | - Sugahendni Nadarajah
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H2V 2S9.,Département Sciences de l'Univers, Environnement, Ecologie, Sorbonne Université, 75005 Paris, France
| | - Andréanne Dalpé
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H2V 2S9
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna 40126, Italia
| | - Pierre U Blier
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| | - Sophie Breton
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H2V 2S9
| |
Collapse
|
18
|
Nagarajan-Radha V, Aitkenhead I, Clancy DJ, Chown SL, Dowling DK. Sex-specific effects of mitochondrial haplotype on metabolic rate in Drosophila melanogaster support predictions of the Mother's Curse hypothesis. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190178. [PMID: 31787038 DOI: 10.1098/rstb.2019.0178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evolutionary theory proposes that maternal inheritance of mitochondria will facilitate the accumulation of mitochondrial DNA (mtDNA) mutations that are harmful to males but benign or beneficial to females. Furthermore, mtDNA haplotypes sampled from across a given species distribution are expected to differ in the number and identity of these 'male-harming' mutations they accumulate. Consequently, it is predicted that the genetic variation which delineates distinct mtDNA haplotypes of a given species should confer larger phenotypic effects on males than females (reflecting mtDNA mutations that are male-harming, but female-benign), or sexually antagonistic effects (reflecting mutations that are male-harming, but female-benefitting). These predictions have received support from recent work examining mitochondrial haplotypic effects on adult life-history traits in Drosophila melanogaster. Here, we explore whether similar signatures of male-bias or sexual antagonism extend to a key physiological trait-metabolic rate. We measured the effects of mitochondrial haplotypes on the amount of carbon dioxide produced by individual flies, controlling for mass and activity, across 13 strains of D. melanogaster that differed only in their mtDNA haplotype. The effects of mtDNA haplotype on metabolic rate were larger in males than females. Furthermore, we observed a negative intersexual correlation across the haplotypes for metabolic rate. Finally, we uncovered a male-specific negative correlation, across haplotypes, between metabolic rate and longevity. These results are consistent with the hypothesis that maternal mitochondrial inheritance has led to the accumulation of a sex-specific genetic load within the mitochondrial genome, which affects metabolic rate and that may have consequences for the evolution of sex differences in life history. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
| | - Ian Aitkenhead
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - David J Clancy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Al Khatib I, Shutt TE. Advances Towards Therapeutic Approaches for mtDNA Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:217-246. [PMID: 31452143 DOI: 10.1007/978-981-13-8367-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria maintain and express their own genome, referred to as mtDNA, which is required for proper mitochondrial function. While mutations in mtDNA can cause a heterogeneous array of disease phenotypes, there is currently no cure for this collection of diseases. Here, we will cover characteristics of the mitochondrial genome important for understanding the pathology associated with mtDNA mutations, and review recent approaches that are being developed to treat and prevent mtDNA disease. First, we will discuss mitochondrial replacement therapy (MRT), where mitochondria from a healthy donor replace maternal mitochondria harbouring mutant mtDNA. In addition to ethical concerns surrounding this procedure, MRT is only applicable in cases where the mother is known or suspected to carry mtDNA mutations. Thus, there remains a need for other strategies to treat patients with mtDNA disease. To this end, we will also discuss several alternative means to reduce the amount of mutant mtDNA present in cells. Such methods, referred to as heteroplasmy shifting, have proven successful in animal models. In particular, we will focus on the approach of targeting engineered endonucleases to specifically cleave mutant mtDNA. Together, these approaches offer hope to prevent the transmission of mtDNA disease and potentially reduce the impact of mtDNA mutations.
Collapse
Affiliation(s)
- Iman Al Khatib
- Deparments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Deparments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
20
|
Ribeiro ÂM, Puetz L, Pattinson NB, Dalén L, Deng Y, Zhang G, da Fonseca RR, Smit B, Gilbert MTP. 31° South: The physiology of adaptation to arid conditions in a passerine bird. Mol Ecol 2019; 28:3709-3721. [PMID: 31291502 DOI: 10.1111/mec.15176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Arid environments provide ideal ground for investigating the mechanisms of adaptive evolution. High temperatures and low water availability are relentless stressors for many endotherms, including birds; yet birds persist in deserts. While physiological adaptation probably involves metabolic phenotypes, the underlying mechanisms (plasticity, genetics) are largely uncharacterized. To explore this, we took an intraspecific approach that focused on a species that is resident over a mesic to arid gradient, the Karoo scrub-robin (Cercotrichas coryphaeus). Specifically, we integrated environmental (climatic and primary productivity), physiological (metabolic rates: a measure of energy expenditure), genotypic (genetic variation underlying the machinery of energy production) and microbiome (involved in processing food from where energy is retrieved) data, to infer the mechanism of physiological adaptation. We that found the variation in energetic physiology phenotypes and gut microbiome composition are associated with environmental features as well as with variation in genes underlying energy metabolic pathways. Specifically, we identified a small list of candidate adaptive genes, some of them with known ties to relevant physiology phenotypes. Together our results suggest that selective pressures on energetic physiology mediated by genes related to energy homeostasis and possibly microbiota composition may facilitate adaptation to local conditions and provide an explanation to the high avian intraspecific divergence observed in harsh environments.
Collapse
Affiliation(s)
- Ângela M Ribeiro
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Lara Puetz
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Yuan Deng
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ben Smit
- Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa.,Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - M Thomas P Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| |
Collapse
|
21
|
Hill GE, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK. Assessing the fitness consequences of mitonuclear interactions in natural populations. Biol Rev Camb Philos Soc 2019; 94:1089-1104. [PMID: 30588726 PMCID: PMC6613652 DOI: 10.1111/brv.12493] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Metazoans exist only with a continuous and rich supply of chemical energy from oxidative phosphorylation in mitochondria. The oxidative phosphorylation machinery that mediates energy conservation is encoded by both mitochondrial and nuclear genes, and hence the products of these two genomes must interact closely to achieve coordinated function of core respiratory processes. It follows that selection for efficient respiration will lead to selection for compatible combinations of mitochondrial and nuclear genotypes, and this should facilitate coadaptation between mitochondrial and nuclear genomes (mitonuclear coadaptation). Herein, we outline the modes by which mitochondrial and nuclear genomes may coevolve within natural populations, and we discuss the implications of mitonuclear coadaptation for diverse fields of study in the biological sciences. We identify five themes in the study of mitonuclear interactions that provide a roadmap for both ecological and biomedical studies seeking to measure the contribution of intergenomic coadaptation to the evolution of natural populations. We also explore the wider implications of the fitness consequences of mitonuclear interactions, focusing on central debates within the fields of ecology and biomedicine.
Collapse
Affiliation(s)
- Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, United States of America
| | - Justin C. Havird
- Department of Biology, Colorado State University, United States of America
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, United States of America
| | - Ronald S. Burton
- Scripps Institution of Oceanography, University of California, San Diego, United States of America
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
22
|
Eaaswarkhanth M, Melhem M, Sharma P, Nizam R, Al Madhoun A, Chaubey G, Alsmadi O, AlOzairi E, Al-Mulla F. Mitochondrial DNA D-loop sequencing reveals obesity variants in an Arab population. APPLICATION OF CLINICAL GENETICS 2019; 12:63-70. [PMID: 31213875 PMCID: PMC6541754 DOI: 10.2147/tacg.s198593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/13/2019] [Indexed: 01/11/2023]
Abstract
Background: The association of mitochondrial DNA (mtDNA) variations with obesity has been investigated in diverse populations across the world. However, such obesity-associated mtDNA examinations are rarely conducted in Arab populations. Materials and methods: We re-sequenced mtDNA displacement loop (D-loop) region of 395 Arab individuals of Kuwait. We categorized the individuals based on their BMI scores as obese (n=232; BMI ≥30 kg/m2), overweight (n=110; BMI ≥25 kg/m2 and <30 kg/m2), and lean (n=53; BMI <25 kg/m2). We performed all the statistical tests by combining obese and overweight individuals in one group. Association analyses were conducted applying Fisher's exact test and logistic regression model. Results: We identified that the mtDNA variations m.73A>G, and m.523delAC were positively correlated with obesity, while m.310T>C, and m.16318A>T were negatively associated. All these variants, except m.16318A>T, remain statistically significant after adjusting for age and gender. We found that the variant m.73A>G increases the likelihood of being obese by 6-fold, whereas haplogroup H decreases the probability of being obese in Arab individuals of Kuwait. Haplotype analysis revealed that a haplotype, A263G-C309CT-T310C, defining the H2a clade of H haplogroup, reduces the probability of being obese. Conclusion: Our study reports, for the first time, the obesity-related mtDNA variants in Arabs of Kuwait. Based on the mtDNA D-loop region variations, we detected particular variants and haplogroup that are related with increased and decreased probability of being obese in the Kuwait Arab population.
Collapse
Affiliation(s)
| | - Motasem Melhem
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Prem Sharma
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Osama Alsmadi
- Department of Cell Therapy & Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Ebaa AlOzairi
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| |
Collapse
|
23
|
Harada AE, Healy TM, Burton RS. Variation in Thermal Tolerance and Its Relationship to Mitochondrial Function Across Populations of Tigriopus californicus. Front Physiol 2019; 10:213. [PMID: 30930787 PMCID: PMC6429002 DOI: 10.3389/fphys.2019.00213] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Variation in thermal tolerance plays a key role in determining the biogeographic distribution of organisms. Consequently, identifying the mechanistic basis for thermal tolerance is necessary for understanding not only current species range limits but also the capacity for range limits to shift in response to climate change. Although variation in mitochondrial function likely contributes to variation in thermal tolerance, the extent to which mitochondrial function underlies local thermal adaptation is not fully understood. In the current study, we examine variation in thermal tolerance and mitochondrial function among three populations of the intertidal copepod Tigriopus californicus found across a latitudinal thermal gradient along the coast of California, USA. We tested (1) acute thermal tolerance using survivorship and knockdown assays, (2) chronic thermal tolerance using survivorship of nauplii and developmental rate, and (3) mitochondrial performance at a range of temperatures using ATP synthesis fueled by complexes I, II, and I&II, as well as respiration of permeabilized fibers. We find evidence for latitudinal thermal adaptation: the southernmost San Diego population outperforms the northernmost Santa Cruz in measures of survivorship, knockdown temperature, and ATP synthesis rates during acute thermal exposures. However, under a chronic thermal regime, survivorship and developmental rate are more similar in the southernmost and northernmost population than in the mid-range population (Abalone Cove). Though this pattern is unexpected, it aligns well with population-specific rates of ATP synthesis at these chronic temperatures. Combined with the tight correlation of ATP synthesis decline and knockdown temperature, these data suggest a role for mitochondria in setting thermal range limits and indicate that divergence in mitochondrial function is likely a component of adaptation across latitudinal thermal gradients.
Collapse
Affiliation(s)
- Alice E Harada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
24
|
Pichaud N, Bérubé R, Côté G, Belzile C, Dufresne F, Morrow G, Tanguay RM, Rand DM, Blier PU. Age Dependent Dysfunction of Mitochondrial and ROS Metabolism Induced by Mitonuclear Mismatch. Front Genet 2019; 10:130. [PMID: 30842791 PMCID: PMC6391849 DOI: 10.3389/fgene.2019.00130] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/06/2019] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial and nuclear genomes have to coevolve to ensure the proper functioning of the different mitochondrial complexes that are assembled from peptides encoded by both genomes. Mismatch between these genomes is believed to be strongly selected against due to the consequent impairments of mitochondrial functions and induction of oxidative stress. Here, we used a Drosophila model harboring an incompatibility between a mitochondrial tRNAtyr and its nuclear-encoded mitochondrial tyrosine synthetase to assess the cellular mechanisms affected by this incompatibility and to test the relative contribution of mitonuclear interactions and aging on the expression of impaired phenotypes. Our results show that the mitochondrial tRNA mutation caused a decrease in mitochondrial oxygen consumption in the incompatible nuclear background but no effect with the compatible nuclear background. Mitochondrial DNA copy number increased in the incompatible genotype but that increase failed to rescue mitochondrial functions. The flies harboring mismatch between nuclear and mitochondrial genomes had almost three times the relative mtDNA copy number and fifty percent higher rate of hydrogen peroxide production compared to other genome combinations at 25 days of age. We also found that aging exacerbated the mitochondrial dysfunctions. Our results reveal the tight interactions linking mitonuclear mismatch to mitochondrial dysfunction, mitochondrial DNA regulation, ROS production and aging.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Laboratory of Comparative Biochemistry and Physiology, Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Roxanne Bérubé
- Laboratoire de Physiologie Animale Intégrative, Département de Biologie, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Geneviève Côté
- Laboratoire de Physiologie Animale Intégrative, Département de Biologie, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Claude Belzile
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - France Dufresne
- Laboratoire d'Écologie Moléculaire, Département de Biologie, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Geneviève Morrow
- Laboratoire de Génétique Cellulaire et Développementale, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec City, QC, Canada
| | - Robert M Tanguay
- Laboratoire de Génétique Cellulaire et Développementale, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec City, QC, Canada
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Pierre U Blier
- Laboratoire de Physiologie Animale Intégrative, Département de Biologie, Université du Québec à Rimouski, Rimouski, QC, Canada
| |
Collapse
|
25
|
“Alternative” fuels contributing to mitochondrial electron transport: Importance of non-classical pathways in the diversity of animal metabolism. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:185-194. [DOI: 10.1016/j.cbpb.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022]
|
26
|
Haenel GJ, Del Gaizo Moore V. Functional Divergence of Mitochondria and Coevolution of Genomes: Cool Mitochondria in Hot Lizards. Physiol Biochem Zool 2018; 91:1068-1081. [DOI: 10.1086/699918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Honey protects against wings posture error and molecular changes related to mitochondrial pathways induced by hypoxia/reoxygenation in adult Drosophila melanogaster. Chem Biol Interact 2018; 291:245-252. [PMID: 29964003 DOI: 10.1016/j.cbi.2018.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
We conducted an investigation to evaluate the effects of Brazilian Pampa biome honey and its major phenolic compounds on the development of an erected wings posture phenotype and related mitochondrial aspects induced by Hypoxia/Reoxygenation (H/R) in Drosophila melanogaster. Flies were pre-treated for 3 days with a 10% honey solution and different concentrations of caffeic acid and ρ-coumaric acid and then submitted to hypoxia for 3 h. We observed that after reoxygenation, some flies acquired an erected wings posture and that this feature may be related to mortality. In addition, H/R induced down-regulation of ewg mRNA expression, which could be associated to the observed complex phenotype. H/R also caused a dysregulation in opa1-like, ldh and diap genes expression and reduced O2 fluxes in flie's mitochondria. Honey mitigated opa1-like mRNA expression changes provoked by H/R. Differently from honey, caffeic and ρ-coumaric acids displayed no protective effects. In conclusion, we report for the first time the protective effects of honey against complex phenotypes and mitochondrial changes induced by H/R in adult flies.
Collapse
|
28
|
Angers B, Chapdelaine V, Deremiens L, Vergilino R, Leung C, Doucet SL, Glémet H, Angers A. Gene flow prevents mitonuclear co-adaptation: A comparative portrait of sympatric wild types and cybrids in the fish Chrosomus eos. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:77-84. [PMID: 29986214 DOI: 10.1016/j.cbd.2018.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/26/2022]
Abstract
Allospecific mtDNA can occasionally be beneficial for the fitness of populations. It is, however, difficult to assess the effect of mtDNA in natural conditions due to genetic and/or environmental interactions. In the fish Chrosomus eos, the transfer of C. neogaeus mitochondria occurs in a single generation and results in natural cybrids. For a few lakes in Quebec, C. eos can harbor either a C. eos mtDNA (wild types) or a C. neogaeus mtDNA (cybrids). Moreover, mtDNA of cybrids originated either from Mississippian or Atlantic glacial refuges. Such diversity provides a useful system for in situ assessment of allospecific mtDNA effects. We determined genetic, epigenetic and transcriptomic variation as well as mitochondrial enzymatic activity (complex IV) changes among wild types and cybrids either in sympatry or allopatry. Wild types and cybrids did not segregate spatially within a lake. Moreover, no significant genetic differentiation was detected among wild types and cybrids indicating sustained gene flow. Mitochondrial complex IV activity was higher for cybrids in both sympatry and allopatry while no difference was detected among cybrid haplotypes. Epigenetic and transcriptomic analyses revealed only subtle differences between sympatric wild types and cybrids compared to differences between sites. Altogether, these results indicate a limited influence of allospecific mtDNA in nuclear gene expression when controlling for genetic and environmental effects. The absence of a reproductive barrier between wild types and cybrids results in random association of either C. eos or C. neogaeus mtDNA with C. eos nDNA at each generation, and prevents mitonuclear co-adaptation in sympatry.
Collapse
Affiliation(s)
- Bernard Angers
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada.
| | - Vincent Chapdelaine
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Léo Deremiens
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Roland Vergilino
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Christelle Leung
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Simon-Luc Doucet
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Hélène Glémet
- Department of environmental sciences, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Annie Angers
- Department of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
29
|
Simard CJ, Pelletier G, Boudreau LH, Hebert-Chatelain E, Pichaud N. Measurement of Mitochondrial Oxygen Consumption in Permeabilized Fibers of Drosophila Using Minimal Amounts of Tissue. J Vis Exp 2018. [PMID: 29683457 DOI: 10.3791/57376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, represents an emerging model for the study of metabolism. Indeed, drosophila have structures homologous to human organs, possess highly conserved metabolic pathways and have a relatively short lifespan that allows the study of different fundamental mechanisms in a short period of time. It is, however, surprising that one of the mechanisms essential for cellular metabolism, the mitochondrial respiration, has not been thoroughly investigated in this model. It is likely because the measure of the mitochondrial respiration in Drosophila usually requires a very large number of individuals and the results obtained are not highly reproducible. Here, a method allowing the precise measurement of mitochondrial oxygen consumption using minimal amounts of tissue from Drosophila is described. In this method, the thoraxes are dissected and permeabilized both mechanically with sharp forceps and chemically with saponin, allowing different compounds to cross the cell membrane and modulate the mitochondrial respiration. After permeabilization, a protocol is performed to evaluate the capacity of the different complexes of the electron transport system (ETS) to oxidize different substrates, as well as their response to an uncoupler and to several inhibitors. This method presents many advantages compared to methods using mitochondrial isolations, as it is more physiologically relevant because the mitochondria are still interacting with the other cellular components and the mitochondrial morphology is conserved. Moreover, sample preparations are faster, and the results obtained are highly reproducible. By combining the advantages of Drosophila as a model for the study of metabolism with the evaluation of mitochondrial respiration, important new insights can be unveiled, especially when the flies are experiencing different environmental or pathophysiological conditions.
Collapse
Affiliation(s)
- Chloé J Simard
- Département de chimie et biochimie, Université de Moncton
| | | | - Luc H Boudreau
- Département de chimie et biochimie, Université de Moncton
| | | | | |
Collapse
|
30
|
Abstract
SUMMARYMosquitoes’ importance as vectors of pathogens that drive disease underscores the importance of precise and comparable methods of taxa identification among their species. While several molecular targets have been used to study mosquitoes since the initiation of PCR in the 1980s, its application to mosquito identification took off in the early 1990s. This review follows the research's recent journey into the use of mitochondrial DNA (mtDNA) cytochrome oxidase 1 (COI or COX1) as a DNA barcode target for mosquito species identification – a target whose utility for discriminating mosquitoes is now escalating. The pros and cons of using a mitochondrial genome target are discussed with a broad sweep of the mosquito literature suggesting that nuclear introgressions of mtDNA sequences appear to be uncommon and that the COI works well for distantly related taxa and shows encouraging utility in discriminating more closely related species such as cryptic/sibling species groups. However, the utility of COI in discriminating some closely related groups can be problematic and investigators are advised to proceed with caution as problems with incomplete lineage sorting and introgression events can result in indistinguishable COI sequences appearing in reproductively independent populations. In these – if not all – cases, it is advisable to run a nuclear marker alongside the mtDNA and thus the utility of the ribosomal DNA – and in particular the internal transcribed spacer 2 – is also briefly discussed as a useful counterpoint to the COI.
Collapse
|
31
|
Aw WC, Garvin MR, Melvin RG, Ballard JWO. Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster. PLoS One 2017; 12:e0187554. [PMID: 29166659 PMCID: PMC5699850 DOI: 10.1371/journal.pone.0187554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023] Open
Abstract
Here we determine the sex-specific influence of mtDNA type (mitotype) and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle's maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C) ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number) and four physiological traits (fecundity, longevity, lipid content, and starvation resistance). Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
32
|
Ortego J, Noguerales V, Cordero PJ. Geographical and Ecological Drivers of Mitonuclear Genetic Divergence in a Mediterranean Grasshopper. Evol Biol 2017. [DOI: 10.1007/s11692-017-9423-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Baris TZ, Wagner DN, Dayan DI, Du X, Blier PU, Pichaud N, Oleksiak MF, Crawford DL. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions. PLoS Genet 2017; 13:e1006517. [PMID: 28362806 PMCID: PMC5375140 DOI: 10.1371/journal.pgen.1006517] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only pathway with both nuclear and mitochondrial encoded proteins. The importance of the interactions between these two genomes has recently received more attention because of their potential evolutionary effects and how they may affect human health and disease. In many different organisms, healthy nuclear and mitochondrial genome hybrids between species or among distant populations within a species affect fitness and OxPhos functions. However, what is less understood is whether these interactions impact individuals within a single natural population. The significance of this impact depends on the strength of selection for mito-nuclear interactions. We examined whether mito-nuclear interactions alter allele frequencies for ~11,000 nuclear SNPs within a single, natural Fundulus heteroclitus population containing two divergent mitochondrial haplotypes (mt-haplotypes). Between the two mt-haplotypes, there are significant nuclear allele frequency differences for 349 SNPs with a p-value of 1% (236 with 10% FDR). Unlike the rest of the genome, these 349 outlier SNPs form two groups associated with each mt-haplotype, with a minority of individuals having mixed ancestry. We use this mixed ancestry in combination with mt-haplotype as a polygenic factor to explain a significant fraction of the individual OxPhos variation. These data suggest that mito-nuclear interactions affect cardiac OxPhos function. The 349 outlier SNPs occur in genes involved in regulating metabolic processes but are not directly associated with the 79 nuclear OxPhos proteins. Therefore, we postulate that the evolution of mito-nuclear interactions affects OxPhos function by acting upstream of OxPhos.
Collapse
Affiliation(s)
- Tara Z. Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
- * E-mail:
| | - Dominique N. Wagner
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - David I. Dayan
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Xiao Du
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Pierre U. Blier
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Nicolas Pichaud
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Marjorie F. Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Douglas L. Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| |
Collapse
|
34
|
Healy TM, Bryant HJ, Schulte PM. Mitochondrial genotype and phenotypic plasticity of gene expression in response to cold acclimation in killifish. Mol Ecol 2017; 26:814-830. [DOI: 10.1111/mec.13945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Timothy M. Healy
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Heather J. Bryant
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Patricia M. Schulte
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| |
Collapse
|
35
|
Genomic Trajectories to Desiccation Resistance: Convergence and Divergence Among Replicate Selected Drosophila Lines. Genetics 2016; 205:871-890. [PMID: 28007884 DOI: 10.1534/genetics.116.187104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Adaptation to environmental stress is critical for long-term species persistence. With climate change and other anthropogenic stressors compounding natural selective pressures, understanding the nature of adaptation is as important as ever in evolutionary biology. In particular, the number of alternative molecular trajectories available for an organism to reach the same adaptive phenotype remains poorly understood. Here, we investigate this issue in a set of replicated Drosophila melanogaster lines selected for increased desiccation resistance-a classical physiological trait that has been closely linked to Drosophila species distributions. We used pooled whole-genome sequencing (Pool-Seq) to compare the genetic basis of their selection responses, using a matching set of replicated control lines for characterizing laboratory (lab-)adaptation, as well as the original base population. The ratio of effective population size to census size was high over the 21 generations of the experiment at 0.52-0.88 for all selected and control lines. While selected SNPs in replicates of the same treatment (desiccation-selection or lab-adaptation) tended to change frequency in the same direction, suggesting some commonality in the selection response, candidate SNP and gene lists often differed among replicates. Three of the five desiccation-selection replicates showed significant overlap at the gene and network level. All five replicates showed enrichment for ovary-expressed genes, suggesting maternal effects on the selected trait. Divergence between pairs of replicate lines for desiccation-candidate SNPs was greater than between pairs of control lines. This difference also far exceeded the divergence between pairs of replicate lines for neutral SNPs. Overall, while there was overlap in the direction of allele frequency changes and the network and functional categories affected by desiccation selection, replicates showed unique responses at all levels, likely reflecting hitchhiking effects, and highlighting the challenges in identifying candidate genes from these types of experiments when traits are likely to be polygenic.
Collapse
|
36
|
Haenel GJ. Introgression of mtDNA inUrosauruslizards: historical and ecological processes. Mol Ecol 2016; 26:606-623. [DOI: 10.1111/mec.13930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
|
37
|
Stojković B, Sayadi A, Đorđević M, Jović J, Savković U, Arnqvist G. Divergent evolution of life span associated with mitochondrial DNA evolution. Evolution 2016; 71:160-166. [PMID: 27778315 DOI: 10.1111/evo.13102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 01/03/2023]
Abstract
Mitochondria play a key role in ageing. The pursuit of genes that regulate variation in life span and ageing have shown that several nuclear-encoded mitochondrial genes are important. However, the role of mitochondrial encoded genes (mtDNA) is more controversial and our appreciation of the role of mtDNA for the evolution of life span is limited. We use replicated lines of seed beetles that have been artificially selected for long or short life for >190 generations, now showing dramatic phenotypic differences, to test for a possible role of mtDNA in the divergent evolution of ageing and life span. We show that these divergent selection regimes led to the evolution of significantly different mtDNA haplotype frequencies. Selection for a long life and late reproduction generated positive selection for one specific haplotype, which was fixed in most such lines. In contrast, selection for reproduction early in life led to both positive selection as well as negative frequency-dependent selection on two different haplotypes, which were both present in all such lines. Our findings suggest that the evolution of life span was in part mediated by mtDNA, providing support for the emerging general tenet that adaptive evolution of life-history syndromes may involve mtDNA.
Collapse
Affiliation(s)
- Biljana Stojković
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.,Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković, University of Belgrade, Despota Stefana Boulevard 142, 11060, Belgrade, Serbia
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Mirko Đorđević
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković, University of Belgrade, Despota Stefana Boulevard 142, 11060, Belgrade, Serbia
| | - Jelena Jović
- Department of Plant Pests, Institute for Plant Protection and Environment, Banatska 33, 11080, Zemun, Serbia
| | - Uroš Savković
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Göran Arnqvist
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković, University of Belgrade, Despota Stefana Boulevard 142, 11060, Belgrade, Serbia
| |
Collapse
|
38
|
Fang WY, Wang ZL, Li C, Yang XQ, Yu XP. The complete mitogenome of a jumping spider Carrhotus xanthogramma (Araneae: Salticidae) and comparative analysis in four salticid mitogenomes. Genetica 2016; 144:699-709. [DOI: 10.1007/s10709-016-9936-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/31/2016] [Indexed: 11/27/2022]
|
39
|
Wang Y, Brinton RD. Triad of Risk for Late Onset Alzheimer's: Mitochondrial Haplotype, APOE Genotype and Chromosomal Sex. Front Aging Neurosci 2016; 8:232. [PMID: 27757081 PMCID: PMC5047907 DOI: 10.3389/fnagi.2016.00232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
Brain is the most energetically demanding organ of the body, and is thus vulnerable to even modest decline in ATP generation. Multiple neurodegenerative diseases are associated with decline in mitochondrial function, e.g., Alzheimer’s, Parkinson’s, multiple sclerosis and multiple neuropathies. Genetic variances in the mitochondrial genome can modify bioenergetic and respiratory phenotypes, at both the cellular and system biology levels. Mitochondrial haplotype can be a key driver of mitochondrial efficiency. Herein, we focus on the association between mitochondrial haplotype and risk of late onset Alzheimer’s disease (LOAD). Evidence for the association of mitochondrial genetic variances/haplotypes and the risk of developing LOAD are explored and discussed. Further, we provide a conceptual framework that suggests an interaction between mitochondrial haplotypes and two demonstrated risk factors for Alzheimer’s disease (AD), apolipoprotein E (APOE) genotype and chromosomal sex. We posit herein that mitochondrial haplotype, and hence respiratory capacity, plays a key role in determining risk of LOAD and other age-associated neurodegenerative diseases. Further, therapeutic design and targeting that involve mitochondrial haplotype would advance precision medicine for AD and other age related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Roberta D Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
40
|
Incompatibility between Nuclear and Mitochondrial Genomes Contributes to an Interspecies Reproductive Barrier. Cell Metab 2016; 24:283-94. [PMID: 27425585 PMCID: PMC4981548 DOI: 10.1016/j.cmet.2016.06.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/29/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022]
Abstract
Vertebrate cells carry two different genomes, nuclear (nDNA) and mitochondrial (mtDNA), both encoding proteins involved in oxidative phosphorylation. Because of the extensive interactions, adaptive coevolution of the two genomes must occur to ensure normal mitochondrial function. To investigate whether incompatibilities between these two genomes could contribute to interspecies reproductive barriers, we performed reciprocal mtDNA replacement (MR) in zygotes between widely divergent Mus m. domesticus (B6) and conplastic Mus m. musculus (PWD) mice. Transfer of MR1 cybrid embryos (B6nDNA-PWDmtDNA) supported normal development of F1 offspring with reduced male fertility but unaffected reproductive fitness in females. Furthermore, donor PWD mtDNA was faithfully transmitted through the germline into F2 and F3 generations. In contrast, reciprocal MR2 (PWDnDNA-B6mtDNA) produced high embryonic loss and stillborn rates, suggesting an association between mitochondrial function and infertility. These results strongly suggest that functional incompatibility between nuclear and mitochondrial genomes contributes to interspecies reproductive isolation in mammals.
Collapse
|
41
|
Wolff JN, Pichaud N, Camus MF, Côté G, Blier PU, Dowling DK. Evolutionary implications of mitochondrial genetic variation: mitochondrial genetic effects on OXPHOS respiration and mitochondrial quantity change with age and sex in fruit flies. J Evol Biol 2016; 29:736-47. [PMID: 26728607 DOI: 10.1111/jeb.12822] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 12/22/2022]
Abstract
The ancient acquisition of the mitochondrion into the ancestor of modern-day eukaryotes is thought to have been pivotal in facilitating the evolution of complex life. Mitochondria retain their own diminutive genome, with mitochondrial genes encoding core subunits involved in oxidative phosphorylation. Traditionally, it was assumed that there was little scope for genetic variation to accumulate and be maintained within the mitochondrial genome. However, in the past decade, mitochondrial genetic variation has been routinely tied to the expression of life-history traits such as fertility, development and longevity. To examine whether these broad-scale effects on life-history trait expression might ultimately find their root in mitochondrially mediated effects on core bioenergetic function, we measured the effects of genetic variation across twelve different mitochondrial haplotypes on respiratory capacity and mitochondrial quantity in the fruit fly, Drosophila melanogaster. We used strains of flies that differed only in their mitochondrial haplotype, and tested each sex separately at two different adult ages. Mitochondrial haplotypes affected both respiratory capacity and mitochondrial quantity. However, these effects were highly context-dependent, with the genetic effects contingent on both the sex and the age of the flies. These sex- and age-specific genetic effects are likely to resonate across the entire organismal life-history, providing insights into how mitochondrial genetic variation may contribute to sex-specific trajectories of life-history evolution.
Collapse
Affiliation(s)
- J N Wolff
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| | - N Pichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada.,Départment de Biologie, Université du Québec de Rimouski, Rimouski, QC, Canada
| | - M F Camus
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| | - G Côté
- Départment de Biologie, Université du Québec de Rimouski, Rimouski, QC, Canada
| | - P U Blier
- Départment de Biologie, Université du Québec de Rimouski, Rimouski, QC, Canada
| | - D K Dowling
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| |
Collapse
|
42
|
Correa CC, Ballard JWO. Wolbachia Associations with Insects: Winning or Losing Against a Master Manipulator. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2015.00153] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Mitochondrial divergence between slow- and fast-aging garter snakes. Exp Gerontol 2015; 71:135-46. [PMID: 26403677 DOI: 10.1016/j.exger.2015.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/26/2023]
Abstract
Mitochondrial function has long been hypothesized to be intimately involved in aging processes--either directly through declining efficiency of mitochondrial respiration and ATP production with advancing age, or indirectly, e.g., through increased mitochondrial production of damaging free radicals with age. Yet we lack a comprehensive understanding of the evolution of mitochondrial genotypes and phenotypes across diverse animal models, particularly in species that have extremely labile physiology. Here, we measure mitochondrial genome-types and transcription in ecotypes of garter snakes (Thamnophis elegans) that are adapted to disparate habitats and have diverged in aging rates and lifespans despite residing in close proximity. Using two RNA-seq datasets, we (1) reconstruct the garter snake mitochondrial genome sequence and bioinformatically identify regulatory elements, (2) test for divergence of mitochondrial gene expression between the ecotypes and in response to heat stress, and (3) test for sequence divergence in mitochondrial protein-coding regions in these slow-aging (SA) and fast-aging (FA) naturally occurring ecotypes. At the nucleotide sequence level, we confirmed two (duplicated) mitochondrial control regions one of which contains a glucocorticoid response element (GRE). Gene expression of protein-coding genes was higher in FA snakes relative to SA snakes for most genes, but was neither affected by heat stress nor an interaction between heat stress and ecotype. SA and FA ecotypes had unique mitochondrial haplotypes with amino acid substitutions in both CYTB and ND5. The CYTB amino acid change (Isoleucine → Threonine) was highly segregated between ecotypes. This divergence of mitochondrial haplotypes between SA and FA snakes contrasts with nuclear gene-flow estimates, but correlates with previously reported divergence in mitochondrial function (mitochondrial oxygen consumption, ATP production, and reactive oxygen species consequences).
Collapse
|
44
|
Power JW, LeBlanc N, Bondrup-Nielsen S, Boudreau MJ, O'Brien MS, Stewart DT. Spatial Genetic and Body-Size Trends in Atlantic CanadaCanis latrans(Coyote) Populations. Northeast Nat (Steuben) 2015. [DOI: 10.1656/045.022.0314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Temperature-related activity of Gomphiocephalus hodgsoni (Collembola) mitochondrial DNA (COI) haplotypes in Taylor Valley, Antarctica. Polar Biol 2015. [DOI: 10.1007/s00300-015-1788-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Zhang F, Broughton RE. Heterogeneous natural selection on oxidative phosphorylation genes among fishes with extreme high and low aerobic performance. BMC Evol Biol 2015; 15:173. [PMID: 26306407 PMCID: PMC4549853 DOI: 10.1186/s12862-015-0453-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023] Open
Abstract
Background Oxidative phosphorylation (OXPHOS) is the primary source of ATP in eukaryotes and serves as a mechanistic link between variation in genotypes and energetic phenotypes. While several physiological and anatomical factors may lead to increased aerobic capacity, variation in OXPHOS proteins may influence OXPHOS efficiency and facilitate adaptation in organisms with varied energy demands. Although there is evidence that natural selection acts on OXPHOS genes, the focus has been on detection of directional (positive) selection on specific phylogenetic branches where traits that increase energetic demands appear to have evolved. We examined patterns of selection in a broader evolutionary context, i.e., on multiple lineages of fishes with extreme high and low aerobic performance. Results We found that patterns of natural selection on mitochondrial OXPHOS genes are complex among fishes with different swimming performance. Positive selection is not consistently associated with high performance taxa and appears to be strongest on lineages containing low performance taxa. In contrast, within high performance lineages, purifying (negative) selection appears to predominate. Conclusions We provide evidence that selection on OXPHOS varies in both form and intensity within and among lineages through evolutionary time. These results provide evidence for fluctuating selection on OXPHOS associated with divergence in aerobic performance. However, in contrast to previous studies, positive selection was strongest on low performance taxa suggesting that adaptation of OXPHOS involves many factors beyond enhancing ATP production in high performance taxa. The broader pattern indicates a complex interplay between organismal adaptations, ATP demand, and OXPHOS function. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0453-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feifei Zhang
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, 111 E Chesapeake Street, Norman, OK, 73019, USA.
| | - Richard E Broughton
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, 111 E Chesapeake Street, Norman, OK, 73019, USA.
| |
Collapse
|
47
|
Deremiens L, Schwartz L, Angers A, Glémet H, Angers B. Interactions between nuclear genes and a foreign mitochondrial genome in the redbelly dace Chrosomus eos. Comp Biochem Physiol B Biochem Mol Biol 2015; 189:80-6. [PMID: 26277640 DOI: 10.1016/j.cbpb.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/26/2022]
Abstract
Given the coevolution process occurring between nuclear and mitochondrial genomes, the effects of introgressive hybridization remain puzzling. In this study, we take advantage of the natural co-occurrence of two biotypes bearing a similar nuclear genome (Chrosomus eos) but harbouring mitochondria from different species (wild type: C. eos; cybrids: Chrosomus neogaeus) to determine the extent of phenotype changes linked to divergence in the mitochondrial genome. Changes were assessed through differences in gene expression, enzymatic activity, proteomic and swimming activity. Our data demonstrate that complex IV activity was significantly higher in cybrids compared to wild type. This difference could result from one variable amino acid on the COX3 mitochondrial subunit and/or from a tremendous change in the proteome. We also show that cybrids present a higher swimming performance than wild type. Ultimately, our results demonstrate that the absence of coevolution for a period of almost ten million years between nuclear and mitochondrial genomes does not appear to be necessarily deleterious but could even have beneficial effects. Indeed, the capture of foreign mitochondria could be an efficient way to circumvent the selection process of genomic coevolution, allowing the rapid accumulation of new mutations in C. eos cybrids.
Collapse
Affiliation(s)
- Léo Deremiens
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada.
| | - Logan Schwartz
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Annie Angers
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Hélène Glémet
- Department of Environmental Sciences, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
48
|
Jelić M, Arnqvist G, Novičić ZK, Kenig B, Tanasković M, Anđelković M, Stamenković-Radak M. Sex-specific effects of sympatric mitonuclear variation on fitness in Drosophila subobscura. BMC Evol Biol 2015; 15:135. [PMID: 26156582 PMCID: PMC4496845 DOI: 10.1186/s12862-015-0421-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 11/14/2022] Open
Abstract
Background A number of recent studies have shown that the pattern of mitochondrial DNA variation and evolution is at odds with a neutral equilibrium model. Theory has suggested that selection on mitonuclear genotypes can act to maintain stable mitonuclear polymorphism within populations. However, this effect largely relies upon selection being either sex-specific or frequency dependent. Here, we use mitonuclear introgression lines to assess differences in a series of key life-history traits (egg-to-adult developmental time, viability, offspring sex-ratio, adult longevity and resistance to desiccation) in Drosophila subobscura fruit flies carrying one of three different sympatric mtDNA haplotypes. Results We found functional differences between these sympatric mtDNA haplotypes, but these effects were contingent upon the nuclear genome with which they were co-expressed. Further, we demonstrate a significant mitonuclear genetic effect on adult sex ratio, as well as a sex × mtDNA × nuDNA interaction for adult longevity. Conclusions The observed effects suggest that sex specific mitonuclear selection contributes to the maintenance of mtDNA polymorphism and to mitonuclear linkage disequilibrium in this model system. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0421-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE - 752 36, Uppsala, Sweden.
| | - Zorana Kurbalija Novičić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000, Belgrade, Serbia.
| | - Bojan Kenig
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000, Belgrade, Serbia.
| | - Marija Tanasković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| | - Marko Anđelković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia. .,Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000, Belgrade, Serbia. .,Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia.
| | - Marina Stamenković-Radak
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia. .,Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000, Belgrade, Serbia.
| |
Collapse
|
49
|
Abstract
In virtually all multicellular eukaryotes, mitochondria are transmitted exclusively through one parent, usually the mother. In this short review, we discuss some of the major consequences of uniparental transmission of mitochondria, including deleterious effects in males and selection for increased transmission through females. Many of these consequences, particularly sex ratio distortion, have well-studied parallels in other maternally transmitted genetic elements, such as bacterial endosymbionts of arthropods. We also discuss the consequences of linkage between mitochondria and other maternally transmitted genetic elements, including the role of cytonuclear incompatibilities in maintaining polymorphism. Finally, as a case study, we discuss a recently discovered maternally transmitted sex ratio distortion in an insect that is associated with extraordinarily divergent mitochondria.
Collapse
|
50
|
Kurbalija Novičić Z, Immonen E, Jelić M, AnÐelković M, Stamenković-Radak M, Arnqvist G. Within-population genetic effects of mtDNA on metabolic rate in Drosophila subobscura. J Evol Biol 2015; 28:338-46. [PMID: 25454557 DOI: 10.1111/jeb.12565] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
A growing body of research supports the view that within-species sequence variation in the mitochondrial genome (mtDNA) is functional, in the sense that it has important phenotypic effects. However, most of this empirical foundation is based on comparisons across populations, and few studies have addressed the functional significance of mtDNA polymorphism within populations. Here, using mitonuclear introgression lines, we assess differences in whole-organism metabolic rate of adult Drosophila subobscura fruit flies carrying either of three different sympatric mtDNA haplotypes. We document sizeable, up to 20%, differences in metabolic rate across these mtDNA haplotypes. Further, these mtDNA effects are to some extent sex specific. We found no significant nuclear or mitonuclear genetic effects on metabolic rate, consistent with a low degree of linkage disequilibrium between mitochondrial and nuclear genes within populations. The fact that mtDNA haplotype variation within a natural population affects metabolic rate, which is a key physiological trait with important effects on life-history traits, adds weight to the emergent view that mtDNA haplotype variation is under natural selection and it revitalizes the question as to what processes act to maintain functional mtDNA polymorphism within populations.
Collapse
|