1
|
Bird SA, Pope NS, McGrady CM, Fleischer SJ, López-Uribe MM. Mating frequency estimation and its importance for colony abundance analyses in eusocial pollinators: a case study of Bombus impatiens (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1712-1722. [PMID: 39137237 DOI: 10.1093/jee/toae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/10/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
The genus Bombus (bumble bees) includes approximately 265 species, many of which are in decline in North America and Europe. To estimate colony abundance of bumble bees in natural and agricultural habitats, sibship relationships are often reconstructed from genetic data with the assumption that colonies have 1 monandrous queen. However, some species such as the North American common eastern bumble bee (Bombus impatiens Cresson) can display low levels of polyandry, which may bias estimates of colony abundance based on monandrous sibship reconstructions. To accurately quantify rates of polyandry in wild and commercially mated queens of this species, we empirically estimated mating frequencies using a novel statistical model and genotypes from 730 bees. To genotype individuals, we used a highly polymorphic set of microsatellites on colonies established from 20 wild-caught gynes and 10 commercial colonies. We found multiple fathers in 3 of the wild colonies and 3 of the commercial colonies. This resulted in average effective mating frequencies of 1.075 ± 0.18 and 1.154 ± 0.25 for wild and commercial colonies, respectively. These findings agree with previous reports of low rates of polyandry for B. impatiens. Using a large empirical dataset, we demonstrate that assuming monandry for colony abundance estimation in species that violate this assumption results in an overestimation of the number of colonies. Our results emphasize the importance of studying mating frequencies in social species of conservation concern and economic importance for the accuracy of colony abundance estimation and for understanding their ecology and sociobiology.
Collapse
Affiliation(s)
- Sydney A Bird
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
- Temperate Tree Fruit and Vegetable Research Unit, United States Department of Agriculture, 5230 Konnowac Pass Rd, Wapato, WA 98951, USA
| | - Nathaniel S Pope
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Carley M McGrady
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shelby J Fleischer
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Margarita M López-Uribe
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Orr SE, Hedrick NA, Murray KA, Pasupuleti AK, Goodisman MAD. Novel insights into paternity skew in a polyandrous social wasp. INSECT SCIENCE 2024. [PMID: 38415498 DOI: 10.1111/1744-7917.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Females of many species are polyandrous. However, polyandry can give rise to conflict among individuals within families. We examined the level of polyandry and paternity skew in the common eastern yellowjacket wasp, Vespula maculifrons, in order to gain a greater understanding of conflict in social insects. We collected 10 colonies of V. maculifrons and genotyped workers and prereproductive queens at highly variable microsatellite markers to assign each to a patriline. Genotypic data revealed evidence of significant paternity skew among patrilines. In addition, we found that patrilines contributed differentially to caste production (worker vs. queen), suggesting an important role for reproductive conflict not previously discovered. We also investigated if patterns of paternity skew and mate number varied over time. However, we found no evidence of changes in levels of polyandry when compared to historical data dating back almost 40 years. Finally, we measured a suite of morphological traits in individuals from the most common and least common patrilines in each colony to test if males that showed highly skewed reproductive success also produced offspring that differed in phenotype. Our data revealed weak correlation between paternity skew and morphological phenotype of offspring sired by different males, suggesting no evidence of evolutionary tradeoffs at the level investigated. Overall, this study is the first to report significant paternity and caste-associated skew in V. maculifrons, and to investigate the phenotypic consequences of skew in a social wasp. Our results suggest that polyandry can have important consequences on the genetic and social structure of insect societies.
Collapse
Affiliation(s)
- Sarah E Orr
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, Georgia, USA
| | - Nicole A Hedrick
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, Georgia, USA
| | - Kayla A Murray
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, Georgia, USA
| | - Abhinav K Pasupuleti
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, Georgia, USA
| | - Michael A D Goodisman
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Lago DC, Nora LC, Hasselmann M, Hartfelder K. Positive selection in cytochrome P450 genes is associated with gonad phenotype and mating strategy in social bees. Sci Rep 2023; 13:5921. [PMID: 37041178 PMCID: PMC10090045 DOI: 10.1038/s41598-023-32898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
The honey bee, Apis mellifera differs from all other social bees in its gonad phenotype and mating strategy. Honey bee queens and drones have tremendously enlarged gonads, and virgin queens mate with several males. In contrast, in all the other bees, the male and female gonads are small, and the females mate with only one or very few males, thus, suggesting an evolutionary and developmental link between gonad phenotype and mating strategy. RNA-seq comparisons of A. mellifera larval gonads revealed 870 genes as differentially expressed in queens versus workers and drones. Based on Gene Ontology enrichment we selected 45 genes for comparing the expression levels of their orthologs in the larval gonads of the bumble bee Bombus terrestris and the stingless bee, Melipona quadrifasciata, which revealed 24 genes as differentially represented. An evolutionary analysis of their orthologs in 13 solitary and social bee genomes revealed four genes with evidence of positive selection. Two of these encode cytochrome P450 proteins, and their gene trees indicated a lineage-specific evolution in the genus Apis, indicating that cytochrome P450 genes may be involved in the evolutionary association of polyandry and the exaggerated gonad phenotype in social bees.
Collapse
Affiliation(s)
- Denyse Cavalcante Lago
- Department of Genetics, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luísa Czamanski Nora
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Klaus Hartfelder
- Department of Genetics, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Degueldre F, Aron S. Sperm competition increases sperm production and quality in Cataglyphis desert ants. Proc Biol Sci 2023; 290:20230216. [PMID: 36987648 PMCID: PMC10050944 DOI: 10.1098/rspb.2023.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Sperm competition is a pervasive evolutionary force that shapes sperm traits to maximize fertilization success. Indeed, it has been shown to increase sperm production in both vertebrates and invertebrates. However, sperm production is energetically costly, which may result in trade-offs among sperm traits. In eusocial hymenopterans, such as ants, mating dynamics impose unique selective pressures on ejaculate. Males are sperm limited: they enter adulthood with a fixed amount of sperm that will not be renewed. We explored whether sperm competition intensity was associated with sperm quantity and quality (i.e. sperm viability and DNA fragmentation) in nine Cataglyphis desert ants. Our results provide phylogenetically robust evidence that sperm competition is positively correlated with sperm production and sperm viability. However, it was unrelated to sperm DNA integrity, indicating the absence of a trade-off involving this trait. These findings underscore that sperm competition may strongly mould sperm traits and drive reproductive performance in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Félicien Degueldre
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Brussels B-1050, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Brussels B-1050, Belgium
| |
Collapse
|
5
|
Veiga JC, Ruiz GRS, Carvalho-Zilse GA, Menezes C, Contrera FAL. Queens remate despite traumatic mating in stingless bees. Curr Zool 2022; 68:81-92. [PMID: 35169631 PMCID: PMC8836336 DOI: 10.1093/cz/zoab019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Males can control female reproduction using genital plugs to impede access by rivals. In social bees, ants, and wasps, plugging may involve traumatic mating, with females being harmed. In stingless bees, chances are that plugs may promote ovarian activan, and are thought to ensure single mating-a general tendency among the social Hymenoptera. However, understanding on relationships between mating plugs, traumatic mating, and mating systems in stingless bees remains limited. To address this, we (1) compared mated queens of 7 Neotropical species to understand the patterns of copulatory marks in females and (2) compared pre- and post-mating genitalia of males and females in Melipona fasciculata to depict plug functional morphology. Data revealed an unprecedented consequence of mating in stingless bees: the characteristic marks left by mating plugs on female abdomens and the inferences that can be made from them. To our surprise, in 1 species M. fasciculata we found that queens retain the plug long after mating, and may carry it for the rest of their lives. All the other 6 species retained the plug for only a short period. Remated queens were only found in M. seminigra, whose multiple copulatory marks match previous findings of polyandry in this species. Our study shows that queens can remate, and suggests that male genital morphology may determine in part the time persistence of plugs. We conclude that traumatic mating plugs do not fully prevent remating in stingless bees and that mating systems are not uniform in this group. Nonetheless, exceptional cases of facultative polyandry in social insects-for example, when mating plugs fail-may confirm a general tendency for single mating in close link with efficient mating plugs.
Collapse
Affiliation(s)
- Jamille Costa Veiga
- Bee Biology and Ecology Lab, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-110 Pará, Brazil
- Biodiversity and Ecosystem Services Research Group, Instituto Tecnológico Vale—Desenvolvimento Sustentável, Belém, 66055-090 Pará, Brazil
| | - Gustavo Rodrigo Sanches Ruiz
- Ecology and Zoology of Invertebrates Lab, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-110 Pará, Brazil
| | | | - Cristiano Menezes
- Research and Development, Embrapa Meio Ambiente, Jaguariúna, 13820-000 São Paulo, Brazil
| | - Felipe Andrés León Contrera
- Bee Biology and Ecology Lab, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-110 Pará, Brazil
| |
Collapse
|
6
|
Dyson CJ, Piscano OL, Durham RM, Thompson VJ, Johnson CH, Goodisman MAD. Temporal Analysis of Effective Population Size and Mating System in a Social Wasp. J Hered 2021; 112:626-634. [PMID: 34558622 DOI: 10.1093/jhered/esab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Highly social species are successful because they cooperate in obligately integrated societies. We examined temporal genetic variation in the eusocial wasp Vespula maculifrons to gain a greater understanding of evolution in highly social taxa. First, we wished to test if effective population sizes of eusocial species were relatively low due to the reproductive division of labor that characterizes eusocial taxa. We thus estimated the effective population size of V. maculifrons by examining temporal changes in population allele frequencies. We sampled the genetic composition of a V. maculifrons population at 3 separate timepoints spanning a 13-year period. We found that effective population size ranged in the hundreds of individuals, which is similar to estimates in other, non-eusocial taxa. Second, we estimated levels of polyandry in V. maculifrons in different years to determine if queen mating system varied over time. We found no significant change in the number or skew of males mated to queens. In addition, mating skew was not significant within V. maculifrons colonies. Therefore, our data suggest that queen mate number may be subject to stabilizing selection in this taxon. Overall, our study provides novel insight into the selective processes operating in eusocial species by analyzing temporal genetic changes within populations.
Collapse
Affiliation(s)
- Carl J Dyson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Olivia L Piscano
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rebecca M Durham
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Veronica J Thompson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Catherine H Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Saga T, Okuno M, Loope KJ, Tsuchida K, Ohbayashi K, Shimada M, Okada Y. Polyandry and paternity affect disease resistance in eusocial wasps. Behav Ecol 2020. [DOI: 10.1093/beheco/araa062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Polyandry (multiple mating by females) is a central challenge for understanding the evolution of eusociality. Several hypotheses have been proposed to explain its observed benefits in eusocial Hymenoptera, one of which, the parasite–pathogen hypothesis (PPH), posits that high genotypic variance among workers for disease resistance prevents catastrophic colony collapse. We tested the PPH in the polyandrous wasp Vespula shidai. We infected isolated workers with the entomopathogenic fungus Beauveria bassiana and quantified their survival in the laboratory. Additionally, we conducted a paternity analysis of the workers using nine microsatellite loci to investigate the relationship between survival and the matriline and patriline membership of the workers. As predicted by the PPH, nestmate workers of different patrilines showed differential resistance to B. bassiana. We also demonstrated variation in virulence among strains of B. bassiana. Our results are the first to directly support the PPH in eusocial wasps and suggest that similar evolutionary pressures drove the convergent origin and maintenance of polyandry in ants, bees, and wasps.
Collapse
Affiliation(s)
- Tatsuya Saga
- Tajimi High School, Tajimi, Gifu, Japan
- Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
- Graduate School of Arts and Sciences, Department of General Systems Studies, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Masaki Okuno
- Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Kevin J Loope
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Koji Tsuchida
- Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Kako Ohbayashi
- Graduate School of Arts and Sciences, Department of General Systems Studies, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Masakazu Shimada
- Graduate School of Arts and Sciences, Department of General Systems Studies, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Yasukazu Okada
- Department of Biological Sciences, Tokyo Metropolitan University, Minami Osawa, Hachioji, Tokyo, Japan
| |
Collapse
|
8
|
Lehtonen J, Helanterä H. Superorganismal anisogamy: queen-male dimorphism in eusocial insects. Proc Biol Sci 2020; 287:20200635. [PMID: 32517607 PMCID: PMC7341914 DOI: 10.1098/rspb.2020.0635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 12/02/2022] Open
Abstract
Colonies of insects such as ants and honeybees are commonly viewed as 'superorganisms', with division of labour between reproductive 'germline-like' queens and males and 'somatic' workers. On this view, properties of the superorganismal colony are comparable with those of solitary organisms to such an extent that the colony itself can be viewed as a unit analogous to an organism. Thus, the concept of a superorganism can be useful as a guide to thinking about life history and allocation traits of colonies as a whole. A pattern that seems to reoccur in insects with superorganismal societies is size dimorphism between queens and males, where queens tend to be larger than males. It has been proposed that this is analogous to the phenomenon of anisogamy at the level of gametes in organisms with separate sexes; more specifically, it is suggested that this caste dimorphism may have evolved via similar selection pressures as gamete dimorphism arises in the 'gamete competition' theory for the evolution of anisogamy. In this analogy, queens are analogous to female gametes, males are analogous to male gametes, and colony survival is analogous to zygote survival in gamete competition theory. Here, we explore if this question can be taken beyond an analogy, and whether a mathematical model at the superorganism level, analogous to gamete competition at the organism level, may explain the caste dimorphism seen in superorganismal insects. We find that the central theoretical idea holds, but that there are also significant differences between the way this generalized 'propagule competition' theory operates at the levels of solitary organisms and superorganisms. In particular, we find that the theory can explain superorganismal caste dimorphism, but compared with anisogamy evolution, a central coevolutionary link is broken, making the requirements for the theory to work less stringent than those found for the evolution of anisogamy.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Heikki Helanterä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Cordonnier M, Escarguel G, Dumet A, Kaufmann B. Multiple mating in the context of interspecific hybridization between two Tetramorium ant species. Heredity (Edinb) 2020; 124:675-684. [PMID: 32205865 DOI: 10.1038/s41437-020-0310-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
In eusocial Hymenoptera, haplodiploidy and polyandry may facilitate selection for hybridization. Interspecific hybridization is widespread in ants and can lead to hybrid inviability as well as the formation of new species through hybrid speciation. However, in ants, polyandry is uncommon. By analyzing microsatellite markers on 15 ant workers per colony, we show that the mating system of 28 pure colonies of Tetramorium immigrans, 15 pure colonies of Tetramorium caespitum, and 27 hybrid colonies is a monogyne/polyandrous mating system, with a higher mating rate in T. caespitum (mean = 2.4 males vs. 1.7 in T. immigrans). Hybrid queens, but no hybrid fathers, were deduced from workers' genotypes, in accordance with Haldane's rule extended to haplodiploid organisms, which states that the haploid sex should more often be sterile or inviable. In five colonies, hybridization and multiple mating allowed the simultaneous production of both hybrid and nonhybrid offspring. Although rare, these situations hinted at asymmetrical, larger contributions of T. immigrans vs. T. caespitum males to offspring production. Together, these findings point toward a complex and dynamic mating system in T. immigrans and T. caespitum, and contribute to better understand interspecific hybridization mechanisms and their consequences on genetic and taxonomic diversity. The study of polyandry within a hybrid zone is unprecedented and opens new opportunities to better understand interspecific hybridization mechanisms and their short- to long-term consequences.
Collapse
Affiliation(s)
- Marion Cordonnier
- Univ. Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, ENTPE, CNRS, Université Lyon 1, Villeurbanne, F-69622, Lyon, France.
| | - Gilles Escarguel
- Univ. Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, ENTPE, CNRS, Université Lyon 1, Villeurbanne, F-69622, Lyon, France
| | - Adeline Dumet
- Univ. Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, ENTPE, CNRS, Université Lyon 1, Villeurbanne, F-69622, Lyon, France
| | - Bernard Kaufmann
- Univ. Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, ENTPE, CNRS, Université Lyon 1, Villeurbanne, F-69622, Lyon, France
| |
Collapse
|
10
|
Vollet-Neto A, Imperatriz-Fonseca VL, Ratnieks FLW. Queen Execution, Diploid Males, and Selection For and Against Polyandry in the Brazilian Stingless Bee Scaptotrigona depilis. Am Nat 2019; 194:725-735. [PMID: 31613668 DOI: 10.1086/705393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Female mating frequency varies. Determining the causes of this variation is an active research area. We tested the hypothesis that in stingless bees, Meliponini, single mating is due to the execution of queens that make a matched mating at the complementary sex determination locus and have diploid male offspring. We studied the Brazilian species Scaptotrigona depilis. We made up 70 test colonies so that 50% (single matched mating), 25% (double mating), 12.5% (quadruple mating), or 0% (single nonmatched mating) of the emerging brood were diploid males. Queen execution following diploid male emergence was equal and high in colonies producing 50% (77% executed) and 25% (75%) diploid males versus equal and low in colonies producing 12.5% (7%) and 0% (0%) diploid males. These results show that queens that mate with two males with similar paternity suffer an increased chance of being executed, which selects against double mating. However, double mating with unequal paternity (e.g., 25∶75), which occasionally occurs in S. depilis, is selectively neutral. Single mating and double mating with unequal paternity form one adaptive peak. The results show a second adaptive peak at quadruple mating. However, this is inaccessible via gradual evolutionary change in a selective landscape with reduced fitness at double mating.
Collapse
|
11
|
Liberti J, Görner J, Welch M, Dosselli R, Schiøtt M, Ogawa Y, Castleden I, Hemmi JM, Baer-Imhoof B, Boomsma JJ, Baer B. Seminal fluid compromises visual perception in honeybee queens reducing their survival during additional mating flights. eLife 2019; 8:45009. [PMID: 31500699 PMCID: PMC6739865 DOI: 10.7554/elife.45009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
Queens of social insects make all mate-choice decisions on a single day, except in honeybees whose queens can conduct mating flights for several days even when already inseminated by a number of drones. Honeybees therefore appear to have a unique, evolutionarily derived form of sexual conflict: a queen’s decision to pursue risky additional mating flights is driven by later-life fitness gains from genetically more diverse worker-offspring but reduces paternity shares of the drones she already mated with. We used artificial insemination, RNA-sequencing and electroretinography to show that seminal fluid induces a decline in queen vision by perturbing the phototransduction pathway within 24–48 hr. Follow up field trials revealed that queens receiving seminal fluid flew two days earlier than sister queens inseminated with saline, and failed more often to return. These findings are consistent with seminal fluid components manipulating queen eyesight to reduce queen promiscuity across mating flights. For social insects like honeybees it is beneficial if their queens mate with many males, because genetic diversity can protect the hive against parasites. Early in life, a honeybee queen has a short period of time in which she can fly out to mate with males before returning to the hive with all the sperm needed to last for a lifetime. Queens that have mated on their first flight may embark on additional mating flights over a few consecutive days to further increase genetic variability in their offspring. This is problematic for a male that has already mated because the more males that inseminate the queen the fewer offspring will carry on his specific genes. This results in sexual conflict between males and queens over the number of mating flights. In many animals, males manipulate females using molecules in seminal fluid to reduce the chances of the female mating again and honeybee males may use a similar strategy. Previous studies revealed that insemination alters the activity of genes related to vision in a honeybee queen’s brain. This could be one way for the males to prevent queens from embarking on additional mating flights. Now, Liberti et al. find support for this idea by showing that seminal fluid can indeed trigger changes in the activity of vision-related genes in the brains of honeybee queens, which in turn reduce a queen’s opportunity to complete additional mating flights. Queens inseminated with seminal fluid were less responsive to light compared to queens that were exposed to saline instead. Electronic tracking devices affixed to queens showed that the seminal fluid-exposed queens left for mating flights sooner but were more likely to get lost and to not return to their hives compared to the saline-exposed queens. The experiments support the idea of a sexual arms race in honeybees. Males use seminal fluid to cause rapid deteriorating vision in queens, thus reducing their likelihood of leaving the hive to mate again and to find males when they do fly again. The queens try to counteract these effects by leaving for mating flights sooner, thereby increasing offspring genetic diversity and the success of their colonies. Further studies will be needed to find out how the honeybee sexual arms race varies across seasons, bee races, and geographic ranges. Such information will be useful for honeybee breeding programs, which rely on queen mating success and hive genetic diversity to ensure hive health.
Collapse
Affiliation(s)
- Joanito Liberti
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Julia Görner
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Australia
| | - Mat Welch
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Australia
| | - Ryan Dosselli
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Australia.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuri Ogawa
- School of Animal Biology and UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Ian Castleden
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Australia
| | - Jan M Hemmi
- School of Animal Biology and UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Barbara Baer-Imhoof
- Centre for Integrative Bee Research (CIBER), Department of Entomology, University of California, Riverside, Riverside, United States
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER), Department of Entomology, University of California, Riverside, Riverside, United States
| |
Collapse
|
12
|
Poidatz J, Bressac C, Bonnard O, Thiéry D. Delayed sexual maturity in males of Vespa velutina. INSECT SCIENCE 2018; 25:679-689. [PMID: 28248003 DOI: 10.1111/1744-7917.12452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
Vespa velutina var nigrithorax (Lepelletier, 1835) is an invasive predator of bees accidentally introduced in France in 2004, and it is having a serious impact on apiculture and ecosystems. Studying the reproduction of an invasive species is key to assess its population dynamic. This study explores the sexual maturation of V. velutina males and the evolution of their fertility. The main studied parameters were physiologic (spermiogenesis, spermatogenesis) and anatomic (testes size and structure, head width). Two populations of males were described based on their emergence period: early males in early summer or classic males in autumn. Each testis has an average of 108 testicular follicles. Spermatogenesis is synchronous, with only 1 sperm production wave, and completed, on average, at 10.3 d after emergence with the degeneration of the testes. The sperm counts in seminal vesicles of mature males are 3 × 106 in October/November and 0.8 × 106 in June. In comparison, females store 0.1 × 106 sperm in their spermathecae. The early males emerged from colonies made by fertilized queens. The reproductive potential of these early males seemed limited, and their function in the colony is discussed. The sperm stock evolution in autumn males suggests the occurrence of a reproductive pattern of male competition for the access to females and a single copulation per male. The synchronicity of male and foundress emergences and sexual maturation is of primary importance for the mating success and the future colony development.
Collapse
Affiliation(s)
- Juliette Poidatz
- INRA, UMR1065 Santé et Agroécologie du Vignoble, ISVV, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | | | - Olivier Bonnard
- INRA, UMR1065 Santé et Agroécologie du Vignoble, ISVV, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Denis Thiéry
- INRA, UMR1065 Santé et Agroécologie du Vignoble, ISVV, Bordeaux Sciences Agro, Villenave d'Ornon, France
| |
Collapse
|
13
|
Fantin C, Ferreira J, Magalhães M, da Silva Damasseno T, de Melo Pereira DI, Vogt RC. Kinship Analysis of Offspring of the Giant South American River Turtle (Podocnemis expansa) Using Microsatellite DNA Markers. CHELONIAN CONSERVATION AND BIOLOGY 2017. [DOI: 10.2744/ccb-1233.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cleiton Fantin
- Laboratório de Proteômica e Genômica, Universidade do Estado do Amazonas, Manaus, Brasil []
| | - Jorge Ferreira
- Laboratório de Proteômica e Genômica, Universidade do Estado do Amazonas, Manaus, Brasil []
| | - Mara Magalhães
- Laboratório de Proteômica e Genômica, Universidade do Estado do Amazonas, Manaus, Brasil []
| | | | | | | |
Collapse
|
14
|
Loope KJ, Lopez-Osorio F, Dvořák L. Convergent Reversion to Single Mating in a Wasp Social Parasite. Am Nat 2017; 189:E138-E151. [PMID: 28514634 DOI: 10.1086/691405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
While eusociality arose in species with single-mating females, multiple mating by queens has evolved repeatedly across the social ants, bees, and wasps. Understanding the benefits and costs of multiple mating of queens is important because polyandry results in reduced relatedness between siblings, reducing kin-selected benefits of helping while also selecting for secondary social traits that reduce intracolony conflict. The leading hypothesis for the benefits of polyandry in social insects emphasizes advantages of a genetically diverse workforce. Workerless social parasite species (inquilines) provide a unique opportunity to test this hypothesis, since they are derived from social ancestors but do not produce workers of their own. Such parasites are thus predicted to evolve single mating because they would experience the costs of multiple mating but not the benefits if such benefits accrue through the production of a genetically diverse group of workers. Here we show that the workerless social parasite Dolichovespula arctica, a derived parasite of wasps, has reverted to obligate single mating from a facultatively polyandrous ancestor, mirroring a similar reversion from obligate polyandry to approximate monandry in a social parasite of fungus-farming ants. This finding and a comparison with two other cases where inquilinism did not induce reversal to monandry support the hypothesis that facultative polyandry can be costly and may be maintained by benefits of a genetically diverse workforce.
Collapse
|
15
|
Evolution of reproductive traits in Cataglyphis desert ants: mating frequency, queen number, and thelytoky. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2144-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
|
17
|
Aron S, Lybaert P, Baudoux C, Vandervelden M, Fournier D. Sperm production characteristics vary with level of sperm competition in
Cataglyphis
desert ants. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Serge Aron
- Evolutionary Biology and Ecology ‐ CP 160/12 Université Libre de Bruxelles avenue Franklin D. Roosevelt 50 B ‐ 1050 Brussels Belgium
| | - Pascale Lybaert
- Hormonologie Expérimentale avenue F. D. Roosevelt 50 Université Libre de Bruxelles Brussels 1050 Belgium
| | - Claire Baudoux
- Evolutionary Biology and Ecology ‐ CP 160/12 Université Libre de Bruxelles avenue Franklin D. Roosevelt 50 B ‐ 1050 Brussels Belgium
| | - Morgane Vandervelden
- Evolutionary Biology and Ecology ‐ CP 160/12 Université Libre de Bruxelles avenue Franklin D. Roosevelt 50 B ‐ 1050 Brussels Belgium
| | - Denis Fournier
- Evolutionary Biology and Ecology ‐ CP 160/12 Université Libre de Bruxelles avenue Franklin D. Roosevelt 50 B ‐ 1050 Brussels Belgium
| |
Collapse
|
18
|
Helft F, Monnin T, Doums C. First Evidence of Inclusive Sexual Selection in the Ant Cataglyphis cursor: Worker Aggressions Differentially Affect Male Access to Virgin Queens. Ethology 2015. [DOI: 10.1111/eth.12376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Florence Helft
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7618 Institute of Ecology and Environmental Sciences of Paris; Paris France
- École Pratique des Hautes Études; Paris France
- Département Systématique et Évolution; ISYEB, UMR 7205 CNRS UPMC Muséum National d'Histoire Naturelle; Paris France
| | - Thibaud Monnin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7618 Institute of Ecology and Environmental Sciences of Paris; Paris France
| | - Claudie Doums
- École Pratique des Hautes Études; Paris France
- Département Systématique et Évolution; ISYEB, UMR 7205 CNRS UPMC Muséum National d'Histoire Naturelle; Paris France
| |
Collapse
|
19
|
den Boer SPA, Stürup M, Boomsma JJ, Baer B. The ejaculatory biology of leafcutter ants. JOURNAL OF INSECT PHYSIOLOGY 2015; 74:56-62. [PMID: 25702828 DOI: 10.1016/j.jinsphys.2015.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The eusocial ants are unique in that females (queens) acquire and store sperm on a single mating flight early in adult life. This event largely determines the size (possibly millions of workers), longevity (possibly decades) and genetic variation of the colonies that queens found, but our understanding of the fundamental biology of ejaculate production, transfer and physiological function remains extremely limited. We studied the ejaculation process in the leafcutter ant Atta colombica and found that it starts with the appearance of a clear pre-ejaculatory fluid (PEF) at the tip of the endophallus that is followed by the joint expulsion of the remainder of accessory gland (AG) secretion, sperm, accessory testes (AT) secretion, and a small mating plug. PEF, AG secretion and AT secretion all contribute to sperm survival, but PEF and AG secretion also reduce the survival of sperm from other males. We show that PEF is produced in the AGs and is likely identical to AG secretion because protein-banding patterns of PEF and AG secretion were similar on 1D electrophoresis gels, but differed from the protein-banding pattern of AT secretion. We show that proteins in AG secretion are responsible for the incapacitation of rival sperm and infer that transfer of AG secretion prior to sperm may allow these components to interact with rival sperm, while at the same time providing a supportive biochemical environment for the arrival of own sperm.
Collapse
Affiliation(s)
- Susanne P A den Boer
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Centre for Integrative Bee Research (CIBER), ARC CoE in Plant Energy Biology, The University of Western Australia, M316, 35 Stirling Highway, 6009 Crawley, Australia.
| | - Marlene Stürup
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER), ARC CoE in Plant Energy Biology, The University of Western Australia, M316, 35 Stirling Highway, 6009 Crawley, Australia
| |
Collapse
|
20
|
Loope KJ, Chien C, Juhl M. Colony size is linked to paternity frequency and paternity skew in yellowjacket wasps and hornets. BMC Evol Biol 2014; 14:277. [PMID: 25547876 PMCID: PMC4298054 DOI: 10.1186/s12862-014-0277-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The puzzle of the selective benefits of multiple mating and multiple paternity in social insects has been a major focus of research in evolutionary biology. We examine paternity in a clade of social insects, the vespine wasps (the yellowjackets and hornets), which contains species with high multiple paternity as well as species with single paternity. This group is particularly useful for comparative analyses given the wide interspecific variation in paternity traits despite similar sociobiology and ecology of the species in the genera Vespula, Dolichovespula and Vespa. We describe the paternity of 5 species of yellowjackets (Vespula spp.) and we perform a phylogenetically controlled comparative analysis of relatedness, paternity frequency, paternity skew, colony size, and nest site across 22 vespine taxa. RESULTS We found moderate multiple paternity in four small-colony Vespula rufa-group species (effective paternity 1.5 - 2.1), and higher multiple paternity in the large-colony Vespula flavopilosa (effective paternity ~3.1). Our comparative analysis shows that colony size, but not nest site, predicts average intracolony relatedness. Underlying this pattern, we found that greater colony size is associated with both higher paternity frequency and reduced paternity skew. CONCLUSIONS Our results support hypotheses focusing on the enhancement of genetic diversity in species with large colonies, and run counter to the hypothesis that multiple paternity is adaptively maintained due to sperm limitation associated with large colonies. We confirm the patterns observed in taxonomically widespread analyses by comparing closely related species of wasps with similar ecology, behavior and social organization. The vespine wasps may be a useful group for experimental investigation of the benefits of multiple paternity in the future.
Collapse
Affiliation(s)
- Kevin J Loope
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Chun Chien
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
21
|
Stürup M, Nash DR, Hughes WOH, Boomsma JJ. Sperm mixing in the polyandrous leaf-cutting ant Acromyrmex echinatior. Ecol Evol 2014; 4:3571-82. [PMID: 25478149 PMCID: PMC4224532 DOI: 10.1002/ece3.1176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 11/08/2022] Open
Abstract
The insemination of queens by sperm from multiple males (polyandry) has evolved in a number of eusocial insect lineages despite the likely costs of the behavior. The selective advantages in terms of colony fitness must therefore also be significant and there is now good evidence that polyandry increases genetic variation among workers, thereby improving the efficiency of division of labor, resistance against disease, and diluting the impact of genetically incompatible matings. However, these advantages will only be maximized if the sperm of initially discrete ejaculates are mixed when stored in queen spermathecae and used for egg fertilization in a "fair raffle." Remarkably, however, very few studies have addressed the level of sperm mixing in social insects. Here we analyzed sperm use over time in the highly polyandrous leaf-cutting ant Acromyrmex echinatior. We genotyped cohorts of workers produced either 2 months apart or up to over a year apart, and batches of eggs laid up to over 2 years apart, and tested whether fluctuations in patriline distributions deviated from random. We show that the representation of father males in both egg and worker cohorts does not change over time, consistent with obligatorily polyandrous queens maximizing their fitness when workers are as genetically diverse as possible.
Collapse
Affiliation(s)
- Marlene Stürup
- Department of Biology, Centre for Social Evolution, University of Copenhagen Universitetsparken 15, Copenhagen, 2100, Denmark
| | - David R Nash
- Department of Biology, Centre for Social Evolution, University of Copenhagen Universitetsparken 15, Copenhagen, 2100, Denmark
| | - William O H Hughes
- Department of Biology, Centre for Social Evolution, University of Copenhagen Universitetsparken 15, Copenhagen, 2100, Denmark ; School of Life Sciences, University of Sussex Brighton, BN1 9QG, UK
| | - Jacobus J Boomsma
- Department of Biology, Centre for Social Evolution, University of Copenhagen Universitetsparken 15, Copenhagen, 2100, Denmark
| |
Collapse
|
22
|
Barth MB, Moritz RFA, Kraus FB. The evolution of extreme polyandry in social insects: insights from army ants. PLoS One 2014; 9:e105621. [PMID: 25144731 PMCID: PMC4140799 DOI: 10.1371/journal.pone.0105621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
The unique nomadic life-history pattern of army ants (army ant adaptive syndrome), including obligate colony fission and strongly male-biased sex-ratios, makes army ants prone to heavily reduced effective population sizes (Ne). Excessive multiple mating by queens (polyandry) has been suggested to compensate these negative effects by increasing genetic variance in colonies and populations. However, the combined effects and evolutionary consequences of polyandry and army ant life history on genetic colony and population structure have only been studied in a few selected species. Here we provide new genetic data on paternity frequencies, colony structure and paternity skew for the five Neotropical army ants Eciton mexicanum, E. vagans, Labidus coecus, L. praedator and Nomamyrmex esenbeckii; and compare those data among a total of nine army ant species (including literature data). The number of effective matings per queen ranged from about 6 up to 25 in our tested species, and we show that such extreme polyandry is in two ways highly adaptive. First, given the detected low intracolonial relatedness and population differentiation extreme polyandry may counteract inbreeding and low Ne. Second, as indicated by a negative correlation of paternity frequency and paternity skew, queens maximize intracolonial genotypic variance by increasingly equalizing paternity shares with higher numbers of sires. Thus, extreme polyandry is not only an integral part of the army ant syndrome, but generally adaptive in social insects by improving genetic variance, even at the high end spectrum of mating frequencies.
Collapse
Affiliation(s)
- Matthias Benjamin Barth
- Institute of Biology, Department of Zoology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- DNA-Laboratory, Museum of Zoology, Senckenberg Natural History Collections Dresden, Dresden, Germany
- * E-mail:
| | - Robin Frederik Alexander Moritz
- Institute of Biology, Department of Zoology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Frank Bernhard Kraus
- Institute of Biology, Department of Zoology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Laboratory Medicine, University Hospital Halle, Halle (Saale), Germany
| |
Collapse
|
23
|
Monogamy in large bee societies: a stingless paradox. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2014; 101:261-4. [PMID: 24463620 DOI: 10.1007/s00114-014-1149-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
High genetic diversity is important for the functioning of large insect societies. Across the social Hymenoptera (ants, bees, and wasps), species with the largest colonies tend to have a high colony-level genetic diversity resulting from multiple queens (polygyny) or queens that mate with multiple males (polyandry). Here we studied the genetic structure of Trigona spinipes, a stingless bee species with colonies an order of magnitude larger than those of polyandrous honeybees. Genotypes of adult workers and pupae from 43 nests distributed across three Brazilian biomes showed that T. spinipes colonies are usually headed by one singly mated queen. Apart from revealing a notable exception from the general incidence of high genetic diversity in large insect societies, our results reinforce previous findings suggesting the absence of polyandry in stingless bees and provide evidence against the sperm limitation hypothesis for the evolution of polyandry. Stingless bee species with large colonies, such as T. spinipes, thus seem promising study models to unravel alternative mechanisms to increase genetic diversity within colonies or understand the adaptive value of low genetic diversity in large insect societies.
Collapse
|
24
|
Phylogenetic relationships of yellowjackets inferred from nine loci (Hymenoptera: Vespidae, Vespinae, Vespula and Dolichovespula). Mol Phylogenet Evol 2014; 73:190-201. [PMID: 24462637 DOI: 10.1016/j.ympev.2014.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/20/2013] [Accepted: 01/10/2014] [Indexed: 11/23/2022]
Abstract
Eusociality has arisen repeatedly and independently in the history of insects, often leading to evolutionary success and ecological dominance. Eusocial wasps of the genera Vespula and Dolichovespula, or yellowjackets, have developed advanced social traits in a relatively small number of species. The origin of traits such as effective paternity and colony size has been interpreted with reference to an established phylogenetic hypothesis that is based on phenotypic data, while the application of molecular evidence to phylogenetic analysis within yellowjackets has been limited. Here, we investigate the evolutionary history of yellowjackets on the basis of mitochondrial and nuclear markers (nuclear: 28S, EF1α, Pol II, and wg; mitochondrial: 12S, 16S, COI, COII, and Cytb). We use these data to test the monophyly of yellowjackets and species groups, and resolve species-level relationships within each genus using parsimony and Bayesian inference. Our results indicate that a yellowjacket clade is either weakly supported (parsimony) or rejected (Bayesian inference). However, the monophyly of each yellowjacket genus as well as species groups are strongly supported and concordant between methods. Our results agree with previous studies regarding the monophyly of the Vespula vulgaris group and the sister relationship between the V. rufa and V. squamosa groups. This suggests convergence of large colony size and high effective paternity in the vulgaris group and V. squamosa, or a single origin of both traits in the most recent common ancestor of all Vespula species and their evolutionary reversal in the rufa group.
Collapse
|
25
|
Boomsma JJ. Beyond promiscuity: mate-choice commitments in social breeding. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120050. [PMID: 23339241 PMCID: PMC3576584 DOI: 10.1098/rstb.2012.0050] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female's, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory.
Collapse
Affiliation(s)
- Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|