1
|
Ahrendt SR, Quandt CA, Ciobanu D, Clum A, Salamov A, Andreopoulos B, Cheng JF, Woyke T, Pelin A, Henrissat B, Reynolds NK, Benny GL, Smith ME, James TY, Grigoriev IV. Leveraging single-cell genomics to expand the fungal tree of life. Nat Microbiol 2018; 3:1417-1428. [PMID: 30297742 PMCID: PMC6784888 DOI: 10.1038/s41564-018-0261-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022]
Abstract
Environmental DNA surveys reveal that most fungal diversity represents uncultured species. We sequenced the genomes of eight uncultured species across the fungal tree of life using a new single-cell genomics pipeline. We show that, despite a large variation in genome and gene space recovery from each single amplified genome (SAG), ≥90% can be recovered by combining multiple SAGs. SAGs provide robust placement for early-diverging lineages and infer a diploid ancestor of fungi. Early-diverging fungi share metabolic deficiencies and show unique gene expansions correlated with parasitism and unculturability. Single-cell genomics holds great promise in exploring fungal diversity, life cycles and metabolic potential.
Collapse
Affiliation(s)
- Steven R Ahrendt
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - C Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Doina Ciobanu
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Adrian Pelin
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR 7857 CNRS, Aix-Marseille University, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicole K Reynolds
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Gerald L Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA. .,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Polyamine metabolism in fungi with emphasis on phytopathogenic species. JOURNAL OF AMINO ACIDS 2012; 2012:837932. [PMID: 22957208 PMCID: PMC3432380 DOI: 10.1155/2012/837932] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/23/2012] [Indexed: 12/23/2022]
Abstract
Polyamines are essential metabolites present in all living organisms, and this subject has attracted the attention of researchers worldwide interested in defining their mode of action in the variable cell functions in which they are involved, from growth to development and differentiation. Although the mechanism of polyamine synthesis is almost universal, different biological groups show interesting differences in this aspect that require to be further analyzed. For these studies, fungi represent interesting models because of their characteristics and facility of analysis. During the last decades fungi have contributed to the understanding of polyamine metabolism. The use of specific inhibitors and the isolation of mutants have allowed the manipulation of the pathway providing information on its regulation. During host-fungus interaction polyamine metabolism suffers striking changes in response to infection, which requires examination. Additionally the role of polyamine transporter is getting importance because of its role in polyamine regulation. In this paper we analyze the metabolism of polyamines in fungi, and the difference of this process with other biological groups. Of particular importance is the difference of polyamine biosynthesis between fungi and plants, which makes this process an attractive target for the control of phytopathogenic fungi.
Collapse
|
3
|
Loira N, Dulermo T, Nicaud JM, Sherman DJ. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC SYSTEMS BIOLOGY 2012; 6:35. [PMID: 22558935 PMCID: PMC3443063 DOI: 10.1186/1752-0509-6-35] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/11/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Yarrowia lipolytica is an oleaginous yeast which has emerged as an important microorganism for several biotechnological processes, such as the production of organic acids, lipases and proteases. It is also considered a good candidate for single-cell oil production. Although some of its metabolic pathways are well studied, its metabolic engineering is hindered by the lack of a genome-scale model that integrates the current knowledge about its metabolism. RESULTS Combining in silico tools and expert manual curation, we have produced an accurate genome-scale metabolic model for Y. lipolytica. Using a scaffold derived from a functional metabolic model of the well-studied but phylogenetically distant yeast S. cerevisiae, we mapped conserved reactions, rewrote gene associations, added species-specific reactions and inserted specialized copies of scaffold reactions to account for species-specific expansion of protein families. We used physiological measures obtained under lab conditions to validate our predictions. CONCLUSIONS Y. lipolytica iNL895 represents the first well-annotated metabolic model of an oleaginous yeast, providing a base for future metabolic improvement, and a starting point for the metabolic reconstruction of other species in the Yarrowia clade and other oleaginous yeasts.
Collapse
Affiliation(s)
- Nicolas Loira
- Inria / Université Bordeaux / CNRS joint project-team MAGNOME, Talence, F-33405, France
- Center for Genome Regulation, Universidad de Chile, Av. Blanco Encalada 2085, 3er piso, Santiago, Chile
| | - Thierry Dulermo
- INRA, UMR1319 Micalis, Jouy-en-Josas, F-78352, France
- CNRS, Micalis, Jouy-en-Josas, F-78352, France
| | - Jean-Marc Nicaud
- INRA, UMR1319 Micalis, Jouy-en-Josas, F-78352, France
- CNRS, Micalis, Jouy-en-Josas, F-78352, France
| | - David James Sherman
- Inria / Université Bordeaux / CNRS joint project-team MAGNOME, Talence, F-33405, France
| |
Collapse
|