1
|
Synthesis and biological activity of amide derivatives derived from natural product Waltherione F. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Kara M, Öztaş E, Boran T, Sevim Ç, Keskin SE, Veskoukis AS, Kuzmin SV, Tsatsakis AM. The sesquiterpenoid valerenic acid protects neuronal cells from the detrimental effects of the fungicide benomyl on apoptosis and DNA oxidation. Hum Exp Toxicol 2022; 41:9603271221101038. [PMID: 35764419 DOI: 10.1177/09603271221101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Valerenic acid (VA), a sesquiterpenoid of the plant Valeriana officinalis, has attracted attention of the research community due to its potential positive role against neurodegenerative diseases induced by chemicals. However, the relevant evidence in the literature is scarce. Therefore, this study aimed to examine the putative protective role of VA on the toxic effects of the fungicide benomyl on SH-SY5Y neural cells. METHODS Cell viability was determined via the MTT and NRU assays, DNA damage was assessed via comet assay and apoptosis was evaluated through the expression of relevant genes. RESULTS According to the results, exposure of the cells to benomyl enhanced viability inhibition and promoted DNA damage and apoptosis since the expression levels of the genes coding for MAPK8, NF-kB, Bax, Caspase-9 and Caspase-3 were increased. Treatment of the cells with VA ameliorated these effects in a concentration dependent manner. CONCLUSION It is concluded that the molecular mechanism through which benomyl exerts its toxic action appears to depend on DNA oxidation and apoptosis induction. Furthermore, VA, a plant-derived compound is a protective antioxidant against pesticide-induced toxicity. Therefore, herbs, extracts and compounds of plant origin could be used as nutritional supplements that back up the beneficial role of medicine in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 369917Istanbul University, Istanbul, Turkey
| | - Ezgi Öztaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 369917Istanbul University, Istanbul, Turkey
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 369917Istanbul University, Istanbul, Turkey
| | - Çiğdem Sevim
- Deparment of Medical Pharmacology, Faculty of Medicine, 485657University of Kastamonu, Kastamonu, Turkey
| | - Seda Eren Keskin
- Department of Medical Genetics, Faculty of Medicine, 52980Kocaeli University, Kocaeli, Turkey
| | - Aristidis S Veskoukis
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - Sergei V Kuzmin
- FBES "F.F. Erisman Federal Scientific Center of Hygiene" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Mytishchi, Russia
| | - Aristides M Tsatsakis
- FBES "F.F. Erisman Federal Scientific Center of Hygiene" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Mytishchi, Russia.,Center of Toxicology Science and Research, Medical School, 37778University of Crete, Heraklion, Greece
| |
Collapse
|
3
|
Pospisilova S, Marvanova P, Treml J, Moricz AM, Ott PG, Mokry P, Odehnalova K, Sedo O, Cizek A, Jampilek J. Activity of N-Phenylpiperazine Derivatives Against Bacterial and Fungal Pathogens. Curr Protein Pept Sci 2020; 20:1119-1129. [PMID: 31518219 DOI: 10.2174/1389203720666190913114041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND As the bacterial resistance to antibacterial chemotherapeutics is one of the greatest problems in modern medicine, efforts are made to develop new antimicrobial drugs. Compounds with a piperazine ring have proved to be promising agents against various pathogens. OBJECTIVE The aim of the study was to prepare a series of new N-phenylpiperazines and determine their activity against various pathogens. METHOD Target compounds were prepared by multi-step synthesis starting from an appropriate substituted acid to an oxirane intermediate reacting with 1-(4-nitrophenyl)piperazine. Lipophilicity and pKa values were experimentally determined. Other molecular parameters were calculated. The inhibitory activity of the target compounds against Staphylococcus aureus, four mycobacteria strains, Bipolaris sorokiniana, and Fusarium avenaceum was tested. In vitro antiproliferative activity was determined on a THP-1 cell line, and toxicity against plant was determined using Nicotiana tabacum. RESULTS In general, most compounds demonstrated only moderate effects. 1-(2-Hydroxy-3-{[4-(propan- 2-yloxy)benzoyl]oxy}propyl)-4-(4-nitrophenyl)piperazinediium dichloride and 1-{3-[(4-butoxybenzoyl)- oxy]-2-hydroxypropyl}-4-(4-nitrophenyl)piperazinediium dichloride showed the highest inhibition activity against M. kansasii (MIC = 15.4 and 15.0 µM, respectively) and the latter also against M. marinum (MIC = 15.0 µM). 1-(2-Hydroxy-3-{[4-(2-propoxyethoxy)benzoyl]oxy}propyl)-4-(4-nitrophenyl)piperazinediium dichloride had the highest activity against F. avenaceum (MIC = 14.2 µM). All the compounds showed only insignificant toxic effects on human and plant cells. CONCLUSION Ten new 1-(4-nitrophenyl)piperazine derivatives were prepared and analyzed, and their antistaphylococcal, antimycobacterial, and antifungal activities were determined. The activity against M. kansasii was positively influenced by higher lipophilicity, the electron-donor properties of substituent R and a lower dissociation constant. The exact mechanism of action will be investigated in follow-up studies.
Collapse
Affiliation(s)
- Sarka Pospisilova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Agnes M Moricz
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter G Ott
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Klara Odehnalova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Ondrej Sedo
- Research Group of Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
4
|
Zimmermann A, Tadic J, Kainz K, Hofer SJ, Bauer MA, Carmona-Gutierrez D, Madeo F. Transcriptional and epigenetic control of regulated cell death in yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:55-82. [PMID: 32334817 DOI: 10.1016/bs.ircmb.2019.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unicellular organisms like yeast can undergo controlled demise in a manner that is partly reminiscent of mammalian cell death. This is true at the levels of both mechanistic and functional conservation. Yeast offers the combination of unparalleled genetic amenability and a comparatively simple biology to understand both the regulation and evolution of cell death. In this minireview, we address the capacity of the nucleus as a regulatory hub during yeast regulated cell death (RCD), which is becoming an increasingly central question in yeast RCD research. In particular, we explore and critically discuss the available data on stressors and signals that specifically impinge on the nucleus. Moreover, we also analyze the current knowledge on nuclear factors as well as on transcriptional control and epigenetic events that orchestrate yeast RCD. Altogether we conclude that the functional significance of the nucleus for yeast RCD in undisputable, but that further exploration beyond correlative work is necessary to disentangle the role of nuclear events in the regulatory network.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
5
|
Truong T, Zeng G, Lim TK, Cao T, Pang LM, Lee YM, Lin Q, Wang Y, Seneviratne CJ. Proteomics Analysis ofCandida albicans dnm1Haploid Mutant Unraveled the Association between Mitochondrial Fission and Antifungal Susceptibility. Proteomics 2019; 20:e1900240. [DOI: 10.1002/pmic.201900240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/05/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Thuyen Truong
- Oral Sciences, Faculty of DentistryNational University of Singapore 9 Lower Kent Ridge Road Singapore 119085
| | - Guisheng Zeng
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research 61 Biopolis Drive, Proteos Singapore 138673
| | - Teck Kwang Lim
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Tong Cao
- Oral Sciences, Faculty of DentistryNational University of Singapore 9 Lower Kent Ridge Road Singapore 119085
| | - Li Mei Pang
- National Dental Research Institute SingaporeSinghealth Duke NUS, Singapore 5 Second Hospital Ave Singapore 168938
| | - Yew Mun Lee
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Qingsong Lin
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Yue Wang
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research 61 Biopolis Drive, Proteos Singapore 138673
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of Singapore 10 Medical Dr Singapore 117597
| | | |
Collapse
|
6
|
Lee W, Lee DG. A novel mechanism of fluconazole: fungicidal activity through dose-dependent apoptotic responses in Candida albicans. Microbiology (Reading) 2018; 164:194-204. [DOI: 10.1099/mic.0.000589] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Wonjong Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| |
Collapse
|
7
|
Cotoras M, Castro P, Vivanco H, Melo R, Mendoza L. Farnesol induces apoptosis-like phenotype in the phytopathogenic fungusBotrytis cinerea. Mycologia 2017; 105:28-33. [DOI: 10.3852/12-012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Milena Cotoras
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Paulo Castro
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Herman Vivanco
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Ricardo Melo
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Leonora Mendoza
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
8
|
Sukhanova EI, Rogov AG, Severin FF, Zvyagilskaya RA. Phenoptosis in yeasts. BIOCHEMISTRY (MOSCOW) 2014; 77:761-75. [PMID: 22817540 DOI: 10.1134/s0006297912070097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current view on phenoptosis and apoptosis as genetic programs aimed at eliminating potentially dangerous organisms and cells, respectively, is given. Special emphasis is placed on apoptosis (phenoptosis) in yeasts: intracellular defects and a plethora of external stimuli inducing apoptosis in yeasts; distinctive morphological and biochemical hallmarks accompanying apoptosis in yeasts; pro- and antiapoptotic factors involved in yeast apoptosis signaling; consecutive stages of apoptosis from external stimulus to the cell death; a prominent role of mitochondria and other organelles in yeast apoptosis; possible pathways for release of apoptotic factors from the intermembrane mitochondrial space into the cytosol are described. Using some concrete examples, the obvious physiological importance and expediency of altruistic death of yeast cells is shown. Poorly known aspects of yeast apoptosis and prospects for yeast apoptosis study are defined.
Collapse
Affiliation(s)
- E I Sukhanova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | | | | |
Collapse
|
9
|
Cheung RCF, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL, Wang HX, Fang EF, Lam SK, Ngai PHK, Xia LX, Liu F, Ye XY, Zhang GQ, Liu QH, Sha O, Lin P, Ki C, Bekhit AA, Bekhit AED, Wan DCC, Ye XJ, Xia J, Ng TB. Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol 2014; 98:3475-94. [PMID: 24562325 DOI: 10.1007/s00253-014-5575-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/27/2023]
Abstract
Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The cell wall sensors Mtl1, Wsc1, and Mid2 are required for stress-induced nuclear to cytoplasmic translocation of cyclin C and programmed cell death in yeast. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:320823. [PMID: 24260614 PMCID: PMC3821959 DOI: 10.1155/2013/320823] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022]
Abstract
Mtl1 is a member of a cell wall sensor family that monitors cell wall integrity in budding yeast. In response to cell wall stress, Mtl1 activates the cell wall integrity (CWI) MAP kinase pathway which transmits this signal to the nucleus to effect changes in gene expression. One target of the CWI MAP kinase is cyclin C, a negative regulator of stress response genes. CWI activation results in cyclin C relocalization from the nucleus to the cytoplasm where it stimulates programmed cell death (PCD) before it is destroyed. This report demonstrates that under low oxidative stress conditions, a combination of membrane sensors, Mtl1 and either Wsc1 or Mid2, are required jointly to transmit the oxidative stress signal to initiate cyclin C destruction. However, when exposed to elevated oxidative stress, additional pathways independent of these three sensor proteins are activated to destroy cyclin C. In addition, N-glycosylation is important for Mtl1 function as mutating the receptor residue (Asn42) or an enzyme required for synthesis of N-acetylglucosamine (Gfa1) reduces sensor activity. Finally, combining gfa1-1 with the cyclin C null allele induces a severe synthetic growth defect. This surprising result reveals a previously unknown genetic interaction between cyclin C and plasma membrane integrity.
Collapse
|
11
|
Guaragnella N, Zdralević M, Antonacci L, Passarella S, Marra E, Giannattasio S. The role of mitochondria in yeast programmed cell death. Front Oncol 2012; 2:70. [PMID: 22783546 PMCID: PMC3388595 DOI: 10.3389/fonc.2012.00070] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/14/2012] [Indexed: 01/02/2023] Open
Abstract
Mammalian apoptosis and yeast programmed cell death (PCD) share a variety of features including reactive oxygen species production, protease activity and a major role played by mitochondria. In view of this, and of the distinctive characteristics differentiating yeast and multicellular organism PCD, the mitochondrial contribution to cell death in the genetically tractable yeast Saccharomyces cerevisiae has been intensively investigated. In this mini-review we report whether and how yeast mitochondrial function and proteins belonging to oxidative phosphorylation, protein trafficking into and out of mitochondria, and mitochondrial dynamics, play a role in PCD. Since in PCD many processes take place over time, emphasis will be placed on an experimental model based on acetic acid-induced PCD (AA-PCD) which has the unique feature of having been investigated as a function of time. As will be described there are at least two AA-PCD pathways each with a multifaceted role played by mitochondrial components, in particular by cytochrome c.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes and Bioenergetics, National Research Council of Italy, Bari, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Bink A, Govaert G, Vandenbosch D, Kuchariková S, Coenye T, Nelis H, Van Dijck P, Cammue BPA, Thevissen K. Transcription factor Efg1 contributes to the tolerance of Candida albicans biofilms against antifungal agents in vitro and in vivo. J Med Microbiol 2012; 61:813-819. [DOI: 10.1099/jmm.0.041020-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anna Bink
- Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Gilmer Govaert
- Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Davy Vandenbosch
- Laboratory of Pharmaceutical Microbiology, Universiteit Gent, Harelbekestraat 72, 9000 Gent, Belgium
| | - Soňa Kuchariková
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
- VIB Department of Molecular Microbiology, Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Universiteit Gent, Harelbekestraat 72, 9000 Gent, Belgium
| | - Hans Nelis
- Laboratory of Pharmaceutical Microbiology, Universiteit Gent, Harelbekestraat 72, 9000 Gent, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
- VIB Department of Molecular Microbiology, Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
13
|
Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PWJ, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BPA. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 2012; 84:166-80. [PMID: 22384976 DOI: 10.1111/j.1365-2958.2012.08017.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2-hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast-to-hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analysed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24-ceramides in membranes of RsAFP2-treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation.
Collapse
Affiliation(s)
- Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, 3001 Heverlee, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Mitochondria play crucial roles in programmed cell death and aging. Different stimuli activate distinct mitochondrion-dependent cell death pathways, and aging is associated with a progressive increase in mitochondrial damage, culminating in oxidative stress and cellular dysfunction. Mitochondria are highly dynamic organelles that constantly fuse and divide, forming either interconnected mitochondrial networks or separated fragmented mitochondria. These processes are believed to provide a mitochondrial quality control system and enable an effective adaptation of the mitochondrial compartment to the metabolic needs of the cell. The baker's yeast, Saccharomyces cerevisiae, is an established model for programmed cell death and aging research. The present review summarizes how mitochondrial morphology is altered on induction of cell death or on aging and how this correlates with the induction of different cell death pathways in yeast. We highlight the roles of the components of the mitochondrial fusion and fission machinery that affect and regulate cell death and aging.
Collapse
|
15
|
Abstract
A concerted balance between proliferation and apoptosis is essential to the survival of multicellular organisms. Thus, apoptosis per se, although it is a destructive process leading to the death of single cells, also serves as a pro-survival mechanism pro-survival mechanism that ensures healthy organismal development and acts as a life-prolonging or anti-aging anti-aging program. The discovery that yeast also possess a functional and, in many cases, highly conserved apoptotic machinery has made it possible to study the relationships between aging and apoptosis in depth using a well-established genetic system and the powerful tools available to yeast researchers for investigating complex physiological and cytological interactions. The aging process of yeast, be it replicative replicative or chronological chronological aging, is closely related to apoptosis, although it remains unclear whether apoptosis is a causal feature of the aging process or vice versa. Nevertheless, experimental results obtained during the past several years clearly demonstrate that yeast serve as a powerful and versatile experimental system for understanding the interconnections between these two fundamentally important cellular and physiological pathways.
Collapse
Affiliation(s)
- Peter Laun
- Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg, Austria,
| | | | | | | | | |
Collapse
|
16
|
Thevissen K, Pellens K, De Brucker K, François IE, Chow KK, Meert EM, Meert W, Van Minnebruggen G, Borgers M, Vroome V, Levin J, De Vos D, Maes L, Cos P, Cammue BP. Novel fungicidal benzylsulfanyl-phenylguanidines. Bioorg Med Chem Lett 2011; 21:3686-92. [DOI: 10.1016/j.bmcl.2011.04.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/13/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
|