1
|
Maschke RW, Pretzner B, John GT, Herwig C, Eibl D. Improved Time Resolved KPI and Strain Characterization of Multiple Hosts in Shake Flasks Using Advanced Online Analytics and Data Science. Bioengineering (Basel) 2022; 9:339. [PMID: 35892752 PMCID: PMC9331495 DOI: 10.3390/bioengineering9080339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Shake flasks remain one of the most widely used cultivation systems in biotechnology, especially for process development (cell line and parameter screening). This can be justified by their ease of use as well as their low investment and running costs. A disadvantage, however, is that cultivations in shake flasks are black box processes with reduced possibilities for recording online data, resulting in a lack of control and time-consuming, manual data analysis. Although different measurement methods have been developed for shake flasks, they lack comparability, especially when changing production organisms. In this study, the use of online backscattered light, dissolved oxygen, and pH data for characterization of animal, plant, and microbial cell culture processes in shake flasks are evaluated and compared. The application of these different online measurement techniques allows key performance indicators (KPIs) to be determined based on online data. This paper evaluates a novel data science workflow to automatically determine KPIs using online data from early development stages without human bias. This enables standardized and cost-effective process-oriented cell line characterization of shake flask cultivations to be performed in accordance with the process analytical technology (PAT) initiative. The comparison showed very good agreement between KPIs determined using offline data, manual techniques, and automatic calculations based on multiple signals of varying strengths with respect to the selected measurement signal.
Collapse
Affiliation(s)
- Rüdiger W. Maschke
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820 Wädenswil, Switzerland;
| | - Barbara Pretzner
- Körber Pharma Austria GmbH, Mariahilfer Straße 88A/1/9, 1070 Vienna, Austria;
- Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Gernot T. John
- PreSens Precision Sensing GmbH, Am BioPark 11, 93053 Regensburg, Germany;
| | - Christoph Herwig
- Körber Pharma Austria GmbH, Mariahilfer Straße 88A/1/9, 1070 Vienna, Austria;
- Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
- Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, Grüentalstrasse 14, 8820 Wädenswil, Switzerland;
| |
Collapse
|
2
|
Li T, Liu GS, Zhou W, Jiang M, Ren YH, Tao XY, Liu M, Zhao M, Wang FQ, Gao B, Wei DZ. Metabolic Engineering of Saccharomyces cerevisiae To Overproduce Squalene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2132-2138. [PMID: 31989819 DOI: 10.1021/acs.jafc.9b07419] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Squalene has wide applications in the food and pharmaceutical industries. Engineering microbes to produce squalene is a promising alternative for traditional production approaches. In this study, squalene production was enhanced to 978.24 mg/L through stepwise overexpression of the enzymes that catalyze acetyl-CoA to squalene. Subsequently, to increase the activity of HMG-CoA reductase and alleviate the high dependence on NADPH, the HMG-CoA reductase (NADH-HMGR) from Silicibacter pomeroyi, highly specific for NADH, was introduced, which increased squalene production to 1086.31 mg/L. Native ethanol dehydrogenase ADH2 and acetaldehyde dehydrogenase ADA from Dickeya zeae were further overexpressed, which enhanced the capability to utilize ethanol for squalene synthesis and endowed the engineered strain with greater adaptability to high ethanol concentrations. Finally, a remarkable squalene production of 9472 mg/L was obtained from ethanol via carbon source-controlled fed-batch fermentation. This study will greatly accelerate the process of developing microbial cell factories for squalene production.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Guo-Song Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Wei Zhou
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Min Jiang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Yu-Hong Ren
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Xin-Yi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Min Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Ming Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
3
|
du Preez J, de Smidt O, Albertyn K. The role of alchohol dehydrogenase isozymes in multiple deletion mutants of Saccharomyces cerevisiae. J Biotechnol 2007. [DOI: 10.1016/j.jbiotec.2007.07.386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Görgens JF, Planas J, van Zyl WH, Knoetze JH, Hahn-Hägerdal B. Comparison of three expression systems for heterologous xylanase production by S. cerevisiae in defined medium. Yeast 2005; 21:1205-17. [PMID: 15515128 DOI: 10.1002/yea.1175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The influence of the auxotrophic deficiencies of the host strain and expression vector selection on the production of a heterologous protein was investigated. Heterologous xylanase production by two prototrophic S. cerevisiae transformants, containing either a plasmid-based, YEp-type expression system or an integrative, YIp-type expression system, were compared with production by an auxotrophic transformant, containing an identical YEp-type expression system, in batch and continuous cultivation, using a chemically defined medium. Heterologous xylanase production by the auxotrophic strains in defined medium was critically dependent on the availability of amino acids, as extracellular xylanase production increased dramatically when amino acids were over-consumed from the medium to the point of saturating the cell. Saturation with amino acids, indicated by an increased leakage of amino acids from the cell, was thus a prerequisite for high level of heterologous protein production by the auxotrophic strain. Maximal xylanase production levels by the auxotrophic strain corresponded to the levels obtained with a similar prototrophic strain during cultivation in defined medium without amino acids. Superfluous auxotrophic markers thus had a strong deleterious effect on heterologous protein production by recombinant yeasts, and the use of such strains should be limited to initial exploratory investigations. The increased copy number and foreign gene dosage of the YEp-based expression vector, stabilized by the ura3 fur1 autoselection system, significantly improved production levels of heterologous xylanase, compared to the YIp system, which is based on a single integration into the yeast genome. No evidence was found of the possible saturation of the host secretory capacity by multicopy overexpression. Stable production of heterologous xylanase at high levels by the prototrophic YEp-based recombinant strain, compared to the YIp system, was demonstrated.
Collapse
Affiliation(s)
- Johann F Görgens
- Department of Applied Microbiology, Lund University, Box 124, S-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|