1
|
Van De Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, Scala D, Scala S, Zeuli L, Di Nicuolo G, Amoroso P, Calise F, Chamuleau RAFM. Bridging a Patient with Acute Liver Failure to Liver Transplantation by the AMC-Bioartificial Liver. Cell Transplant 2017; 12:563-568. [PMID: 28866946 DOI: 10.3727/000000003108747163] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recently a phase I clinical trial has been started in Italy to bridge patients with acute liver failure (ALF) to orthotopic liver transplantation (OLT) by the AMC-bioartificial liver (AMC-BAL). The AMC-BAL is charged with 10 × 109 viable primary porcine hepatocytes isolated from a specified pathogen-free (SPF) pig. Here we report a patient with ALF due to acute HBV infection. This patient was treated for 35 h by two AMC-BAL treatments and was bridged to OLT. There was improvement of biochemical and clinical parameters during the treatment. No severe adverse events were observed during treatment and follow-up of 15 months after hospital discharge. Possible porcine endogenous retrovirus (PERV) activity could not be detected in the patient's blood or blood cells up to 12 months after treatment.
Collapse
Affiliation(s)
| | - Ernesto Di Florio
- Liver Transplantation Unit, Department of Surgery, Cardarelli Hospital
| | - Vincenzo Scuderi
- Liver Transplantation Unit, Department of Surgery, Cardarelli Hospital
| | | | | | - Adele Bracco
- Centro di Biotecnologie A. O. Cardarelli, Naples, Italy
| | - Daniela Scala
- Centro di Biotecnologie A. O. Cardarelli, Naples, Italy
| | - Simona Scala
- Centro di Biotecnologie A. O. Cardarelli, Naples, Italy
| | - Laura Zeuli
- Centro di Biotecnologie A. O. Cardarelli, Naples, Italy
| | | | - Pietro Amoroso
- VI Division of Infectious Diseases, D. Cotugno Hospital, Naples, Italy
| | - Fulvio Calise
- Liver Transplantation Unit, Department of Surgery, Cardarelli Hospital
| | - Robert A F M Chamuleau
- Department of Hepatology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
2
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only effective long-term treatment for liver failure by now. However, it is not yet a perfect choice due to donor-organ shortage and the need of a lifelong immunosuppressive therapy. Therefore, it is necessary to find a new approach to fighting the disease. Several published clinical trials have reported the therapeutic effect of bio-artificial liver (BAL) for liver failure. OBJECTIVE To overview and evaluate the current clinical application and outcomes of extracorporeal BAL support system during the past 15 years. METHODS Relevant studies were retrieved from PubMed and Cochrane Library databases. Independent assessments and the final consensus decision were performed by three independent reviewers. Acceptable study designs included randomized controlled trials, controlled clinical trials, and case reports. A total of 31 studies were tabulated and critically appraised in terms of characteristics, methods, and outcomes. RESULTS There was a trend of falling into the normal ranges with the clinical and biochemical parameters after the BAL treatment. The neurological status of most patients was improved or stabilized during BAL treatment as well. No significant effect on survival could be seen after the BAL treatment. CONCLUSIONS Although BAL system proved to be a success in some clinical cases reported, it still needs to be improved greatly.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Liver support devices are used either as a bridge to liver transplantation or liver recovery in patients with acute or acute-on-chronic liver failure. The review analyzes the recent literature and asks if the current enthusiasm for these devices is justified. RECENT FINDINGS Many liver support devices exist and are discussed. Clinical data on artificial devices are rapidly emerging, especially on the molecular adsorbents recirculating system, and fractionated plasma separation and adsorption (Prometheus). While hepatic encephalopathy is improved by the molecular adsorbents recirculating system and probably Prometheus too, neither system has been shown to improve survival. Less clinical data exist for bioartificial support devices. These may use human hepatocytes, such as the extracorporeal liver assist device, although most devices use porcine hepatocytes, such as HepatAssist. SUMMARY Enthusiasm in liver support devices is justified as many nonrandomized studies have suggested some biochemical and clinical benefits. The results of several ongoing multicenter randomized controlled trials are anxiously awaited. Meanwhile, because mortality without liver transplantation remains high despite the use of liver support devices, these devices should only be used in the research setting or by experts proficient in their use and as a bridge to liver transplantation rather than liver recovery.
Collapse
Affiliation(s)
- Jason Phua
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, Singapore
| | | |
Collapse
|
4
|
Hochleitner B, Hengster P, Bucher H, Ladurner R, Schneeberger S, Krismer A, Kleinsasser A, Barnas U, Klima G, Margreiter R. Significant survival prolongation in pigs with fulminant hepatic failure treated with a novel microgravity-based bioartificial liver. Artif Organs 2007; 30:906-14. [PMID: 17181831 DOI: 10.1111/j.1525-1594.2006.00323.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of this study was to evaluate the efficacy and safety of our novel Innsbruck Bioartificial Liver (IBAL; US patent no. 10/641275), which contains aggregates of porcine hepatocytes grown under simulated microgravity, in a porcine model of fulminant hepatic failure (FHF). FHF was induced by a combination of 75-80% liver resection and ischemia of the remnant segments for 60 min in 12 pigs. Two experimental groups were studied: the control group (n = 5) received standard intensive care and the study group (n = 5) received IBAL treatment. The survival of pigs with FHF was significantly prolonged by about 150% with IBAL treatment as compared to controls (controls: 20.4 +/- 2.8 h, IBAL: 51.0 +/- 2.2 h; P = 0.00184). In addition, intracranial pressure, blood ammonia, lactate, aspartate aminotransferase, and alkaline phosphatase levels were lower in the IBAL group than in controls, indicating metabolic activity of porcine hepatocytes in the bioreactor. No adverse effects were observed.
Collapse
Affiliation(s)
- Boris Hochleitner
- Department of General and Transplant Surgery, Innsbruck University Hospital, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Li LJ, Du WB, Zhang YM, Li J, Pan XP, Chen JJ, Cao HC, Chen Y, Chen YM. Evaluation of a bioartificial liver based on a nonwoven fabric bioreactor with porcine hepatocytes in pigs. J Hepatol 2006; 44:317-24. [PMID: 16356580 DOI: 10.1016/j.jhep.2005.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/26/2005] [Accepted: 08/12/2005] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS We developed a bioartificial liver (BAL) based on a direct hemoperfusion typed nonwoven fabric bioreactor containing porcine hepatocytes. In this study, the efficacy of our BAL was evaluated with a pig fulminant hepatic failure (FHF) model. METHODS FHF was induced with intravenous administration of D-galactosamine (1.3 g/kg) in each pig. Twelve hours post D-galactosamine injection, fifteen pigs were divided into: a BAL group (n = 5), in which pigs received the BAL treatment with 1.0 to 1.3 x 10(9) hepatocytes for 6 h, a sham BAL group (n = 5), in which pigs received the BAL treatment without hepatocytes, and a FHF group (n = 5), in which pigs only received intensive care. Parameters related to liver function and animal survival up to 168 h were determined. RESULTS In the BAL group, blood ammonia and plasma lactate levels were lower, and serum glucose levels and Fischer index were higher than those in the other two groups. Survival time of pigs in the BAL group was significantly prolonged as compared with the sham BAL and the FHF group. CONCLUSIONS The BAL based on a nonwoven fabric bioreactor containing porcine hepatocytes appears to be effective in the treatment of FHF in pigs.
Collapse
Affiliation(s)
- Lan Juan Li
- Key Laboratory of Infectious Diseases, Ministry of Public Health, Department of Infectious Diseases, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Park JK, Lee DH. Bioartificial liver systems: current status and future perspective. J Biosci Bioeng 2005; 99:311-9. [PMID: 16233796 DOI: 10.1263/jbb.99.311] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 02/12/2005] [Indexed: 12/30/2022]
Abstract
Because the liver is a multifunctional and a vital organ for survival, the management of acute liver failure requires the support of a huge number of metabolic functions performed by the organ. Many early detoxification-based artificial liver techniques failed to treat the patients owing to the inadequate support of the many essential hepatic functions. For this reason, a bioartificial liver (BAL) comprising of viable hepatocytes on a mechanical support is believed to more likely provide these essential functions than a purely mechanical device. From 1990, nine clinical studies of various BAL systems have been reported, most of which utilize a hollow fiber technology, and a much larger number of various BAL systems have been suggested to show an enhanced performance. Safety issues such as immunological reactions, zoonosis and tumorgenicity have been successfully addressed for regulatory approval, but a recent report from a large-scale, randomized, and controlled phase III trial of a leading BAL system (HepatAssist) failed to meet our expectation of efficacy in terms of the overall survival rate. In this paper, we review the current BAL systems actively studied and discuss critical issues such as the hepatocyte bioreactor configuration and the hepatocyte source. On the basis of the insights gained from previously developed BAL systems and the rapid progress in stem cell technology, the short-term and long-term future perspectives of BAL systems are suggested.
Collapse
Affiliation(s)
- Jung-Keug Park
- Department of Chemical and Biochemical Engineering, Dongguk University, 3-26 Pil-dong, Choong-gu, Seoul 100-715, Korea.
| | | |
Collapse
|
7
|
van de Kerkhove MP, Hoekstra R, Chamuleau RAFM, van Gulik TM. Clinical application of bioartificial liver support systems. Ann Surg 2004; 240:216-30. [PMID: 15273544 PMCID: PMC1356396 DOI: 10.1097/01.sla.0000132986.75257.19] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To review the present status of bioartificial liver (BAL) devices and their obtained clinical results. BACKGROUND Acute liver failure (ALF) is a disease with a high mortality. Standard therapy at present is liver transplantation. Liver transplantation is hampered by the increasing shortage of organ donors, resulting in high incidence of patients with ALF dying on the transplantation waiting list. Among a variety of liver assist therapies, BAL therapy is marked as the most promising solution to bridge ALF patients to liver transplantation or to liver regeneration, because several BAL systems showed significant survival improvement in animal ALF studies. Until today, clinical application of 11 different BAL systems has been reported. METHODS A literature review was performed using MEDLINE and additional library searches. Only BAL systems that have been used in a clinical trial were included in this review. RESULTS Eleven BAL systems found clinical application. Three systems were studied in a controlled trial, showing no significant survival benefits, in part due to the insufficient number of patients included. The other systems were studied in a phase I trial or during treatment of a single patient and all showed to be safe. Most BAL therapies resulted in improvement of clinical and biochemical parameters. CONCLUSIONS Bioartificial liver therapy for bridging patients with ALF to liver transplantation or liver regeneration is promising. Its clinical value awaits further improvement of BAL devices, replacement of hepatocytes of animal origin by human hepatocytes, and assessment in controlled clinical trials.
Collapse
Affiliation(s)
- Maarten Paul van de Kerkhove
- Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
8
|
van de Kerkhove MP, Hoekstra R, van Gulik TM, Chamuleau RAFM. Large animal models of fulminant hepatic failure in artificial and bioartificial liver support research. Biomaterials 2004; 25:1613-25. [PMID: 14697863 DOI: 10.1016/s0142-9612(03)00509-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among the large range of organs involved in the field of tissue engineering (skin, blood vessels, cartilage, etc.) the liver has been given broad attention in the last decade. Liver support systems encompassing artificial and bioartificial systems are applied to treat patients with fulminant hepatic failure (FHF) as a bridge to orthotopic liver transplantation or to liver regeneration. To test safety, technical applicability and therapeutic effect of liver support systems, reliable animal models are needed. Due to the complexity of FHF many diverse attempts have been made to develop an adequate animal model to study liver failure, liver regeneration and liver support systems. In this paper an overview is given of the different models and their advantages and disadvantages are discussed. Suggestions are made for the most suitable large animal model to test liver support systems.
Collapse
Affiliation(s)
- M-P van de Kerkhove
- Surgical Laboratory IWO-1-172, Department of Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
9
|
Baccarani U, Donini A, Sanna A, Risaliti A, Cariani A, Nardo B, Cavallari A, Martinelli G, Ridolfi L, Bellini G, Scalamogna M, Bresadola F. First report of cryopreserved human hepatocytes based bioartificial liver successfully used as a bridge to liver transplantation. Am J Transplant 2004; 4:286-9. [PMID: 14974954 DOI: 10.1046/j.1600-6143.2003.00310.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cryopreserved human hepatocytes could be the best type of cells to be used in a bioartificial liver (BAL) device due to reduced biosafety and biocompatibility risks. Banking of primary human hepatocytes, obtained from livers unwanted for transplantation at harvesting, could be used as a source of human liver cells for BAL treatment. We describe herein for the first time the case of a patient affected by fulminant hepatic failure (FHF) due to acute HBV infection that was successfully bridged to emergency liver transplantation by BAL treatment using cryopreserved primary human hepatocytes. The use of cryopreserved primary human hepatocytes as the biological part of the BAL device has never been described before and might be considered as a possible alternative to xenogenic material or human tumoral cell lines due to reduced biosafety and biocompatibility risks.
Collapse
Affiliation(s)
- Umberto Baccarani
- Department of Surgery & Transplantation University of Udine, Udine, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xue YL, Zhao SF, Luo Y, Li XJ, Duan ZP, Chen XP, Li WG, Huang XQ, Li YL, Cui X, Zhong DG, Zhang ZY, Huang ZQ. TECA hybrid artificial liver support system in treatment of acute liver failure. World J Gastroenterol 2001; 7:826-9. [PMID: 11854910 PMCID: PMC4695603 DOI: 10.3748/wjg.v7.i6.826] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the efficacy and safety of TECA type hybr id artificial liver support system (TECA-HALSS) in providing liver function of detoxification, metabolism and physiology by treating the patients with acute liv er failure (ALF).
METHODS: The porcine liver cells (1-2) × 1010 were separated from the Chinese small swine and cultured in the bioreactor of TECA-BALSS at 37.0 °C and circulated through the outer space of the hollow fiber tubes in BALSS. The six liver failure patients with various degree of hepatic coma were treated by TECA-HALSS and with conventional medicines. The venous plasma of the patients was separated by a plasma separator and treated by charcoal adsorbent or plasma exchange. The plasma circulated through the inner space of the hollow fiber tubes of BALSS and mixed with the patients’ blood cells and flew back to their blood circulation. Some small molecular weight substances were exchanged between the plasma and porcine liver cells. Each treatment lasted 6.0-7.0 h. Physiological and biochemical parameters were measured before, during and after the treatment.
RESULTS: The average of porcine liver cells was (1.0-3.0) × 1010 obtained from each swine liver using our modified enzymatic digestion method. The survival rate of the cells was 85%-93% by trypan blue stain and AO/PI fluorescent stain. After cultured in TECA-BALSS bioreactor for 6 h, the survival rate of cells still remained 70%-85%. At the end of TECA-HALSS treatment, the levels of plasma NH3, ALT, TB and DB were significantly decreased. The patients who were in the state of drowsiness or coma before the treatment improved their appetite significantly and regained consciousness, some patients resumed light physical work on a short period after the treatment. One to two days after the treatment, the ratio of PTA increased warkedly. During the treatment, the heart rates, blood pressure, respiration condition and serum electrolytes (K+, Na+ and Cl-) were stable without thrombosis and bleeding in all the six patients.
CONCLUSION: TECA-HALSS treatment could be a rapid, safe and efficacious method to provide temporary liver support for patients with ALF.
Collapse
Affiliation(s)
- Y L Xue
- Chinese PLA General Hospital, Beijing 100853, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|