1
|
Huang Y, Chen J, Xia H, Gao Z, Gu Q, Liu W, Tang G. FvMbp1-Swi6 complex regulates vegetative growth, stress tolerance, and virulence in Fusarium verticillioides. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134576. [PMID: 38759405 DOI: 10.1016/j.jhazmat.2024.134576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The mycotoxigenic fungus Fusarium verticillioides is a common pathogen of grain and medicine that contaminates the host with fumonisin B1 (FB1) mycotoxin, poses serious threats to human and animal health. Therefore, it is crucial to unravel the regulatory mechanisms of growth, and pathogenicity of F. verticillioides. Mbp1 is a component of the MluI cell cycle box binding factor complex and acts as an APSES-type transcription factor that regulates cell cycle progression. However, no information is available regarding its role in F. verticillioides. In this study, we demonstrate that FvMbp1 interacts with FvSwi6 that acts as the cell cycle transcription factor, to form the heteromeric transcription factor complexes in F. verticillioides. Our results show that ΔFvMbp1 and ΔFvSwi6 both cause a severe reduction of vegetative growth, conidiation, and increase tolerance to diverse environmental stresses. Moreover, ΔFvMbp1 and ΔFvSwi6 dramatically decrease the virulence of the pathogen on the stalk and ear of maize. Transcriptome profiling show that FvMbp1-Swi6 complex co-regulates the expression of genes associated with multiple stress responses. These results indicate the functional importance of the FvMbp1-Swi6 complex in the filamentous fungi F. verticillioides and reveal a potential target for the effective prevention and control of Fusarium diseases.
Collapse
Affiliation(s)
- Yufei Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinfeng Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zenggui Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangfei Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Toshniwal AG, Gupta S, Mandal L, Mandal S. ROS Inhibits Cell Growth by Regulating 4EBP and S6K, Independent of TOR, during Development. Dev Cell 2019; 49:473-489.e9. [DOI: 10.1016/j.devcel.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/30/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
|
3
|
Krol K, Antoniuk-Majchrzak J, Skoneczny M, Sienko M, Jendrysek J, Rumienczyk I, Halas A, Kurlandzka A, Skoneczna A. Lack of G1/S control destabilizes the yeast genome via replication stress-induced DSBs and illegitimate recombination. J Cell Sci 2018; 131:jcs.226480. [PMID: 30463853 DOI: 10.1242/jcs.226480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
The protein Swi6 in Saccharomyces cerevisiae is a cofactor in two complexes that regulate the transcription of the genes controlling the G1/S transition. It also ensures proper oxidative and cell wall stress responses. Previously, we found that Swi6 was crucial for the survival of genotoxic stress. Here, we show that a lack of Swi6 causes replication stress leading to double-strand break (DSB) formation, inefficient DNA repair and DNA content alterations, resulting in high cell mortality. Comparative genome hybridization experiments revealed that there was a random genome rearrangement in swi6Δ cells, whereas in diploid swi6Δ/swi6Δ cells, chromosome V is duplicated. SWI4 and PAB1, which are located on chromosome V and are known multicopy suppressors of swi6Δ phenotypes, partially reverse swi6Δ genome instability when overexpressed. Another gene on chromosome V, RAD51, also supports swi6Δ survival, but at a high cost; Rad51-dependent illegitimate recombination in swi6Δ cells appears to connect DSBs, leading to genome rearrangement and preventing cell death.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kamil Krol
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Marzena Sienko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Justyna Jendrysek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Izabela Rumienczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Halas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Montefusco DJ, Matmati N, Hannun YA. The yeast sphingolipid signaling landscape. Chem Phys Lipids 2014; 177:26-40. [PMID: 24220500 PMCID: PMC4211598 DOI: 10.1016/j.chemphyslip.2013.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 12/13/2022]
Abstract
Sphingolipids are recognized as signaling mediators in a growing number of pathways, and represent potential targets to address many diseases. The study of sphingolipid signaling in yeast has created a number of breakthroughs in the field, and has the potential to lead future advances. The aim of this article is to provide an inclusive view of two major frontiers in yeast sphingolipid signaling. In the first section, several key studies in the field of sphingolipidomics are consolidated to create a yeast sphingolipidome that ranks nearly all known sphingolipid species by their level in a resting yeast cell. The second section presents an overview of most known phenotypes identified for sphingolipid gene mutants, presented with the intention of illuminating not yet discovered connections outside and inside of the field.
Collapse
Affiliation(s)
- David J Montefusco
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
5
|
Kommuguri UN, Satyaprasad Pallem PV, Bodiga S, Bodiga VL. Effect of dietary antioxidants on the cytostatic effect of acrylamide during copper-deficiency in Saccharomyces cerevisiae. Food Funct 2014; 5:705-15. [DOI: 10.1039/c3fo60483g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yeast grown on a copper deficient medium was used to study acrylamide toxicity, obviating the need for genetic manipulation and accompanying compensatory effects.
Collapse
Affiliation(s)
| | | | - Sreedhar Bodiga
- Department of Biochemistry
- Kakatiya University
- Warangal, India
| | | |
Collapse
|
6
|
O'Doherty PJ, Lyons V, Higgins VJ, Rogers PJ, Bailey TD, Wu MJ. Transcriptomic insights into the molecular response of Saccharomyces cerevisiae to linoleic acid hydroperoxide. Free Radic Res 2013; 47:1054-65. [PMID: 24074273 DOI: 10.3109/10715762.2013.849344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic microorganisms are constantly challenged by reactive oxygen species derived endogenously or encountered in their environment. Such adversity is particularly applied to Saccharomyces cerevisiae under harsh industrial conditions. One of the major oxidants to challenge S. cerevisiae is linoleic acid hydroperoxide (LoaOOH). This study, which used genome-wide microarray analysis in conjunction with deletion mutant screening, uncovered the molecular pathways of S. cerevisiae that were altered by an arresting concentration of LoaOOH (75 μM). The oxidative stress response, iron homeostasis, detoxification through PDR transport and direct lipid β-oxidation were evident through the induction of the genes encoding for peroxiredoxins (GPX2, TSA2), the NADPH:oxidoreductase (OYE3), iron uptake (FIT2, ARN2, FET3), PDR transporters (PDR5, PDR15, SNQ2) and β-oxidation machinery (FAA2, POX1). Further, we discovered that Gpx3p, the dual redox sensor and peroxidase, is required for protection against LoaOOH, indicated by the sensitivity of gpx3Δ to a mild dose of LoaOOH (37.5 μM). Deletion of GPX3 conferred a greater sensitivity to LoaOOH than the loss of its signalling partner YAP1. Deletion of either of the iron homeostasis regulators AFT1 or AFT2 also resulted in sensitivity to LoaOOH. These novel findings for Gpx3p, Aft1p and Aft2p point to their distinct roles in response to the lipid peroxide. Finally, the expression of 89 previously uncharacterised genes was significantly altered against LoaOOH, which will contribute to their eventual annotation.
Collapse
Affiliation(s)
- P J O'Doherty
- School of Science and Health, University of Western Sydney , Penrith, New South Wales , Australia
| | | | | | | | | | | |
Collapse
|
7
|
Thorpe GW, Reodica M, Davies MJ, Heeren G, Jarolim S, Pillay B, Breitenbach M, Higgins VJ, Dawes IW. Superoxide radicals have a protective role during H2O2 stress. Mol Biol Cell 2013; 24:2876-84. [PMID: 23864711 PMCID: PMC3771949 DOI: 10.1091/mbc.e13-01-0052] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
H2O2-stressed yeast cells increase superoxide radical production, dependent on the mitochondrial respiratory chain. This is protective during H2O2 stress at low levels; however, higher superoxide levels are deleterious. This hormesis may further elucidate the role of reactive oxygen species in oxidative stress and aging. Reactive oxygen species (ROS) consist of potentially toxic, partly reduced oxygen species and free radicals. After H2O2 treatment, yeast cells significantly increase superoxide radical production. Respiratory chain complex III and possibly cytochrome b function are essential for this increase. Disruption of complex III renders cells sensitive to H2O2 but not to the superoxide radical generator menadione. Of interest, the same H2O2-sensitive mutant strains have the lowest superoxide radical levels, and strains with the highest resistance to H2O2 have the highest levels of superoxide radicals. Consistent with this correlation, overexpression of superoxide dismutase increases sensitivity to H2O2, and this phenotype is partially rescued by addition of small concentrations of menadione. Small increases in levels of mitochondrially produced superoxide radicals have a protective effect during H2O2-induced stress, and in response to H2O2, the wild-type strain increases superoxide radical production to activate this defense mechanism. This provides a direct link between complex III as the main source of ROS and its role in defense against ROS. High levels of the superoxide radical are still toxic. These opposing, concentration-dependent roles of the superoxide radical comprise a form of hormesis and show one ROS having a hormetic effect on the toxicity of another.
Collapse
Affiliation(s)
- Geoffrey W Thorpe
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia Heart Research Institute, Newtown, NSW 2042, Australia Internal Medicine I, Paracelsus Medical University, 5020 Salzburg, Austria Department of Cell Biology, University of Salzburg, 5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chiu J, Dawes IW. Redox control of cell proliferation. Trends Cell Biol 2012; 22:592-601. [PMID: 22951073 DOI: 10.1016/j.tcb.2012.08.002] [Citation(s) in RCA: 332] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/31/2012] [Accepted: 08/08/2012] [Indexed: 11/18/2022]
Abstract
Cell proliferation is regulated by multiple signaling pathways and stress surveillance systems to ensure cell division takes place with fidelity. In response to oxidative stress, cells arrest in the cell-cycle and aberrant redox control of proliferation underlies the pathogenesis of many diseases including cancer and neurodegenerative disorders. Redox sensing of cell-cycle regulation has recently been shown to involve reactive cysteine thiols that function as redox sensors in cell-cycle regulators. By modulating cell-cycle regulators these redox-active thiols ensure cell division is executed at the right redox environment. This review summarizes recent findings on regulation of cell division by the oxidation of cysteines in cell division regulators and the potential of targeting these critical cysteine residues for cancer therapy.
Collapse
Affiliation(s)
- Joyce Chiu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
9
|
Abstract
Oxidative damage to cellular constituents has frequently been associated with aging in a wide range of organisms. The power of yeast genetics and biochemistry has provided the opportunity to analyse in some detail how reactive oxygen and nitrogen species arise in cells, how cells respond to the damage that these reactive species cause, and to begin to dissect how these species may be involved in the ageing process. This chapter reviews the major sources of reactive oxygen species that occur in yeast cells, the damage they cause and how cells sense and respond to this damage.
Collapse
Affiliation(s)
- May T Aung-Htut
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia,
| | | | | | | |
Collapse
|
10
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
11
|
Different reactive oxygen species lead to distinct changes of cellular metal ions in the eukaryotic model organism Saccharomyces cerevisiae. Int J Mol Sci 2011; 12:8119-32. [PMID: 22174654 PMCID: PMC3233460 DOI: 10.3390/ijms12118119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/04/2011] [Accepted: 11/15/2011] [Indexed: 11/17/2022] Open
Abstract
Elemental uptake and export of the cell are tightly regulated thereby maintaining the ionomic homeostasis. This equilibrium can be disrupted upon exposure to exogenous reactive oxygen species (ROS), leading to reduction or elevation of the intracellular metal ions. In this study, the ionomic composition in the eukaryotic model organism Saccharomyces cerevisiae was profiled using the inductively-coupled plasma optical emission spectrometer (ICP-OES) following the treatment with individual ROS, including hydrogen peroxide, cumen hydroperoxide, linoleic acid hydroperoxide (LAH), the superoxide-generating agent menadione, the thiol-oxidising agent diamide [diazine-dicarboxylic acid-bis(dimethylamide)], dimedone and peroxynitrite. The findings demonstrated that different ROS resulted in distinct changes in cellular metal ions. Aluminium (Al(3+)) level rose up to 50-fold after the diamide treatment. Cellular potassium (K(+)) in LAH-treated cells was 26-fold less compared to the non-treated controls. The diamide-induced Al(3+) accumulation was further validated by the enhanced Al(3+) uptake along the time course and diamide doses. Pre-incubation of yeast with individual elements including iron, copper, manganese and magnesium failed to block diamide-induced Al(3+) uptake, suggesting Al(3+)-specific transporters could be involved in Al(3+) uptake. Furthermore, LAH-induced potassium depletion was validated by a rescue experiment in which addition of potassium increased yeast growth in LAH-containing media by 26% compared to LAH alone. Taken together, the data, for the first time, demonstrated the linkage between ionomic profiles and individual oxidative conditions.
Collapse
|
12
|
Chiu J, Tactacan CM, Tan SX, Lin RCY, Wouters MA, Dawes IW. Cell cycle sensing of oxidative stress in Saccharomyces cerevisiae by oxidation of a specific cysteine residue in the transcription factor Swi6p. J Biol Chem 2010; 286:5204-14. [PMID: 21147769 DOI: 10.1074/jbc.m110.172973] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast cells begin to bud and enter the S phase when growth conditions are favorable during the G(1) phase. When subjected to some oxidative stresses, cells delay entry at G(1), allowing repair of cellular damage. Hence, oxidative stress sensing is coordinated with the regulation of cell cycle. We identified a novel function of the cell cycle regulator of Saccharomyces cerevisiae, Swi6p, as a redox sensor through its cysteine residue at position 404. When alanine was substituted at this position, the resultant mutant, C404A, was sensitive to several reactive oxygen species and oxidants including linoleic acid hydroperoxide, the superoxide anion, and diamide. This mutant lost the ability to arrest in G(1) phase upon treatment with lipid hydroperoxide. The Cys-404 residue of Swi6p in wild-type cells was oxidized to a sulfenic acid when cells were subjected to linoleic acid hydroperoxide. Mutation of Cys-404 to Ala abolished the down-regulation of expression of the G(1) cyclin genes CLN1, CLN2, PCL1, and PCL2 that occurred when cells of the wild type were exposed to the lipid hydroperoxide. In conclusion, oxidative stress signaling for cell cycle regulation occurs through oxidation of the G(1)/S-specific transcription factor Swi6p and consequently leads to suppression of the expression of G(1) cyclins and a delay in cells entering the cell cycle.
Collapse
Affiliation(s)
- Joyce Chiu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Type 2C Ser/Thr phosphatases are a remarkable class of protein phosphatases, which are conserved in eukaryotes and involved in a large variety of functional processes. Unlike in other Ser/Thr phosphatases, the catalytic polypeptide is not usually associated with regulatory subunits, and functional specificity is achieved by encoding multiple isoforms. For fungi, most information comes from the study of type 2C protein phosphatase (PP2C) enzymes in Saccharomyces cerevisiae, where seven PP2C-encoding genes (PTC1 to -7) with diverse functions can be found. More recently, data on several Candida albicans PP2C proteins became available, suggesting that some of them can be involved in virulence. In this work we review the available literature on fungal PP2Cs and explore sequence databases to provide a comprehensive overview of these enzymes in fungi.
Collapse
|
14
|
Westmoreland TJ, Wickramasekara SM, Guo AY, Selim AL, Winsor TS, Greenleaf AL, Blackwell KL, Olson JA, Marks JR, Bennett CB. Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae. PLoS One 2009; 4:e5830. [PMID: 19503795 PMCID: PMC2688081 DOI: 10.1371/journal.pone.0005830] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/06/2009] [Indexed: 12/27/2022] Open
Abstract
The chemotherapeutic doxorubicin (DOX) induces DNA double-strand break (DSB) damage. In order to identify conserved genes that mediate DOX resistance, we screened the Saccharomyces cerevisiae diploid deletion collection and identified 376 deletion strains in which exposure to DOX was lethal or severely reduced growth fitness. This diploid screen identified 5-fold more DOX resistance genes than a comparable screen using the isogenic haploid derivative. Since DSB damage is repaired primarily by homologous recombination in yeast, and haploid cells lack an available DNA homolog in G1 and early S phase, this suggests that our diploid screen may have detected the loss of repair functions in G1 or early S phase prior to complete DNA replication. To test this, we compared the relative DOX sensitivity of 30 diploid deletion mutants identified under our screening conditions to their isogenic haploid counterpart, most of which (n = 26) were not detected in the haploid screen. For six mutants (bem1Delta, ctf4Delta, ctk1Delta, hfi1Delta,nup133Delta, tho2Delta) DOX-induced lethality was absent or greatly reduced in the haploid as compared to the isogenic diploid derivative. Moreover, unlike WT, all six diploid mutants displayed severe G1/S phase cell cycle progression defects when exposed to DOX and some were significantly enhanced (ctk1Delta and hfi1Delta) or deficient (tho2Delta) for recombination. Using these and other "THO2-like" hypo-recombinogenic, diploid-specific DOX sensitive mutants (mft1Delta, thp1Delta, thp2Delta) we utilized known genetic/proteomic interactions to construct an interactive functional genomic network which predicted additional DOX resistance genes not detected in the primary screen. Most (76%) of the DOX resistance genes detected in this diploid yeast screen are evolutionarily conserved suggesting the human orthologs are candidates for mediating DOX resistance by impacting on checkpoint and recombination functions in G1 and/or early S phases.
Collapse
Affiliation(s)
- Tammy J. Westmoreland
- Department of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sajith M. Wickramasekara
- North Carolina School of Science and Mathematics, Durham, North Carolina, United States of America
| | - Andrew Y. Guo
- North Carolina School of Science and Mathematics, Durham, North Carolina, United States of America
| | - Alice L. Selim
- Department of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Tiffany S. Winsor
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Arno L. Greenleaf
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kimberly L. Blackwell
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - John A. Olson
- Department of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jeffrey R. Marks
- Department of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Craig B. Bennett
- Department of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
Daniel JH. A fitness-based interferential genetics approach using hypertoxic/inactive gene alleles as references. Mol Genet Genomics 2009; 281:437-45. [PMID: 19152005 DOI: 10.1007/s00438-008-0416-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Accepted: 12/16/2008] [Indexed: 01/22/2023]
Abstract
Genetics, genomics, and biochemistry have all been of immense help in characterizing macromolecular cell entities and their interactions. Still, obtaining an overall picture of the functioning of even a simple unicellular species has remained a challenging task. One possible way to obtain a comprehensive picture has been described: by capitalizing on the observation that the overexpression on a multicopy plasmid of apparently any wild-type gene in yeast can lead to some negative effect on cell fitness (referring to the concept of "gene toxicity"), the FIG (fitness-based interferential genetics) approach was devised for selecting normal genes that are in antagonistic (and potentially also agonistic) relationship with a particular gene used as a reference. Herein, we take a complementary approach to FIG, by first selecting a "hypertoxic" allele of the reference gene--which easily provides the general possibility of obtaining gene products with the remarkable property of being inactive without altering their macromolecular interactivity--and then looking for the genes that interact functionally with this reference. Thus, FIG and the present approach (Trap-FIG), both taking advantage of the negative effects on cell fitness induced by various quantitative modulations in cellular networks, could potentially pave the way for the emergence of efficient in situ biochemistry.
Collapse
Affiliation(s)
- Jacques H Daniel
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, rue de la Terrasse, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
16
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|