1
|
Brauer EK, Balcerzak M, Rocheleau H, Leung W, Schernthaner J, Subramaniam R, Ouellet T. Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:553-560. [PMID: 31790345 DOI: 10.1094/mpmi-11-19-0332-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin virulence factor that promotes growth of the Fusarium graminearum fungus in wheat floral tissues. To further our understanding of the effects of DON exposure on plant cell function, we characterized DON-induced transcriptional changes in wheat spikelets. Four hundred wheat genes were differentially expressed during infection with wild-type F. graminearum as compared with a Δtri5 mutant strain that is unable to produce DON. Most of these genes were more induced by the DON-producing strain and included genes involved in secondary metabolism, signaling, transport, and stress responses. DON induction was confirmed for a subset of the genes, including TaNFXL1, by treating tissues with DON directly. Previous work indicates that the NFXL1 ortholog represses trichothecene-induced defense responses and bacterial resistance in Arabidopsis, but the role of the NFXL family has not been studied in wheat. We observed greater DON-induced TaNFXL1 gene expression in a susceptible wheat genotype relative to the F. graminearum-resistant genotype Wuhan 1. Functional testing using both virus-induced gene silencing and CRISPR-mediated genome editing indicated that TaNFXL1 represses F. graminearum resistance. Together, this suggests that targeting the TaNFXL1 gene may help to develop disease resistance in cultivated wheat.
Collapse
Affiliation(s)
- Elizabeth K Brauer
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Hélène Rocheleau
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Winnie Leung
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Johann Schernthaner
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
2
|
Mitochondrion: A new molecular target and potential treatment strategies against trichothecenes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Deyu H, Luqing C, Xianglian L, Pu G, Qirong L, Xu W, Zonghui Y. Protective mechanisms involving enhanced mitochondrial functions and mitophagy against T-2 toxin-induced toxicities in GH3 cells. Toxicol Lett 2018; 295:41-53. [PMID: 29870751 DOI: 10.1016/j.toxlet.2018.05.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
Abstract
T-2 toxin is the most toxic member of trichothecene mycotoxin. So far, the mechanism of mitochondrial toxicity and protective mechanism in mammalian cells against T-2 toxin are not fully understood. In this study, we aimed to investigate the cellular and mitochondrial toxicity of T-2 toxin, and the cellular protective mechanisms in rat pituitary GH3 cells. We showed that T-2 toxin significantly increased reactive oxygen species (ROS) and DNA damage and caused apoptosis in GH3 cells. T-2 toxin induced abnormal cell morphology, cytoplasm and nuclear shrinkage, nuclear fragmentation and formation of apoptotic bodies and autophagosomes. The mitochondrial degradative morphologies included local or total cristae collapse and small condensed mitochondria. T-2 toxin decreased the mitochondrial membrane potential. However, T-2 toxin significantly increased the superoxide dismutase (SOD) activity and expression of antioxidant genes glutathione peroxidase 1 (GPx-1), catalase (CAT), mitochondria-specific SOD-2 and mitochondrial uncoupling protein-1, -2 and -3 (UCP-1, 2 and 3). Interestingly, T-2 toxin increased adenosine triphosphate (ATP) levels and mitochondrial complex I activity, and increased the expression of most of mitochondrial electron transport chain subunits tested and critical transcription factors controlling mitochondrial biogenesis and mitochondrial DNA transcription and replication. T-2 toxin increased mitophagic activity by increasing the expression of mitophagy-specific proteins NIP-like protein X (NIX), PTEN-induced putative kinase protein 1 (PINK1) and E3 ubiquitin ligase Parkin. T-2 toxin activated the protective protein kinase A (PKA) signaling pathway, which activated the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/PINK1/Parkin pathway to mediate mitophagy. Taken together, our results suggested that the mammalian cells could increase their resistance against T-2 toxin by increasing the antioxidant activity, mitophagy and mitochondrial function.
Collapse
Affiliation(s)
- Huang Deyu
- Department of Animal Sciences & Technology, Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cui Luqing
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liu Xianglian
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guo Pu
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lu Qirong
- Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wang Xu
- Department of Animal Sciences & Technology, Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yuan Zonghui
- Department of Animal Sciences & Technology, Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Animal Sciences & Technology, Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
4
|
Liao P, Liao M, Li L, Tan B, Yin Y. Effect of deoxynivalenol on apoptosis, barrier function, and expression levels of genes involved in nutrient transport, mitochondrial biogenesis and function in IPEC-J2 cells. Toxicol Res (Camb) 2017; 6:866-877. [PMID: 30090549 DOI: 10.1039/c7tx00202e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to determine the effect of 200 ng mL-1 and 2000 ng mL-1 deoxynivalenol (DON) on apoptosis, barrier function, nutrient transporter gene expression, and free amino acid variation as well as on mitochondrial biogenesis and function-related gene expression in the intestinal porcine epithelial cell line J2 (IPEC-J2) for 6 h, 12 h, and 24 h. Exposure to 200 ng mL-1 DON inhibited the cell viability and promoted cell cycle progression from the G2/M phase to the S phase (P < 0.05). The data showed that the IPEC-J2 cell content of free amino acids, such as valine, methionine, leucine, and phenylalanine, was increased (P < 0.05) after treatment for 6 h; the aspartate, threonine, and lysine contents increased (P < 0.05) after treatment for 12 h; and the aspartate, serine, glycine, alanine, isoleucine, leucine, and lysine contents decreased (P < 0.05) after treatment for 24 h. The expression levels of barrier function genes, including zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 1 (CLDN1), showed a significant reduction (P < 0.05). Moreover, the expression levels of differently regulated nutrient transporter genes, including B0,+ amino acid transporter (B0,+AT) and sodium-glucose transporter 1 (SGLT1) genes, showed a significant decrease (P < 0.05), while the Na+-dependent neutral amino acid transporter 2 (ASCT2) and glucose transporter type 2 (GLUT2) showed a significant increase (P < 0.01). The expression levels of cytokine genes, including IL-8, and IL-1β genes, showed a significant increase (P < 0.05). Furthermore, the expression levels of mitochondrial biogenesis and function-related genes, including mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF), mitochondrial single-strand DNA-binding protein (mt SSB) and mitochondrial polymerase r (mt polr), NADH dehydrogenase subunit 4 (ND4) and cytochrome c oxidase (CcOX) IV, CcOX V and cytochrome c (Cyt c), mammalian silencing information regulator-2α (SIRT-1), glucokinase and citrate synthase (CS), showed a significant increase (P < 0.05). Taken together, the present study indicated that 200 and 2000 ng mL-1 DON could affect proliferation and cell cycle progression from the G2/M phase to the S phase and could mediate the expression levels of differently regulated barrier function, nutrient transport, and mitochondrial biogenesis and function-related genes.
Collapse
Affiliation(s)
- Peng Liao
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture , Chinese Academy of Sciences , 644# Yuandaer Road , Changsha 410125 , Hunan Province , China . ; ; Tel: +86-731-8461-9703
| | - Meifang Liao
- College of Traditional Chinese Medicine , Hunan University of Chinese Medicine , 300# Xueshi Road , Changsha 410208 , Hunan Province , China
| | - Ling Li
- College of Traditional Chinese Medicine , Hunan University of Chinese Medicine , 300# Xueshi Road , Changsha 410208 , Hunan Province , China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture , Chinese Academy of Sciences , 644# Yuandaer Road , Changsha 410125 , Hunan Province , China . ; ; Tel: +86-731-8461-9703
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture , Chinese Academy of Sciences , 644# Yuandaer Road , Changsha 410125 , Hunan Province , China . ; ; Tel: +86-731-8461-9703
| |
Collapse
|
5
|
Ribosome quality control is a central protection mechanism for yeast exposed to deoxynivalenol and trichothecin. BMC Genomics 2016; 17:417. [PMID: 27245696 PMCID: PMC4888481 DOI: 10.1186/s12864-016-2718-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
Background The trichothecene mycotoxins deoxynivalenol (DON) and trichothecin (TTC) are inhibitors of eukaryotic protein synthesis. Their effect on cellular homeostasis is poorly understood. We report a systematic functional investigation of the effect of DON and TTC on the yeast Saccharomyces cerevisiae using genetic array, network and microarray analysis. To focus the genetic analysis on intracellular consequences of toxin action we eliminated the PDR5 gene coding for a potent pleiotropic drug efflux protein potentially confounding results. We therefore used a knockout library with a pdr5Δ strain background. Results DON or TTC treatment creates a fitness bottleneck connected to ribosome efficiency. Genes isolated by systematic genetic array analysis as contributing to toxin resistance function in ribosome quality control, translation fidelity, and in transcription. Mutants in the E3 ligase Hel2, involved in ribosome quality control, and several members of the Rpd3 histone deacetylase complex were highly sensitive to DON. DON and TTC have similar genetic profiles despite their different toxic potency. Network analysis shows a coherent and tight network of genetic interactions among the DON and TTC resistance conferring gene products. The networks exhibited topological properties commonly associated with efficient processing of information. Many sensitive mutants have a "slow growth" gene expression signature. DON-exposed yeast cells increase transcripts of ribosomal protein and histone genes indicating an internal signal for growth enhancement. Conclusions The combination of gene expression profiling and analysis of mutants reveals cellular pathways which become bottlenecks under DON and TTC stress. These are generally directly or indirectly connected to ribosome biosynthesis such as the general secretory pathway, cytoskeleton, cell cycle delay, ribosome synthesis and translation quality control. Gene expression profiling points to an increased demand of ribosomal components and does not reveal activation of stress pathways. Our analysis highlights ribosome quality control and a contribution of a histone deacetylase complex as main sources of resistance against DON and TTC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2718-y) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Moosavi M, Rezaei M, Kalantari H, Behfar A, Varnaseri G. l-carnitine protects rat hepatocytes from oxidative stress induced by T-2 toxin. Drug Chem Toxicol 2016; 39:445-50. [DOI: 10.3109/01480545.2016.1141423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Chang YL, Hsieh MH, Chang WW, Wang HY, Lin MC, Wang CP, Lou PJ, Teng SC. Instability of succinate dehydrogenase in SDHD polymorphism connects reactive oxygen species production to nuclear and mitochondrial genomic mutations in yeast. Antioxid Redox Signal 2015; 22:587-602. [PMID: 25328978 PMCID: PMC4334101 DOI: 10.1089/ars.2014.5966] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS Mitochondrial succinate dehydrogenase (SDH) is an essential complex of the electron transport chain and tricarboxylic acid cycle. Mutations in the human SDH subunit D frequently lead to paraganglioma (PGL), but the mechanistic consequences of the majority of SDHD polymorphisms have yet to be unraveled. In addition to the originally discovered yeast SDHD subunit Sdh4, a conserved homolog, Shh4, has recently been identified in budding yeast. To assess the pathogenic significance of SDHD mutations in PGL patients, we performed functional studies in yeast. RESULTS SDHD protein expression was reduced in SDHD-related carotid body tumor tissues. A BLAST search of SDHD to the yeast protein database revealed a novel protein, Shh4, that may have a function similar to human SDHD and yeast Sdh4. The missense SDHD mutations identified in PGL patients were created in Sdh4 and Shh4, and, surprisingly, a severe respiratory incompetence and reduced expression of the mutant protein was observed in the sdh4Δ strain expressing shh4. Although shh4Δ cells showed no respiratory-deficient phenotypes, deletion of SHH4 in sdh4Δ cells further abolished mitochondrial function. Remarkably, sdh4Δ shh4Δ strains exhibited increased reactive oxygen species (ROS) production, nuclear DNA instability, mtDNA mutability, and decreased chronological lifespan. INNOVATION AND CONCLUSION SDHD mutations are associated with protein and nuclear and mitochondrial genomic instability and increase ROS production in our yeast model. These findings reinforce our understanding of the mechanisms underlying PGL tumorigenesis and point to the yeast Shh4 as a good model to investigate the possible pathogenic relevance of SDHD in PGL polymorphisms.
Collapse
Affiliation(s)
- Ya-Lan Chang
- 1 Department of Microbiology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sukhanova EI, Rogov AG, Severin FF, Zvyagilskaya RA. Phenoptosis in yeasts. BIOCHEMISTRY (MOSCOW) 2014; 77:761-75. [PMID: 22817540 DOI: 10.1134/s0006297912070097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current view on phenoptosis and apoptosis as genetic programs aimed at eliminating potentially dangerous organisms and cells, respectively, is given. Special emphasis is placed on apoptosis (phenoptosis) in yeasts: intracellular defects and a plethora of external stimuli inducing apoptosis in yeasts; distinctive morphological and biochemical hallmarks accompanying apoptosis in yeasts; pro- and antiapoptotic factors involved in yeast apoptosis signaling; consecutive stages of apoptosis from external stimulus to the cell death; a prominent role of mitochondria and other organelles in yeast apoptosis; possible pathways for release of apoptotic factors from the intermembrane mitochondrial space into the cytosol are described. Using some concrete examples, the obvious physiological importance and expediency of altruistic death of yeast cells is shown. Poorly known aspects of yeast apoptosis and prospects for yeast apoptosis study are defined.
Collapse
Affiliation(s)
- E I Sukhanova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | | | | |
Collapse
|
9
|
Bin-Umer MA, McLaughlin JE, Basu D, McCormick S, Tumer NE. Trichothecene mycotoxins inhibit mitochondrial translation--implication for the mechanism of toxicity. Toxins (Basel) 2011; 3:1484-501. [PMID: 22295173 PMCID: PMC3268453 DOI: 10.3390/toxins3121484] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 11/16/2022] Open
Abstract
Fusarium head blight (FHB) reduces crop yield and results in contamination of grains with trichothecene mycotoxins. We previously showed that mitochondria play a critical role in the toxicity of a type B trichothecene. Here, we investigated the direct effects of type A and type B trichothecenes on mitochondrial translation and membrane integrity in Saccharomyces cerevisiae. Sensitivity to trichothecenes increased when functional mitochondria were required for growth, and trichothecenes inhibited mitochondrial translation at concentrations, which did not inhibit total translation. In organello translation in isolated mitochondria was inhibited by type A and B trichothecenes, demonstrating that these toxins have a direct effect on mitochondrial translation. In intact yeast cells trichothecenes showed dose-dependent inhibition of mitochondrial membrane potential and reactive oxygen species, but only at doses higher than those affecting mitochondrial translation. These results demonstrate that inhibition of mitochondrial translation is a primary target of trichothecenes and is not secondary to the disruption of mitochondrial membranes.
Collapse
Affiliation(s)
- Mohamed Anwar Bin-Umer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| | - John E. McLaughlin
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| | - Debaleena Basu
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| | - Susan McCormick
- Bacterial Foodborne Pathogens and Mycology Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA;
| | - Nilgun E. Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (M.A.B.-U.); (J.E.M.); (D.B.)
| |
Collapse
|
10
|
Transcript profiling of the phytotoxic response of wheat to the Fusarium mycotoxin deoxynivalenol. Mycotoxin Res 2011; 27:221-30. [PMID: 23605803 DOI: 10.1007/s12550-011-0099-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/24/2011] [Accepted: 04/27/2011] [Indexed: 12/21/2022]
Abstract
Deoxynivalenol (DON) is a trichothecene mycotoxin commonly produced by Fusarium graminearum and F. culmorum during infection of cereal plants, such as wheat and barley. This toxin is a fungal virulence factor that facilitates the development of Fusarium head blight (FHB) disease. Wheat cultivar (cv.) Remus is susceptible to DON; the toxin causes premature bleaching of spikelets and inhibits root growth. This study used custom-made wheat cDNA arrays to analyse the effect of DON on the transcriptome of heads of the toxin-sensitive wheat cv. Remus at both 4 and 24 h post-toxin treatment. DON-induced transcripts encoded an array of proteins collectively associated with a range of cellular functions, such as metabolite transformation and detoxification, the ubiquitin-proteasome proteolytic pathway, jasmonate biosynthesis and signalling, carbohydrate metabolism, and phenylpropanoid biosynthesis. This study is the first to demonstrate that the fungal virulence factor DON modulates jasmonate biosynthesis and signalling. It also highlights the fact that the toxin-mediated accumulation of transcripts associated with metabolite transformation and detoxification, proteolysis and phenylpropanoid accumulation is not unique to DON-resistant wheat genotypes. Therefore, the respective encoded proteins are likely part of the general wheat defence against DON. Comparative analysis of the results of this and other studies suggests that it is likely to be the rapidity and magnitude rather than the components of the response that are critical in determining resistance to DON and thus the spread of FHB disease in wheat heads.
Collapse
|