1
|
Köhsler M, Leitsch D, Loufouma Mbouaka A, Wekerle M, Walochnik J. Transcriptional changes of proteins of the thioredoxin and glutathione systems in Acanthamoeba spp. under oxidative stress - an RNA approach. Parasite 2022; 29:24. [PMID: 35532265 PMCID: PMC9083255 DOI: 10.1051/parasite/2022025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
The thioredoxin (Trx) and the glutathione (GSH) systems represent important antioxidant systems in cells and in particular thioredoxin reductase (TrxR) has been shown to constitute a promising drug target in parasites. For the facultative protozoal pathogen Acanthamoeba, it was demonstrated that a bacterial TrxR as well as a TrxR, characteristic of higher eukaryotes, mammals and humans is expressed on the protein level. However, only bacterial TrxR is strongly induced by oxidative stress in Acanthamoeba castellanii. In this study, the impact of oxidative stress on key enzymes involved in the thioredoxin and the glutathione system of A. castellanii under different culture conditions and of clinical Acanthamoeba isolates was evaluated on the RNA level employing RT-qPCR. Additionally, the effect of auranofin, a thioredoxin reductase inhibitor, already established as a potential drug in other parasites, on target enzymes in A. castellanii was investigated. Oxidative stress induced by hydrogen peroxide led to significant stimulation of bacterial TrxR and thioredoxin, while diamide had a strong impact on all investigated enzymes. Different strains displayed distinct transcriptional responses, rather correlating to sensitivity against the respective stressor than to respective pathogenic potential. Culture conditions appear to have a major effect on transcriptional changes in A. castellanii. Treatment with auranofin led to transcriptional activation of the GSH system, indicating its role as a potential backup for the Trx system. Altogether, our data provide more profound insights into the complex redox system of Acanthamoeba, preparing the ground for further investigations on this topic.
Collapse
Affiliation(s)
- Martina Köhsler
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - David Leitsch
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Alvie Loufouma Mbouaka
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Maximilian Wekerle
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Julia Walochnik
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| |
Collapse
|
2
|
Kang SO, Kwak MK. Alcohol dehydrogenase 1 and NAD(H)-linked methylglyoxal oxidoreductase reciprocally regulate glutathione-dependent enzyme activities in Candida albicans. J Microbiol 2020; 59:76-91. [PMID: 33355888 DOI: 10.1007/s12275-021-0552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/27/2022]
Abstract
Glutathione reductase (Glr1) activity controls cellular glutathione and reactive oxygen species (ROS). We previously demonstrated two predominant methylglyoxal scavengers-NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase 1 (Adh1)-in glutathione-depleted γ-glutamyl cysteinyl synthetase-disrupted Candida albicans. However, experimental evidence for Candida pathophysiology lacking the enzyme activities of Mgd1 and Adh1 on glutathione-dependent redox regulation remains unclear. Herein, we have aimed to demonstrate that glutathione-dependent enzyme activities coupled with cellular ROS changes is regulated by methylglyoxal accumulation in Δmgd1/Δadh1 double disruptants. Δmgd1/Δadh1 showed severe growth defects and G1-phase cell cycle arrest. The observed complementary and reciprocal methylglyoxal-oxidizing and methylglyoxalreducing activities between Δmgd1 and Δadh1 were not always exhibited in Δmgd1/Δadh1. Although intracellular accumulation of methylglyoxal and pyruvate was shown in all disruptants, to a greater or lesser degree, methylglyoxal was particularly accumulated in the Δmgd1/Δadh1 double disruptant. While cellular ROS significantly increased in Δmgd1 and Δadh1 as compared to the wild-type, Δmgd1/Δadh1 underwent a decrease in ROS in contrast to Δadh1. Despite the experimental findings underlining the importance of the undergoing unbalanced redox state of Δmgd1/Δadh1, glutathione-independent antioxidative enzyme activities did not change during proliferation and filamentation. Contrary to the significantly lowered glutathione content and Glr1 enzyme activity, the activity staining-based glutathione peroxidase activities concomitantly increased in this mutant. Additionally, the enhanced GLR1 transcript supported our results in Δmgd1/Δadh1, indicating that deficiencies of both Adh1 and Mgd1 activities stimulate specific glutathione-dependent enzyme activities. This suggests that glutathione-dependent redox regulation is evidently linked to C. albicans pathogenicity under the control of methylglyoxal-scavenging activities.
Collapse
Affiliation(s)
- Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
- Present address: Irwee Institute, B-503, Seongnam, 13510, Republic of Korea.
| | - Min-Kyu Kwak
- Department of Food and Nutrition, Institute of Food and Nutrition Science, Eulji University, Seongnam, 13135, Republic of Korea.
| |
Collapse
|
3
|
Identification of proteins in Sporothrix schenckii sensu stricto in response to oxidative stress induced by hydrogen peroxide. Rev Iberoam Micol 2019; 36:17-23. [DOI: 10.1016/j.riam.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/16/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022] Open
|
4
|
Kwak MK, Ku M, Kang SO. Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Biochim Biophys Acta Gen Subj 2018; 1862:18-39. [DOI: 10.1016/j.bbagen.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 12/15/2022]
|
5
|
Shin Y, Lee S, Ku M, Kwak MK, Kang SO. Cytochrome c peroxidase regulates intracellular reactive oxygen species and methylglyoxal via enzyme activities of erythroascorbate peroxidase and glutathione-related enzymes in Candida albicans. Int J Biochem Cell Biol 2017; 92:183-201. [PMID: 29031807 DOI: 10.1016/j.biocel.2017.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
D-erythroascorbate peroxidase (EAPX1) deficiency causes glutathione deprivation, leading to the accumulation of methylglyoxal and reactive oxygen species (ROS), and especially, induction of cytochrome c peroxidase (Ccp1) in Candida albicans. Nevertheless, reciprocal effects between changes in Ccp1 activity and the antioxidative D-erythroascorbic acid- and glutathione-dependent redox status, which reflects methylglyoxal biosynthesis altering pathophysiology are unclear in eukaryotes. To elucidate the effect of CCP1 expression on EAPX1 and glutathione reductase (Glr1) activity-mediated D-erythroascorbic acid biosynthesis and redox homeostasis, the CCP1 gene was disrupted and overexpressed. First, we demonstrated both glutathione-independent and-dependent metabolite contents and their corresponding gene transcripts and enzyme activities (i.e., Ccp1, catalase-peroxidase [KatG], superoxide dismutase [Sod], Eapx1, and Glr1) in CCP1 mutants. Second, methylglyoxal-oxidizing alcohol dehydrogenase (Adh1) and methylglyoxal-reducing oxidoreductase activity on glycolytic methylglyoxal and pyruvate production and NAD(P)H content were determined in these mutants. Contrary to our expectation, CCP1 disruption (42.19±3.22nmolO2h-1mgwetcell-1) failed to affect cell respiration compared to the wild-type strain (41.62±7.11nmolO2h-1mgwetcell-1) under cyanide treatment, and in contrast to hydrogen peroxide (H2O2) treatment (21.74±1.03nmol O2h-1mgwetcell-1). Additionally, Ccp1 predominantly detoxified H2O2 rather than negligible scavenging activities towards methylglyoxal and other oxidants. CCP1 deficiency stimulated Sod and Adh1 activity but downregulated Glr1, Eapx1, catalase, and peroxidase activity while enhancing KatG, EAPX1, and GLR1 transcription by decreasing glutathione and D-erythroascorbic acid and increasing pyruvate. Noticeably, the ROS-accumulating CCP1-deficient mutant maintained steady-state levels of methylglyoxal, which was revealed to be regulated by methylglyoxal-oxidizing and -reducing activity with drastic changes in NAD(P)H. We confirmed and clarified our results by showing that CCP1/EAPX1 double disruptants underwent severe growth defects due to the D-erythroascorbic acid and glutathione depletion because of pyruvate overaccumulation. These observations were made in both budding and hyphal-growing CCP1 mutants. The revealed metabolic network involving Ccp1 and other redox regulators affected ROS and methylglyoxal through D-erythroascorbic acid and glutathione-dependent metabolites, thereby influencing dimorphism. This is the first report of the Ccp1-mediated D-erythroascorbic acid and glutathione biosynthesis accompanying methylglyoxal scavengers for full fungal virulence.
Collapse
Affiliation(s)
- YoungHo Shin
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sungkyoung Lee
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - MyungHee Ku
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
6
|
Srivastava A, Sircaik S, Husain F, Thomas E, Ror S, Rastogi S, Alim D, Bapat P, Andes DR, Nobile CJ, Panwar SL. Distinct roles of the 7-transmembrane receptor protein Rta3 in regulating the asymmetric distribution of phosphatidylcholine across the plasma membrane and biofilm formation in Candida albicans. Cell Microbiol 2017; 19. [PMID: 28745020 DOI: 10.1111/cmi.12767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022]
Abstract
Fungal pathogens such as Candida albicans exhibit several survival mechanisms to evade attack by antifungals and colonise host tissues. Rta3, a member of the Rta1-like family of lipid-translocating exporters has a 7-transmembrane domain topology, similar to the G-protein-coupled receptors and is unique to the fungal kingdom. Our findings point towards a role for the plasma membrane localised Rta3 in providing tolerance to miltefosine, an analogue of alkylphosphocholine, by maintaining mitochondrial energetics. Concurrent with miltefosine susceptibility, the rta3Δ/Δ strain displays increased inward translocation (flip) of fluorophore-labelled phosphatidylcholine (PC) across the plasma membrane attributed to enhanced PC-specific flippase activity. We also assign a novel role to Rta3 in the Bcr1-regulated pathway for in vivo biofilm development. Transcriptome analysis reveals that Rta3 regulates expression of Bcr1 target genes involved in cell surface properties, adhesion, and hyphal growth. We show that rta3Δ/Δ mutant is biofilm-defective in a rat venous catheter model of infection and that BCR1 overexpression rescues this defect, indicating that Bcr1 functions downstream of Rta3 to mediate biofilm formation in C. albicans. The identification of this novel Rta3-dependent regulatory network that governs biofilm formation and PC asymmetry across the plasma membrane will provide important insights into C. albicans pathogenesis.
Collapse
Affiliation(s)
- Archita Srivastava
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shabnam Sircaik
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Farha Husain
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Edwina Thomas
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shivani Ror
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sumit Rastogi
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Darakshan Alim
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priyanka Bapat
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Quantitative and System Biology Graduate Program, University of California, Merced, California, USA
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| | - Sneh L Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Lee HM, Seo JH, Kwak MK, Kang SO. Methylglyoxal upregulates Dictyostelium discoideum slug migration by triggering glutathione reductase and methylglyoxal reductase activity. Int J Biochem Cell Biol 2017; 90:81-92. [PMID: 28760625 DOI: 10.1016/j.biocel.2017.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/13/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Glutathione (GSH)-deprived Dictyostelium discoideum accumulates methylglyoxal (MG) and reactive oxygen species (ROS) during vegetative growth. However, the reciprocal effects of the production and regulation of these metabolites on differentiation and cell motility are unclear. Based on the inhibitory effects of γ-glutamylcysteine synthetase (gcsA) disruption and GSH reductase (gsr) overexpression on aggregation and culmination, respectively, we overexpressed GSH-related genes encoding superoxide dismutase (Sod2), catalase (CatA), and Gcs, in D. discoideum. Wild-type KAx3 and gcsA-overexpressing (gcsAOE) slugs maintained GSH levels at levels of approximately 2.1-fold less than the reference GSH synthetase-overexpressing mutant; their GSH levels did not correlate with slug migration ability. Through prolonged KAx3 migration by treatment with MG and H2O2, we found that MG increased after the mound stage in this strain, with a 2.6-fold increase compared to early developmental stages; in contrast, ROS were maintained at high levels throughout development. While the migration-defective sod2- and catA-overexpressing mutant slugs (sod2OE and catAOE) decreased ROS levels by 50% and 53%, respectively, these slugs showed moderately decreased MG levels (36.2±5.8 and 40.7±1.6nmolg-1 cells wet weight, P<0.05) compared to the parental strain (54.2±3.5nmolg-1). Importantly, defects in the migration of gcsAOE slugs decreased MG considerably (13.8±4.2nmolg-1, P<0.01) along with a slight decrease in ROS. In contrast to the increase observed in migrating sod2OE and catAOE slugs by treatment with MG and H2O2, the migration of gcsAOE slugs appeared unaffected. This behavior was caused by MG-triggered Gsr and NADPH-linked aldolase reductase activity, suggesting that GSH biosynthesis in gcsAOE slugs is specifically used for MG-scavenging activity. This is the first report showing that MG upregulates slug migration via MG-scavenging-mediated differentiation.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Hui Seo
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
8
|
Ku M, Baek YU, Kwak MK, Kang SO. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes. Biochim Biophys Acta Gen Subj 2016; 1861:772-788. [PMID: 27751952 DOI: 10.1016/j.bbagen.2016.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/23/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Glutathione reductase maintains the glutathione level in a reduced state. As previously demonstrated, glutathione is required for cell growth/division and its biosynthesizing-enzyme deficiency causes methylglyoxal accumulation. However, experimental evidences for reciprocal relationships between Cph1-/Efg1-mediated signaling pathway regulation and methylglyoxal production exerted by glutathione reductase on yeast morphology remain unclear. METHODS Glutathione reductase (GLR1) disruption/overexpression were performed to investigate aspects of pathological/morphological alterations in Candida albicans. These assumptions were proved by observations of cellular susceptibility to oxidants and thiols, and measurements of methylglyoxal and glutathione content in hyphal-inducing conditions mainly through the activity of GLR1-overexpressing cells. Additionally, the transcriptional/translational levels of bioenergetic enzymes and dimorphism-regulating protein kinases were examined in the strain. RESULTS The GLR1-deficient strain was non-viable when GLR1 expression under the control of a CaMAL2 promoter was conditionally repressed, despite partial rescue of growth by exogenous thiols. During filamentation, non-growing hyphal GLR1-overexpressing cells exhibited resistance against oxidants and cellular methylglyoxal was significantly decreased, which concomitantly increased expressions of genes encoding energy-generating enzymes, including fructose-1,6-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and alcohol dehydrogenase (ADH1), with remarkable repression of Efg1-signaling cascades. CONCLUSIONS This is the first report that GLR1-triggered Efg1-mediated signal transduction repression strictly reduces dimorphic switching and virulence by maintaining the basal level of methylglyoxal following the enhanced gene expressions of glycolytic enzymes and ADH1. GENERAL SIGNIFICANCE The Efg1 downregulatory mechanism by GLR1 expression has possibilities to involve in other complex network of signal pathways. Understanding how GLR1 overexpression affects multiple signaling pathways can help identify attractive targets for antifungal drugs.
Collapse
Affiliation(s)
- MyungHee Ku
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong-Un Baek
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
9
|
Gergondey R, Garcia C, Serre V, Camadro J, Auchère F. The adaptive metabolic response involves specific protein glutathionylation during the filamentation process in the pathogen Candida albicans. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1309-23. [DOI: 10.1016/j.bbadis.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 01/14/2023]
|
10
|
FleQ coordinates flagellum-dependent and -independent motilities in Pseudomonas syringae pv. tomato DC3000. Appl Environ Microbiol 2015; 81:7533-45. [PMID: 26296726 DOI: 10.1128/aem.01798-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/14/2015] [Indexed: 12/29/2022] Open
Abstract
Motility plays an essential role in bacterial fitness and colonization in the plant environment, since it favors nutrient acquisition and avoidance of toxic substances, successful competition with other microorganisms, the ability to locate the preferred hosts, access to optimal sites within them, and dispersal in the environment during the course of transmission. In this work, we have observed that the mutation of the flagellar master regulatory gene, fleQ, alters bacterial surface motility and biosurfactant production, uncovering a new type of motility for Pseudomonas syringae pv. tomato DC3000 on semisolid surfaces. We present evidence that P. syringae pv. tomato DC3000 moves over semisolid surfaces by using at least two different types of motility, namely, swarming, which depends on the presence of flagella and syringafactin, a biosurfactant produced by this strain, and a flagellum-independent surface spreading or sliding, which also requires syringafactin. We also show that FleQ activates flagellum synthesis and negatively regulates syringafactin production in P. syringae pv. tomato DC3000. Finally, it was surprising to observe that mutants lacking flagella or syringafactin were as virulent as the wild type, and only the simultaneous loss of both flagella and syringafactin impairs the ability of P. syringae pv. tomato DC3000 to colonize tomato host plants and cause disease.
Collapse
|
11
|
Ramírez-Quijas MD, López-Romero E, Cuéllar-Cruz M. Proteomic analysis of cell wall in four pathogenic species of Candida exposed to oxidative stress. Microb Pathog 2015; 87:1-12. [PMID: 26188289 DOI: 10.1016/j.micpath.2015.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/14/2022]
Abstract
In order for Candida species to adhere and colonize human host cells they must express cell wall proteins (CWP) and adapt to reactive oxygen species (ROS) generated by phagocytic cells of the human host during the respiratory burst. However, how these pathogens change the expression of CWP in response to oxidative stress (OSR) is not known. Here, fifteen moonlight-like CWP were identified that expressed differentially in four species of Candida after they were exposed to H2O2 or menadione (O2(-)). These proteins included: (i) glycolytic enzymes, such as glyceraldehyde-3-phosphate dehydrogenase (Gapdh), fructose-bisphosphate aldolase (Fba1), phosphoglycerate mutase (Gpm1), phosphoglycerate kinase (Pgk), pyruvate kinase (Pk) and enolase (Eno1); (ii) the heat shock proteins Ssb1 and Ssa2; (iii) OSR proteins such as peroxyredoxin (Tsa1), the stress protein Ddr48 (Ddr48) and glutathione reductase (Glr1); (iv) other metabolic enzymes such as ketol-acid reductoisomerase (Ilv5) and pyruvate decarboxylase (Pdc1); and (v) other proteins such as elongation factor 1-beta (Efb1) and the 14-3-3 protein homolog. RT-PCR revealed that transcription of the genes coding for some of the identified CWP are differentially regulated. To our knowledge this is the first report showing that moonlight-like CWP are the first line of defense of Candida against ROS, and that they are differentially regulated in each of these pathogens.
Collapse
Affiliation(s)
- Mayra Denisse Ramírez-Quijas
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
12
|
Kwak MK, Song SH, Ku M, Kang SO. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid. FEBS Lett 2015; 589:1863-71. [PMID: 25957768 DOI: 10.1016/j.febslet.2015.04.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/12/2015] [Accepted: 04/22/2015] [Indexed: 11/18/2022]
Abstract
Candida albicans D-erythroascorbate peroxidase (EAPX1), which can catalyze the oxidation of D-erythroascorbic acid (EASC) to water, was observed to be inducible in EAPX1-deficient and EAPX1-overexpressing cells via activity staining. EAPX1-deficient cells have remarkably increased intracellular reactive oxygen species and methylglyoxal independent of the intracellular EASC content. The increased methylglyoxal caused EAPX1-deficient cells to activate catalase-peroxidase and cytochrome c peroxidase, which led to defects in cell growth, viability, mitochondrial respiration, filamentation and virulence. These findings indicate that EAPX1 mediates cell differentiation and virulence by regulating intracellular methylglyoxal along with oxidative stresses, regardless of endogenous EASC biosynthesis or alternative oxidase expression.
Collapse
Affiliation(s)
- Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Hyun Song
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - MyungHee Ku
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
13
|
|
14
|
Zhang LB, Tang L, Ying SH, Feng MG. Subcellular localization of six thioredoxins and their antioxidant activity and contributions to biological control potential in Beauveria bassiana. Fungal Genet Biol 2015; 76:1-9. [DOI: 10.1016/j.fgb.2015.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/17/2022]
|
15
|
Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1855-69. [PMID: 25018088 DOI: 10.1016/j.bbadis.2014.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/04/2014] [Accepted: 07/06/2014] [Indexed: 01/05/2023]
Abstract
Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases called candidiasis. Its ability to grow in various morphological forms, such as unicellular budding yeast, filamentous pseudohyphae and hyphae, contributes to its survival in the diverse microenvironments it encounters in the host. During infection in vivo, C. albicans is faced with high levels of reactive oxygen species (ROS) generated by phagocytes, and the thiol-dependent redox status of the cells reflects their levels of oxidative stress. We investigated the role of glutathione during the transition between the yeast and hyphal forms of the pathogen, in relation to possible changes in mitochondrial bioenergetic pathways. Using various growth media and selective mutations affecting the filamentation process, we showed that C. albicans filamentation was always associated with a depletion of intracellular glutathione levels. Moreover, the induction of hypha formation resulted in general changes in thiol metabolism, including the oxidation of cell surface -SH groups and glutathione excretion. Metabolic adaptation involved tricarboxylic acid (TCA) cycle activation, acceleration of mitochondrial respiration and a redistribution of electron transfer pathways, with an increase in the contribution of the alternative oxidase and rotenone-insensitive dehydrogenase. Changes in redox status and apparent oxidative stress may be necessary to the shift to adaptive metabolic pathways, ensuring normal mitochondrial function and adenosine triphosphate (ATP) levels. The consumption of intracellular glutathione levels during the filamentation process may thus be the price paid by C. albicans for survival in the conditions encountered in the host.
Collapse
|
16
|
Ciesielska K, Li B, Groeneboer S, Van Bogaert I, Lin YC, Soetaert W, Van de Peer Y, Devreese B. SILAC-Based Proteome Analysis of Starmerella bombicola Sophorolipid Production. J Proteome Res 2013; 12:4376-92. [DOI: 10.1021/pr400392a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Katarzyna Ciesielska
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat
35, 9000 Ghent, Belgium
| | - Bing Li
- VIB
Department of Plant Systems Biology and Department of Plant Biotechnology
and Bioinformatics, Ghent University, Technologiepark 927 B-9052, 9000 Ghent, Belgium
| | - Sara Groeneboer
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat
35, 9000 Ghent, Belgium
| | - Inge Van Bogaert
- Laboratory
of Industrial Biotechnology and Biocatalysis, Ghent University, Coupure
Links 653, 9000 Ghent, Belgium
| | | | - Wim Soetaert
- Laboratory
of Industrial Biotechnology and Biocatalysis, Ghent University, Coupure
Links 653, 9000 Ghent, Belgium
| | - Yves Van de Peer
- VIB
Department of Plant Systems Biology and Department of Plant Biotechnology
and Bioinformatics, Ghent University, Technologiepark 927 B-9052, 9000 Ghent, Belgium
| | - Bart Devreese
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat
35, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Abegg MA, Alabarse PVG, Schüller AK, Benfato MS. Glutathione levels in and total antioxidant capacity of Candida sp. cells exposed to oxidative stress caused by hydrogen peroxide. Rev Soc Bras Med Trop 2013; 45:620-6. [PMID: 23152347 DOI: 10.1590/s0037-86822012000500015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 02/06/2012] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The capacity to overcome the oxidative stress imposed by phagocytes seems to be critical for Candida species to cause invasive candidiasis. METHODS To better characterize the oxidative stress response (OSR) of 8 clinically relevant Candida sp., glutathione, a vital component of the intracellular redox balance, was measured using the 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB)-glutathione disulfide (GSSG) reductase reconversion method; the total antioxidant capacity (TAC) was measured using a modified method based on the decolorization of the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic) acid radical cation (ABTS*+). Both methods were used with cellular Candida sp. extracts treated or not with hydrogen peroxide (0.5 mM). RESULTS Oxidative stress induced by hydrogen peroxide clearly reduced intracellular glutathione levels. This depletion was stronger in Candida albicans and the levels of glutathione in untreated cells were also higher in this species. The TAC demonstrated intra-specific variation. CONCLUSIONS Glutathione levels did not correlate with the measured TAC values, despite this being the most important non-enzymatic intracellular antioxidant molecule. The results indicate that the isolated measurement of TAC does not give a clear picture of the ability of a given Candida sp. to respond to oxidative stress.
Collapse
Affiliation(s)
- Maxwel Adriano Abegg
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | |
Collapse
|
18
|
Taguchi F, Ichinose Y. Virulence factor regulator (Vfr) controls virulence-associated phenotypes in Pseudomonas syringae pv. tabaci 6605 by a quorum sensing-independent mechanism. MOLECULAR PLANT PATHOLOGY 2013; 14:279-92. [PMID: 23145783 PMCID: PMC6638821 DOI: 10.1111/mpp.12003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Virulence factor regulator (Vfr) is a member of the cyclic 3',5'-adenosine monophosphate (cAMP) receptor proteins that regulate the expression of many important virulence genes in Pseudomonas aeruginosa. The role of Vfr in pathogenicity has not been elucidated fully in phytopathogenic bacteria. To investigate the function of Vfr in Pseudomonas syringae pv. tabaci 6605, the vfr gene was disrupted. The virulence of the vfr mutant towards host tobacco plants was attenuated significantly, and the intracellular cAMP level was decreased. The vfr mutant reduced the expression of flagella-, pili- and type III secretion system-related genes and the defence response in nonhost Arabidopsis leaves. Furthermore, the expression levels of achromobactin-related genes and the iron uptake ability were decreased, suggesting that Vfr regulates positively these virulence-related genes. In contrast, the vfr mutant showed higher tolerance to antimicrobial compounds as a result of the enhanced expression of the resistance-nodulation-division family members, the mexA, mexB and oprM genes. We further demonstrated that the mutant strains of vfr and cyaA, an adenylate cyclase gene responsible for cAMP synthesis, showed a similar phenotype, suggesting that Vfr regulates virulence factors in a cAMP-dependent manner. Because there was no significant difference in the production of acylhomoserine lactone (AHL) quorum sensing molecules in the wild-type, vfr and cyaA mutant strains, Vfr might control important virulence factors by an AHL-independent mechanism in an early stage of infection by this bacterium.
Collapse
Affiliation(s)
- Fumiko Taguchi
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan
| | | |
Collapse
|
19
|
Michán C, Martínez JL, Alvarez MC, Turk M, Sychrova H, Ramos J. Salt and oxidative stress tolerance in Debaryomyces hansenii and Debaryomyces fabryi. FEMS Yeast Res 2012; 13:180-8. [PMID: 23122272 DOI: 10.1111/1567-1364.12020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 09/24/2012] [Accepted: 10/30/2012] [Indexed: 11/28/2022] Open
Abstract
We report the characterization of five strains belonging to the halotolerant highly related Debaryomyces hansenii/fabryi species. The analysis performed consisted in studying tolerance properties, membrane characteristics, and cation incell amounts. We have specifically investigated (1) tolerance to different chemicals, (2) tolerance to osmotic and salt stress, (3) tolerance and response to oxidative stress, (4) reactive oxygen species (ROS) content, (5) relative membrane potential, (6) cell volume, (7) K(+) and Na(+) ion content, and (8) membrane fluidity. Unexpectedly, no direct relationship was found between one particular strain, Na(+) content and its tolerance to NaCl or between its ROS content and its tolerance to H(2)O(2). Results show that, although in general, human origin D. fabryi strains were more resistant to oxidative stress and presented shorter doubling times and smaller cell volume than food isolated D. hansenii ones, strains belonging to the same species can be significantly different. Debaryomyces fabryi CBS1793 strain highlighted for its extremely tolerant behavior when exposed to the diverse stress factors studied.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Candiracci M, Citterio B, Piatti E. Antifungal activity of the honey flavonoid extract against Candida albicans. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Desai PR, Thakur A, Ganguli D, Paul S, Morschhäuser J, Bachhawat AK. Glutathione utilization by Candida albicans requires a functional glutathione degradation (DUG) pathway and OPT7, an unusual member of the oligopeptide transporter family. J Biol Chem 2011; 286:41183-41194. [PMID: 21994941 DOI: 10.1074/jbc.m111.272377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Candida albicans lacks the ability to survive within its mammalian host in the absence of endogenous glutathione biosynthesis. To examine the ability of this yeast to utilize exogenous glutathione, we exploited the organic sulfur auxotrophy of C. albicans met15Δ strains. We observed that glutathione is utilized efficiently by the alternative pathway of glutathione degradation (DUG pathway). The major oligopeptide transporters OPT1-OPT5 of C. albicans that were most similar to the known yeast glutathione transporters were not found to contribute to glutathione transport to any significant extent. A genomic library approach to identify the glutathione transporter of C. albicans yielded OPT7 as the primary glutathione transporter. Biochemical studies on OPT7 using radiolabeled GSH uptake revealed a K(m) of 205 μm, indicating that it was a high affinity glutathione transporter. OPT7 is unusual in several aspects. It is the most remote member to known yeast glutathione transporters, lacks the two highly conserved cysteines in the family that are known to be crucial in trafficking, and also has the ability to take up tripeptides. The transporter was regulated by sulfur sources in the medium. OPT7 orthologues were prevalent among many pathogenic yeasts and fungi and formed a distinct cluster quite remote from the Saccharomyces cerevisiae HGT1 glutathione transporter cluster. In vivo experiments using a systemic model of candidiasis failed to detect expression of OPT7 in vivo, and strains disrupted either in the degradation (dug3Δ) or transport (opt7Δ) of glutathione failed to show a defect in virulence.
Collapse
Affiliation(s)
- Prashant Ramesh Desai
- Institute of Microbial Technology (Council for Scientific and Industrial Research), Chandigarh 160036, India
| | - Anil Thakur
- Institute of Microbial Technology (Council for Scientific and Industrial Research), Chandigarh 160036, India
| | - Dwaipayan Ganguli
- Institute of Microbial Technology (Council for Scientific and Industrial Research), Chandigarh 160036, India
| | - Sanjoy Paul
- Institute of Microbial Technology (Council for Scientific and Industrial Research), Chandigarh 160036, India
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97080 Würzburg, Germany
| | - Anand K Bachhawat
- Institute of Microbial Technology (Council for Scientific and Industrial Research), Chandigarh 160036, India; Indian Institute of Science Education & Research Mohali, Knowledge City, S.A.S. Nagar, Punjab-140306, India.
| |
Collapse
|
22
|
Vargas P, Felipe A, Michán C, Gallegos MT. Induction of Pseudomonas syringae pv. tomato DC3000 MexAB-OprM multidrug efflux pump by flavonoids is mediated by the repressor PmeR. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1207-19. [PMID: 21649511 DOI: 10.1094/mpmi-03-11-0077] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we have analyzed the expression of the Pseudomonas syringae pv. tomato DC3000 mexAB-oprM efflux pump operon and of the regulatory gene pmeR, and we have investigated the role of the PmeR protein on transcription from both promoters. We demonstrate that mexAB-oprM and pmeR are expressed in vivo at a relatively high and moderate basal level, respectively, which, in both cases, increases in the presence of different flavonoids and other compounds, such as butyl and methylparaben. We show that PmeR is the local repressor of the mexAB-oprM promoter and is able to regulate its own expression. The mechanism for this regulation includes binding to a pseudopalindromic operator site which overlaps both mexAB-oprM and pmeR promoters. We have also proven that flavonoids are able to interact with PmeR and induce a conformational change that interferes with the DNA binding ability of PmeR, thereby modulating mexAB-oprM and pmeR expression. Finally, we demonstrate by in vivo experiments that the PmeR/MexAB-OprM system contributes to the colonization of tomato plants. These results provide new insight into a transcriptional regulator and a transport system that play essential roles in the ability of P. syringae pv. tomato DC3000 to resist the action of flavonoids produced by the host.
Collapse
Affiliation(s)
- Paola Vargas
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidin, Granada, Spain
| | | | | | | |
Collapse
|
23
|
Kucharíková S, Tournu H, Lagrou K, Van Dijck P, Bujdáková H. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J Med Microbiol 2011; 60:1261-1269. [PMID: 21566087 DOI: 10.1099/jmm.0.032037-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida biofilm development can be influenced by diverse factors such as substrate, culture medium, carbohydrate source and pH. We have analysed biofilm formation of Candida albicans SC5314 and Candida glabrata ATCC 2001 wild-type strains in the presence of different media (RPMI 1640 versus YNB) and using different pH values (pH 5.6 or 7.0). We determined adhesion and biofilm formation on polystyrene, changes in the expression of adhesin genes during these processes and the susceptibility of mature biofilms to echinocandins. Biofilms formed on polystyrene by both Candida species proved to be influenced strongly by the composition of the medium rather than pH. C. albicans and C. glabrata formed thicker biofilms in RPMI 1640 medium, whereas in YNB medium, both species manifested adhesion rather than characteristic multilayer biofilm architecture. The stimulated biofilm formation in RPMI 1640 medium at pH 7.0 corroborated positively with increased expression of adhesin genes, essential to biofilm formation in vitro, including ALS3 and EAP1 in C. albicans and EPA6 in C. glabrata. The thicker biofilms grown in RPMI 1640 medium were more tolerant to caspofungin and anidulafungin than YNB-grown biofilms. We also observed that mature C. glabrata biofilms were less susceptible in RPMI 1640 medium to echinocandins than C. albicans biofilms. Environmental conditions, i.e. medium and pH, can significantly affect not only biofilm architecture, but also the expression profile of several genes involved during the different stages of biofilm development. In addition, growth conditions may also influence the antifungal-susceptibility profile of fungal populations within biofilm structures. Therefore, before designing any experimental biofilm set-up, it is important to consider the potential influence of external environmental factors on Candida biofilm development.
Collapse
Affiliation(s)
- Soňa Kucharíková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Mlynská dolina B-2, 842 15 Bratislava, Slovak Republic
- VIB Department of Molecular Microbiology, KU Leuven, Kasteelpark Arenberg 31, Box 2438, B-3001 Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Hélène Tournu
- VIB Department of Molecular Microbiology, KU Leuven, Kasteelpark Arenberg 31, Box 2438, B-3001 Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Medical Diagnostic Sciences, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- VIB Department of Molecular Microbiology, KU Leuven, Kasteelpark Arenberg 31, Box 2438, B-3001 Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Helena Bujdáková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Mlynská dolina B-2, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
24
|
Differential Resistance to Oxidants and Production of Hydrolytic Enzymes in Candida albicans. Mycopathologia 2010; 171:35-41. [DOI: 10.1007/s11046-010-9346-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 07/06/2010] [Indexed: 11/25/2022]
|
25
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
26
|
Garcerá A, Casas C, Herrero E. Expression of Candida albicans glutathione transferases is induced inside phagocytes and upon diverse environmental stresses. FEMS Yeast Res 2010; 10:422-31. [DOI: 10.1111/j.1567-1364.2010.00613.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Calderone R, Odds FC, Boekhout T. Candida albicans: fundamental research on an opportunistic human pathogen. FEMS Yeast Res 2009; 9:971-2. [PMID: 19845040 DOI: 10.1111/j.1567-1364.2009.00585.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|