1
|
Liu J, Li R, Li Y, Sun Y. Selection of indigenous Saccharomyces cerevisiae strains with good oenological and aroma characteristics for winemaking in Ningxia China. Food Chem X 2024; 23:101693. [PMID: 39184318 PMCID: PMC11342883 DOI: 10.1016/j.fochx.2024.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Ningxia is one of the well-known wine producing regions in China. However, the oenological and aroma characteristics of indigenous yeasts remains hidden. The fermentative and oenological properties including stress resistance, hydrogen sulfide, foam production levels; killer phenotype, and flocculation of 89 Ningxia indigenous Saccharomyces cerevisiae isolates and ten commercial yeasts were evaluated. The fermentative and oenological properties of the tested strains varied significantly. They could resist 500 g/L glucose, 300 mg/L SO2, 14% (v/v) ethanol and pH 2.8, and produce more esters. They also produce low levels of ethanol and could conduct fermentations vigorously and at a high rate. Cabernet Sauvignon wines made with NXU 21-24 showed the high intensity of tropical fruit, dry fruit, temperate fruit, and spicy flavor. The floral flavor in NXU 21-102 fermented wine is very intense. The indigenous S. cerevisiae strains of NXU 21-102 and NXU 21-24 exhibited potential use as starter cultures in wine production.
Collapse
Affiliation(s)
- Junyu Liu
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, PR China
| | - Ruirui Li
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, Ningxia, PR China
| | - Ying Li
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, PR China
- Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan 750021, Ningxia, China
| | - Yue Sun
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, PR China
- Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan 750021, Ningxia, China
| |
Collapse
|
2
|
Genotypic and phenotypic characterization of industrial autochthonous Saccharomyces cerevisiae for the selection of well-adapted bioethanol-producing strains. Fungal Biol 2022; 126:658-673. [DOI: 10.1016/j.funbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
|
3
|
Carrau F, Henschke PA. Hanseniaspora vineae and the Concept of Friendly Yeasts to Increase Autochthonous Wine Flavor Diversity. Front Microbiol 2021; 12:702093. [PMID: 34421859 PMCID: PMC8371320 DOI: 10.3389/fmicb.2021.702093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
In this perspective, we will explain the concept of “friendly” yeasts for developing wine starters that do not suppress desirable native microbial flora at the initial steps of fermentation, as what usually happens with Saccharomyces strains. Some non-Saccharomyces strains might allow the development of yeast consortia with the native terroir microflora of grapes and its region. The positive contribution of non-Saccharomyces yeasts was underestimated for decades. Avoiding them as spoilage strains and off-flavor producers was the main objective in winemaking. It is understandable, as in our experience after more than 30 years of wine yeast selection, it was shown that no more than 10% of the isolated native strains were positive contributors of superior flavors. Some species that systematically gave desirable flavors during these screening processes were Hanseniaspora vineae and Metschnikowia fructicola. In contrast to the latter, H. vineae is an active fermentative species, and this fact helped to build an improved juice ecosystem, avoiding contaminations of aerobic bacteria and yeasts. Furthermore, this species has a complementary secondary metabolism with S. cerevisiae, increasing flavor complexity with benzenoid and phenylpropanoid synthetic pathways practically inexistent in conventional yeast starters. How does H. vineae share the fermentation niche with other yeast strains? It might be due to the friendly conditions it creates, such as ideal low temperatures and low nitrogen demand during fermentation, reduced synthesis of medium-chain fatty acids, and a rich acetylation capacity of aromatic higher alcohols, well-known inhibitors of many yeasts. We will discuss here how inoculation of H. vineae strains can give the winemaker an opportunity to develop ideal conditions for flavor expression of the microbial terroir without the risk of undesirable strains that can result from spontaneous yeast fermentations.
Collapse
Affiliation(s)
- Francisco Carrau
- Área Enología y Biotecnología de Fermentaciones, Departamento Ciencia y Tecnología de Alimentos, Universidad de la Republica, Montevideo, Uruguay
| | - Paul A Henschke
- The Australian Wine Research Institute, Adelaide, SA, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
4
|
Zabukovec P, Čadež N, Čuš F. Isolation and Identification of Indigenous Wine Yeasts and Their Use in Alcoholic Fermentation. Food Technol Biotechnol 2020; 58:337-347. [PMID: 33281489 PMCID: PMC7709452 DOI: 10.17113/ftb.58.03.20.6677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research background In our study, spontaneous alcoholic fermentations were carried out to isolate non-Saccharomyces and Saccharomyces yeasts from grape must from different vine-growing regions in Slovenia. Additionally, the diversity of native Saccharomyces cerevisiae strains was evaluated during the process. Experimental approach During spontaneous alcoholic fermentations the yeast population of non-Saccharomyces and Saccharomyces yeasts was sampled. We used eleven microsatellite markers to determine the genetic diversity of S. cerevisiae strains. In addition, different ratios of the indigenous strains of S. cerevisiae, Hanseniaspora uvarum and Starmerella bacillaris were tested for their possible use in alcoholic fermentation with inoculated yeasts by monitoring its course and measuring the concentration of aroma compounds in wine. Results and conclusions Sequencing of the internal transcribed spacer (ITS) regions of ribosomal DNA showed that of 64 isolates, 46 strains represent S. cerevisiae and 18 strains belong to non-Saccharomyces yeasts. The identified non-Saccharomyces yeast species were H. uvarum, Pichia kudriavzevii, Saturnispora diversa and S. bacillaris. The dendrogram grouped S. cerevisiae strains into 14 groups. The number of S. cervisiae strains isolated from the musts was 10 (Posavje), 11 (Podravje) and 25 (Primorska vine-growing region). On the other hand, the alcoholic fermentation with inoculated yeasts, in which the native S. cerevisiae strain predominated over H. uvarum and S. bacillaris, gave the most promising result due to the highest alcoholvolume fraction, the lowest acetic acid concentration and significantly higher concentrations of volatile thiols 3-mercaptohexyl acetate (3MHA) and 3-mercaptohexan-1-ol (3MH), 2-methylpropanol, 2-methylbutanol, 3-methylbutanol and 2-phenylethanol) in the produced wine. Novelty and scientific contribution We confirmed the potential use of indigenous S. cerevisiae and non-Saccharomyces yeasts in alcoholic fermentation with inoculated yeasts, which allows the positive properties of the yeast strains to be expressed and good quality wines to be produced. Thus, the results are encouraging for winemakers to create different wine styles associated with a particular terroir using indigenous yeasts.
Collapse
Affiliation(s)
- Polona Zabukovec
- Agricultural Institute of Slovenia, Department of Fruit Growing, Viticulture and Oenology, Hacquetova ulica 17, 1000 Ljubljana, Slovenia
| | - Neža Čadež
- Department of Food Science and Technology, Chair of Biotechnology, Microbiology and Food Safety, Biotechnical Faculty, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Franc Čuš
- Agricultural Institute of Slovenia, Department of Fruit Growing, Viticulture and Oenology, Hacquetova ulica 17, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Hart RS, Jolly NP, Ndimba BK. Characterisation of hybrid yeasts for the production of varietal Sauvignon blanc wine – A review. J Microbiol Methods 2019; 165:105699. [DOI: 10.1016/j.mimet.2019.105699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
6
|
A new, rapid multiplex PCR method identifies frequent probiotic origin among clinical Saccharomyces isolates. Microbiol Res 2019; 227:126298. [DOI: 10.1016/j.micres.2019.126298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/20/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022]
|
7
|
Feng L, Jia H, Qin Y, Song Y, Tao S, Liu Y. Rapid Identification of Major QTL S Associated With Near- Freezing Temperature Tolerance in Saccharomyces cerevisiae. Front Microbiol 2018; 9:2110. [PMID: 30254614 PMCID: PMC6141824 DOI: 10.3389/fmicb.2018.02110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
Temperatures had a strong effect on many life history traits, including growth, development and reproduction. At near-freezing temperatures (0–4°C), yeast cells could trigger series of biochemical reactions to respond and adapt to the stress, protect them against sever cold and freeze injury. Different Saccharomyces cerevisiae strains vary greatly in their ability to grow at near-freezing temperatures. However, the molecular mechanisms that allow yeast cells to sustain this response are not yet fully understood and the genetic basis of tolerance and sensitivity to near-freeze stress remains unclear. Uncovering the genetic determinants of this trait is, therefore, of is of significant interest. In order to investigate the genetic basis that underlies near-freezing temperature tolerance in S. cerevisiae, we mapped the major quantitative trait loci (QTLs) using bulk segregant analysis (BSA) in the F2 segregant population of two Chinese indigenous S. cerevisiae strains with divergent tolerance capability at 4°C. By genome-wide comparison of single-nucleotide polymorphism (SNP) profiles between two bulks of segregants with high and low tolerance to near-freezing temperature, a hot region located on chromosome IV was identified tightly associated with the near-freezing temperature tolerance. The Reciprocal hemizygosity analysis (RHA) and gene deletion was used to validate the genes involved in the trait, showed that the gene NAT1 plays a role in the near-freezing temperature tolerance. This study improved our understanding of the genetic basis of the variability of near-freezing temperature tolerance in yeasts. The superior allele identified could be used to genetically improve the near-freezing stress adaptation of industrial yeast strains.
Collapse
Affiliation(s)
- Li Feng
- College of Enology, Northwest A&F University, Yangling, China
| | - He Jia
- College of Enology, Northwest A&F University, Yangling, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, China
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance. Braz J Microbiol 2016; 48:268-274. [PMID: 28057426 PMCID: PMC5470434 DOI: 10.1016/j.bjm.2016.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022] Open
Abstract
Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive.
Collapse
|
9
|
Feizi A, Zhang Y, Greenbaum A, Guziak A, Luong M, Chan RYL, Berg B, Ozkan H, Luo W, Wu M, Wu Y, Ozcan A. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. LAB ON A CHIP 2016; 16:4350-4358. [PMID: 27713987 DOI: 10.1039/c6lc00976j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm2. This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.
Collapse
Affiliation(s)
- Alborz Feizi
- Department of Electrical Engineering, University of California Los Angeles (UCLA), USA. and Department of Bioengineering, University of California Los Angeles (UCLA), USA and California Nanosystems Institute (CNSI), University of California Los Angeles (UCLA), USA
| | - Yibo Zhang
- Department of Electrical Engineering, University of California Los Angeles (UCLA), USA.
| | - Alon Greenbaum
- Department of Electrical Engineering, University of California Los Angeles (UCLA), USA. and Division of Biology and Biological Engineering, California Institute of Technology, USA
| | - Alex Guziak
- Physics and Astronomy Department, University of California Los Angeles (UCLA), USA
| | - Michelle Luong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California (UCLA), USA
| | - Raymond Yan Lok Chan
- Department of Electrical Engineering, University of California Los Angeles (UCLA), USA.
| | - Brandon Berg
- Physics and Astronomy Department, University of California Los Angeles (UCLA), USA and Physics Department, University of Michigan, USA
| | - Haydar Ozkan
- Department of Electrical Engineering, University of California Los Angeles (UCLA), USA.
| | - Wei Luo
- Department of Electrical Engineering, University of California Los Angeles (UCLA), USA.
| | - Michael Wu
- Department of Electrical Engineering, University of California Los Angeles (UCLA), USA.
| | - Yichen Wu
- Department of Electrical Engineering, University of California Los Angeles (UCLA), USA.
| | - Aydogan Ozcan
- Department of Electrical Engineering, University of California Los Angeles (UCLA), USA. and Department of Bioengineering, University of California Los Angeles (UCLA), USA and California Nanosystems Institute (CNSI), University of California Los Angeles (UCLA), USA and Department of Surgery, David Geffen School of Medicine, University of California (UCLA), USA
| |
Collapse
|
10
|
Honigberg SM. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. MICROBIAL CELL 2016; 3:302-328. [PMID: 27917388 PMCID: PMC5134742 DOI: 10.15698/mic2016.08.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diploid budding yeast (Saccharomyces cerevisiae) can adopt one
of several alternative differentiation fates in response to nutrient limitation,
and each of these fates provides distinct biological functions. When different
strain backgrounds are taken into account, these various fates occur in response
to similar environmental cues, are regulated by the same signal transduction
pathways, and share many of the same master regulators. I propose that the
relationships between fate choice, environmental cues and signaling pathways are
not Boolean, but involve graded levels of signals, pathway activation and
master-regulator activity. In the absence of large differences between
environmental cues, small differences in the concentration of cues may be
reinforced by cell-to-cell signals. These signals are particularly essential for
fate determination within communities, such as colonies and biofilms, where fate
choice varies dramatically from one region of the community to another. The lack
of Boolean relationships between cues, signaling pathways, master regulators and
cell fates may allow yeast communities to respond appropriately to the wide
range of environments they encounter in nature.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City MO 64110, USA
| |
Collapse
|
11
|
Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2016; 32:145. [PMID: 27430512 DOI: 10.1007/s11274-016-2101-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/19/2016] [Indexed: 12/24/2022]
Abstract
Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.
Collapse
|
12
|
Medina K, Boido E, Fariña L, Dellacassa E, Carrau F. Non-SaccharomycesandSaccharomycesstrains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines. Yeast 2016; 33:339-43. [DOI: 10.1002/yea.3156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Karina Medina
- Universidad de la Republica; Sección Enología Department of Food Science and Technology Facultad de Quimica; Montevideo Uruguay
| | - Eduardo Boido
- Universidad de la Republica; Sección Enología Department of Food Science and Technology Facultad de Quimica; Montevideo Uruguay
| | - Laura Fariña
- Universidad de la Republica; Sección Enología Department of Food Science and Technology Facultad de Quimica; Montevideo Uruguay
| | - Eduardo Dellacassa
- Universidad de la Republica Aroma Biotechnology Laboratory; Department of Organic Chemistry Facultad de Quimica; Montevideo Uruguay
| | - Francisco Carrau
- Universidad de la Republica; Sección Enología Department of Food Science and Technology Facultad de Quimica; Montevideo Uruguay
| |
Collapse
|
13
|
Carrau F, Gaggero C, Aguilar PS. Yeast diversity and native vigor for flavor phenotypes. Trends Biotechnol 2015; 33:148-54. [DOI: 10.1016/j.tibtech.2014.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/29/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023]
|
14
|
Tofalo R, Perpetuini G, Fasoli G, Schirone M, Corsetti A, Suzzi G. Biodiversity study of wine yeasts belonging to the “terroir” of Montepulciano d'Abruzzo “Colline Teramane” revealed Saccharomyces cerevisiae strains exhibiting atypical and unique 5.8S-ITS restriction patterns. Food Microbiol 2014; 39:7-12. [DOI: 10.1016/j.fm.2013.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/24/2013] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
|
15
|
Antonangelo ATBF, Alonso DP, Ribolla PEM, Colombi D. Microsatellite marker-based assessment of the biodiversity of native bioethanol yeast strains. Yeast 2013; 30:307-17. [DOI: 10.1002/yea.2964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ana Teresa B. F. Antonangelo
- Laboratório de Pesquisas e Análises Genéticas (PANGENE), Depto de Parasitologia; IBB-UNESP; Botucatu; SP; Brazil
| | - Diego P. Alonso
- Laboratório de Pesquisas e Análises Genéticas (PANGENE), Depto de Parasitologia; IBB-UNESP; Botucatu; SP; Brazil
| | | | | |
Collapse
|
16
|
Medina K, Boido E, Fariña L, Gioia O, Gomez ME, Barquet M, Gaggero C, Dellacassa E, Carrau F. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chem 2013; 141:2513-21. [PMID: 23870989 DOI: 10.1016/j.foodchem.2013.04.056] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/18/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
Discovery, characterisation and use of novel yeast strains for winemaking is increasingly regarded as a way for improving quality and to provide variation, including subtle characteristic differences in fine wines. The objective of this work was to evaluate the use of a native apiculate strain, selected from grapes, Hanseniaspora vineae (H. vineae) 02/5A. Fermentations were done in triplicate, working with 225 L oak barrels, using a Chardonnay grape must. Three yeast fermentation strategies were compared: conventional inoculation with a commercial Saccharomyces cerevisiae strain, ALG 804, sequential inoculation with H. vineae and then strain ALG 804 and spontaneous fermentation. Yeast strain identification was performed during fermentation, in which the apiculate strain was found to be active, until 9% of alcohol in volume, for the co-fermentation and the spontaneous fermentation was completed by three native S. cerevisiae strains. Basic winemaking parameters and some key chemical analysis, such as concentration of glycerol, biogenic amines, organic acids, and aroma compounds were analysed. Sensory analysis was done using a trained panel and further evaluated with professional winemakers. Sequential inoculation with H. vineae followed by S. cerevisiae resulted in relatively dry wines, with increased aroma and flavour diversity compared with wines resulting from inoculation with S. cerevisiae alone. Wines produced from sequential inoculations were considered, by a winemaker's panel, to have an increased palate length and body. Characteristics of wines derived from sequential inoculation could be explained due to significant increases in glycerol and acetyl and ethyl ester flavour compounds and relative decreases in alcohols and fatty acids. Aroma sensory analysis of wine character and flavour, attributed to winemaking using H. vineae, indicated a significant increase in fruit intensity described as banana, pear, apple, citric fruits and guava. GC analysis of the relative accumulation of 23 compounds to significantly different concentrations for the three fermentation strategies is discussed in relation to aroma compound composition.
Collapse
Affiliation(s)
- K Medina
- Enology Section, Food Science and Technology Department, Facultad de Quimica, Universidad de la Republica, 11800 Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Redox effect on volatile compound formation in wine during fermentation by Saccharomyces cerevisiae. Food Chem 2012; 134:933-9. [DOI: 10.1016/j.foodchem.2012.02.209] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/21/2012] [Accepted: 02/29/2012] [Indexed: 11/22/2022]
|
18
|
Medina K, Boido E, Dellacassa E, Carrau F. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation. Int J Food Microbiol 2012; 157:245-50. [DOI: 10.1016/j.ijfoodmicro.2012.05.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/30/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
|
19
|
Barquet M, Martín V, Medina K, Pérez G, Carrau F, Gaggero C. Tandem repeat-tRNA (TRtRNA) PCR method for the molecular typing of non-Saccharomyces subspecies. Appl Microbiol Biotechnol 2011; 93:807-14. [PMID: 22113560 DOI: 10.1007/s00253-011-3714-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/20/2011] [Accepted: 11/06/2011] [Indexed: 11/29/2022]
Abstract
There is a worldwide trend to understand the impact of non-Saccharomyces yeast species on the process of winemaking. Although the predominant species at the end of the fermentation is Saccharomyces cerevisiae, several non-Saccharomyces species present during the first days of the process can produce and/or release aromas that improve the bouquet and complexity of the final wine. Since no genomic sequences are available for the predominant non-Saccharomyces species selected from grapes or musts (Hanseniaspora uvarum, Hanseniaspora vineae, Hanseniaspora opuntiae, Metschnikowia pulcherrima, Candida zemplinina), a reproducible PCR method was devised to discriminate strains at the subspecies level. The method combines different oligonucleotides based on tandem repeats with a second oligonucleotide based on a conserved tRNA region, specific for ascomycetes. Tandem repeats are randomly dispersed in all eukaryotic genomes and tRNA genes are conserved and present in several copies in different chromosomes. As an example, the method was applied to discriminate native M. pulcherrima strains but it could be extended to differentiate strains from other non-Saccharomyces species. The biodiversity of species and strains found in the grape ecosystem is a potential source of new enzymes, fungicides and/or novel sustainable methods for biological control of phytopathogens.
Collapse
Affiliation(s)
- Marianne Barquet
- Molecular Biology Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
20
|
Oda Y, Mikumo D, Leo F, Urashima T. Discrimination of Saccharomyces cerevisiae and Saccharomyces paradoxus strains by the SUC2 gene sequences. J GEN APPL MICROBIOL 2010; 56:355-8. [PMID: 20953100 DOI: 10.2323/jgam.56.355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yuji Oda
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| | | | | | | |
Collapse
|
21
|
Use of interdelta polymorphisms of Saccharomyces cerevisiae strains to monitor population evolution during wine fermentation. J Ind Microbiol Biotechnol 2010; 38:127-32. [DOI: 10.1007/s10295-010-0837-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
|
22
|
Büchl N, Hutzler M, Mietke-Hofmann H, Wenning M, Scherer S. Differentiation of probiotic and environmental Saccharomyces cerevisiae strains in animal feed. J Appl Microbiol 2010; 109:783-91. [DOI: 10.1111/j.1365-2672.2010.04705.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Pérez G, Fariña L, Barquet M, Boido E, Gaggero C, Dellacassa E, Carrau F. A quick screening method to identify β-glucosidase activity in native wine yeast strains: application of Esculin Glycerol Agar (EGA) medium. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0425-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Mercado L, Jubany S, Gaggero C, Masuelli RW, Combina M. Molecular Relationships Between Saccharomyces cerevisiae Strains Involved in Winemaking from Mendoza, Argentina. Curr Microbiol 2010; 61:506-14. [DOI: 10.1007/s00284-010-9645-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 03/26/2010] [Indexed: 11/24/2022]
|
25
|
Muñoz R, Gómez A, Robles V, Rodríguez P, Cebollero E, Tabera L, Carrascosa AV, Gonzalez R. Multilocus sequence typing of oenological Saccharomyces cerevisiae strains. Food Microbiol 2009; 26:841-6. [PMID: 19835769 DOI: 10.1016/j.fm.2009.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/18/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
|
26
|
Vigentini I, Fracassetti D, Picozzi C, Foschino R. Polymorphisms of Saccharomyces cerevisiae genes involved in wine production. Curr Microbiol 2008; 58:211-8. [PMID: 19005725 DOI: 10.1007/s00284-008-9310-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/02/2008] [Accepted: 10/09/2008] [Indexed: 11/30/2022]
Abstract
The setting up of new molecular methods for Saccharomyces cerevisiae typing is valuable in enology. Actually, the ability to discriminate different strains in wine making can have a benefit both for the control of the fermentation process and for the preservation of wine typicity. This study focused on the screening of single-nucleotide polymorphisms in genes involved in wine production that could evolve rapidly considering the selective pressure of the isolation environment. Preliminary screening of 30 genes in silico was performed, followed by the selection of 10 loci belonging to 8 genes. The sequence analysis showed a low polymorphism and a degree of heterozygosity. However, a new potential molecular target was recognized in the TPS1 gene coding for the trehalose-6-phosphate synthase enzyme involved in the ethanol resistance mechanism. This gene showed a 1.42% sequence diversity with seven different nucleotide substitutions. Moreover, classic techniques were applied to a collection of 50 S. cerevisiae isolates, mostly with enologic origin. Our results confirmed that the wine making was not carried out only by the inoculated commercial starter because indigenous strains of S. cerevisiae present during fermentation were detected. In addition, a high genetic relationship among some commercial cultures was found, highlighting imprecision or fraudulent practices by starter manufacturers.
Collapse
Affiliation(s)
- Ileana Vigentini
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | | | | | | |
Collapse
|
27
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|