1
|
Le Berre C, Naveilhan P, Rolli-Derkinderen M. Enteric glia at center stage of inflammatory bowel disease. Neurosci Lett 2023; 809:137315. [PMID: 37257681 DOI: 10.1016/j.neulet.2023.137315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Although our understanding of the pathophysiology of inflammatory bowel disease (IBD) is increasing, the expanding body of knowledge does not simplify the equation but rather reveals diverse, interconnected, and complex mechanisms in IBD. In addition to immune overactivation, defects in intestinal epithelial barrier (IEB) functioning, dysbiosis, and structural and functional abnormalities of the enteric nervous system are emerging as new elements contributing to the development of IBD. In addition to molecular changes in IBD, enteric glia from patients with Crohn's disease (CD) exhibits the inability to strengthen the IEB; these defects are not observed in patients with ulcerative colitis. In addition, there is a growing body of work describing that enteric glia interacts with not only enterocytes and enteric neurons but also other local cellular neighbours. Thus, because of their functions as connectors and regulators of immune cells, IEB, and microbiota, enteric glia could be the keystone of digestive homeostasis that is lacking in patients with CD.
Collapse
Affiliation(s)
- Catherine Le Berre
- Hépato-Gastro-Entérologie et Assistance Nutritionnelle, Inserm CIC 1413, Institut des Maladies de l'Appareil Digestif (IMAD), CHU Nantes, 1 place Alexis Ricordeau, F-44000 Nantes, France; Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France.
| |
Collapse
|
2
|
Knyazev E, Maltseva D, Raygorodskaya M, Shkurnikov M. HIF-Dependent NFATC1 Activation Upregulates ITGA5 and PLAUR in Intestinal Epithelium in Inflammatory Bowel Disease. Front Genet 2021; 12:791640. [PMID: 34858489 PMCID: PMC8632048 DOI: 10.3389/fgene.2021.791640] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal epithelial cells exist in physiological hypoxia, leading to hypoxia-inducible factor (HIF) activation and supporting barrier function and cell metabolism of the intestinal epithelium. In contrast, pathological hypoxia is a common feature of some chronic disorders, including inflammatory bowel disease (IBD). This work was aimed at studying HIF-associated changes in the intestinal epithelium in IBD. In the first step, a list of genes responding to chemical activation of hypoxia was obtained in an in vitro intestinal cell model with RNA sequencing. Cobalt (II) chloride and oxyquinoline treatment of both undifferentiated and differentiated Caco-2 cells activate the HIF-signaling pathway according to gene set enrichment analysis. The core gene set responding to chemical hypoxia stimulation in the intestinal model included 115 upregulated and 69 downregulated genes. Of this set, protein product was detected for 32 genes, and fold changes in proteome and RNA sequencing significantly correlate. Analysis of publicly available RNA sequencing set of the intestinal epithelial cells of patients with IBD confirmed HIF-1 signaling pathway activation in sigmoid colon of patients with ulcerative colitis and terminal ileum of patients with Crohn's disease. Of the core gene set from the gut hypoxia model, expression activation of ITGA5 and PLAUR genes encoding integrin α5 and urokinase-type plasminogen activator receptor (uPAR) was detected in IBD specimens. The interaction of these molecules can activate cell migration and regenerative processes in the epithelium. Transcription factor analysis with the previously developed miRGTF tool revealed the possible role of HIF1A and NFATC1 in the regulation of ITGA5 and PLAUR gene expression. Detected genes can serve as markers of IBD progression and intestinal hypoxia.
Collapse
Affiliation(s)
- Evgeny Knyazev
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Maria Raygorodskaya
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Maxim Shkurnikov
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia.,National Center of Medical Radiological Research, P. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| |
Collapse
|
3
|
Baart VM, Houvast RD, de Geus-Oei LF, Quax PHA, Kuppen PJK, Vahrmeijer AL, Sier CFM. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res 2020; 10:87. [PMID: 32725278 PMCID: PMC7387399 DOI: 10.1186/s13550-020-00673-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The urokinase plasminogen activator receptor (uPAR) plays a multifaceted role in almost any process where migration of cells and tissue-remodeling is involved such as inflammation, but also in diseases as arthritis and cancer. Normally, uPAR is absent in healthy tissues. By its carefully orchestrated interaction with the protease urokinase plasminogen activator and its inhibitor (plasminogen activator inhibitor-1), uPAR localizes a cascade of proteolytic activities, enabling (patho)physiologic cell migration. Moreover, via the interaction with a broad range of cell membrane proteins, like vitronectin and various integrins, uPAR plays a significant, but not yet completely understood, role in differentiation and proliferation of cells, affecting also disease progression. The implications of these processes, either for diagnostics or therapeutics, have received much attention in oncology, but only limited beyond. Nonetheless, the role of uPAR in different diseases provides ample opportunity to exploit new applications for targeting. Especially in the fields of oncology, cardiology, rheumatology, neurology, and infectious diseases, uPAR-targeted molecular imaging could offer insights for new directions in diagnosis, surveillance, or treatment options.
Collapse
Affiliation(s)
- V M Baart
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - R D Houvast
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - L F de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - P H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Percuros BV, Leiden, The Netherlands.
| |
Collapse
|
4
|
Alpízar-Alpízar W, Skindersoe ME, Rasmussen L, Kriegbaum MC, Christensen IJ, Lund IK, Illemann M, Laerum OD, Krogfelt KA, Andersen LP, Ploug M. Helicobacter pylori Colonization Drives Urokinase Receptor (uPAR) Expression in Murine Gastric Epithelium During Early Pathogenesis. Microorganisms 2020; 8:microorganisms8071019. [PMID: 32660136 PMCID: PMC7409347 DOI: 10.3390/microorganisms8071019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Persistent Helicobacter pylori infection is the most important risk factor for gastric cancer. The urokinase receptor (uPAR) is upregulated in lesions harboring cancer invasion and inflammation. Circumstantial evidence tends to correlate H. pylori colonization with increased uPAR expression in the human gastric epithelium, but a direct causative link has not yet been established in vivo; (2) Methods: In a mouse model of H. pylori-induced gastritis, we investigated the temporal emergence of uPAR protein expression in the gastric mucosa in response to H. pylori (SS1 strain) infection; (3) Results: We observed intense uPAR immunoreactivity in foveolar epithelial cells of the gastric corpus due to de novo synthesis, compared to non-infected animals. This uPAR induction represents a very early response, but it increases progressively over time as do infiltrating immune cells. Eradication of H. pylori infection by antimicrobial therapy causes a regression of uPAR expression to its physiological baseline levels. Suppression of the inflammatory response by prostaglandin E2 treatment attenuates uPAR expression. Notwithstanding this relationship, H. pylori does induce uPAR expression in vitro in co-cultures with gastric cancer cell lines; (4) Conclusions: We showed that persistent H. pylori colonization is a necessary event for the emergence of a relatively high uPAR protein expression in murine gastric epithelial cells.
Collapse
Affiliation(s)
- Warner Alpízar-Alpízar
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Centre for Research on Microscopic Structures (CIEMic) and Department of Biochemistry, University of Costa Rica, 2060 San José, Costa Rica
- Correspondence: (W.A.-A.); (M.P.)
| | - Mette E. Skindersoe
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark; (M.E.S.); (K.A.K.)
- Bacthera, Kogle Allé 6, 2970 Hoersholm, Denmark
| | - Lone Rasmussen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; (L.P.A.); (L.R.)
| | - Mette C. Kriegbaum
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ib J. Christensen
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Hvidovre Hospital, University of Copenhagen, 2650 Copenhagen, Denmark
| | - Ida K. Lund
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Martin Illemann
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ole D. Laerum
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Karen A. Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark; (M.E.S.); (K.A.K.)
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Department of Virus and microbiological Diagnostics, Statens Serum Institute, 2300 Copenhagen, Denmark
| | - Leif P. Andersen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; (L.P.A.); (L.R.)
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence: (W.A.-A.); (M.P.)
| |
Collapse
|
5
|
|
6
|
Genua M, D'Alessio S, Cibella J, Gandelli A, Sala E, Correale C, Spinelli A, Arena V, Malesci A, Rutella S, Ploplis VA, Vetrano S, Danese S. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut 2015; 64:589-600. [PMID: 24848264 DOI: 10.1136/gutjnl-2013-305933] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Inflammation plays crucial roles in the pathogenesis of several chronic inflammatory disorders, including Crohn's disease (CD) and UC, the two major forms of IBD. The urokinase plasminogen activator receptor (uPAR) exerts pleiotropic functions over the course of both physiological and pathological processes. uPAR not only has a key role in fibrinolysis but also modulates the development of protective immunity. Additionally, uPAR supports extracellular matrix degradation and regulates cell migration, adhesion and proliferation, thus influencing the development of inflammatory and immune responses. This study aimed to evaluate the role of uPAR in the pathogenesis of IBD. DESIGN The functional role of uPAR was assessed in established experimental models of colitis. uPAR deficiency effects on cytokine release, polarisation and bacterial phagocytosis were analysed in colonic macrophages. uPAR expression was analysed in surgical specimens collected from normal subjects and patients with IBD. RESULTS In mice, uPAR expression is positively regulated as colitis progresses. uPAR-KO mice displayed severe inflammation compared with wild-type littermates, as indicated by clinical assessment, endoscopy and colon histology. The absence of uPAR led to an increased production of inflammatory cytokines by macrophages that showed an M1 polarisation and impaired phagocytosis. In human IBD, CD68(+) macrophages derived from the inflamed mucosa expressed low levels of uPAR. CONCLUSIONS These findings point to uPAR as an essential component of intestinal macrophage functions and unravel a new potential target to control mucosal inflammation in IBD.
Collapse
Affiliation(s)
- Marco Genua
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy Department of Translational Medicine, University of Milan, Milan, Italy
| | - Silvia D'Alessio
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Javier Cibella
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Emanuela Sala
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Carmen Correale
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Antonino Spinelli
- Department of Translational Medicine, University of Milan, Milan, Italy Department of Surgery-IBD Surgery Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Vincenzo Arena
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alberto Malesci
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy Department of Translational Medicine, University of Milan, Milan, Italy
| | - Sergio Rutella
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stefania Vetrano
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Silvio Danese
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
7
|
Gamble J, Kenny S, Dockray GJ. Plasminogen activator inhibitor (PAI)-1 suppresses inhibition of gastric emptying by cholecystokinin (CCK) in mice. ACTA ACUST UNITED AC 2013; 185:9-13. [PMID: 23816469 PMCID: PMC3819999 DOI: 10.1016/j.regpep.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/05/2013] [Accepted: 06/19/2013] [Indexed: 12/26/2022]
Abstract
The intestinal hormone cholecystokinin (CCK) delays gastric emptying and inhibits food intake by actions on vagal afferent neurons. Recent studies suggest plasminogen activator inhibitor (PAI)-1 suppresses the effect of CCK on food intake. In this study we asked whether PAI-1 also modulated CCK effects on gastric emptying. Five minute gastric emptying of liquid test meals was studied in conscious wild type mice (C57BL/6) and in transgenic mice over-expressing PAI-1 in gastric parietal cells (PAI-1H/Kβ mice), or null for PAI-1. The effects of exogenous PAI-1 and CCK8s on gastric emptying were studied after ip administration. Intragastric peptone delayed gastric emptying in C57BL/6 mice by a mechanism sensitive to the CCK-1 receptor antagonist lorglumide. Peptone did not delay gastric emptying in PAI-1-H/Kβ mice. Exogenous CCK delayed gastric emptying of a control test meal in C57BL/6 mice and this was attenuated by administration of PAI-1; exogenous CCK had no effect on emptying in PAI-1-H/Kβ mice. Prior administration of gastrin to increase gastric PAI-1 inhibited CCK-dependent effects on gastric emptying in C57BL/6 mice but not in PAI-1 null mice. Thus, both endogenous and exogenous PAI-1 inhibit the effects of CCK (whether exogenous or endogenous) on gastric emptying. The data are compatible with emerging evidence that gastric PAI-1 modulates vagal effects of CCK. Cholecystokinin (CCK) inhibits gastric emptying and food intake. PAI-1 inhibits effects of CCK on food intake. We hypothesised that PAI-1 also modulates gastric emptying. Both endogenous and exogenous PAI-1 attenuated the effect of CCK on gastric emptying. Gastric PAI-1 is therefore a modulator of CCK inhibition of gastric emptying.
Collapse
Affiliation(s)
- Joanne Gamble
- Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
8
|
Kenny S, Steele I, Lyons S, Moore AR, Murugesan SV, Tiszlavicz L, Dimaline R, Pritchard DM, Varro A, Dockray GJ. The role of plasminogen activator inhibitor-1 in gastric mucosal protection. Am J Physiol Gastrointest Liver Physiol 2013; 304:G814-22. [PMID: 23494120 PMCID: PMC3652002 DOI: 10.1152/ajpgi.00017.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric mucosal health is maintained in response to potentially damaging luminal factors. Aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs) disrupt protective mechanisms leading to bleeding and ulceration. The plasminogen activator system has been implicated in fibrinolysis following gastric ulceration, and an inhibitor of this system, plasminogen activator inhibitor (PAI)-1, is expressed in gastric epithelial cells. In Helicobacter pylori-negative patients with normal gastric histology taking aspirin or NSAIDs, we found elevated gastric PAI-1 mRNA abundance compared with controls; the increase in patients on aspirin was independent of whether they were also taking proton pump inhibitors. In the same patients, aspirin tended to lower urokinase plasminogen activator mRNA. Immunohistochemistry indicated PAI-1 localization to epithelial cells. In a model system using MKN45 or AGS-GR cells transfected with a PAI-1 promoter-luciferase reporter construct, we found no evidence for upregulation of PAI-1 expression by indomethacin, and, in fact, cyclooxygenase products such as PGE2 and PGI2 weakly stimulated expression. Increased gastric PAI-1 mRNA was also found in mice following gavage with ethanol or indomethacin, but plasma PAI-1 was unaffected. In PAI-1(-/-) mice, gastric hemorrhagic lesions in response to ethanol or indomethacin were increased compared with C57BL/6 mice. In contrast, in PAI-1-H/Kβ mice in which PAI-1 is overexpressed in parietal cells, there were decreased lesions in response to ethanol and indomethacin. Thus, PAI-1 expression is increased in gastric epithelial cells in response to mucosal irritants such as aspirin and NSAIDs probably via an indirect mechanism, and PAI-1 acts as a local autoregulator to minimize mucosal damage.
Collapse
Affiliation(s)
- Susan Kenny
- 1Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Islay Steele
- 1Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Suzanne Lyons
- 1Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Andrew R. Moore
- 1Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Senthil V. Murugesan
- 1Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | | | - Rod Dimaline
- 1Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - D. Mark Pritchard
- 1Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Andrea Varro
- 1Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Graham J. Dockray
- 1Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| |
Collapse
|
9
|
Lipid-induced peroxidation in the intestine is involved in glucose homeostasis imbalance in mice. PLoS One 2011; 6:e21184. [PMID: 21698161 PMCID: PMC3116876 DOI: 10.1371/journal.pone.0021184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/22/2011] [Indexed: 12/03/2022] Open
Abstract
Background Daily variations in lipid concentrations in both gut lumen and blood are detected by specific sensors located in the gastrointestinal tract and in specialized central areas. Deregulation of the lipid sensors could be partly involved in the dysfunction of glucose homeostasis. The study aimed at comparing the effect of Medialipid (ML) overload on insulin secretion and sensitivity when administered either through the intestine or the carotid artery in mice. Methodology/Principal Findings An indwelling intragastric or intracarotid catheter was installed in mice and ML or an isocaloric solution was infused over 24 hours. Glucose and insulin tolerance and vagus nerve activity were assessed. Some mice were treated daily for one week with the anti-lipid peroxidation agent aminoguanidine prior to the infusions and tests. The intestinal but not the intracarotid infusion of ML led to glucose and insulin intolerance when compared with controls. The intestinal ML overload induced lipid accumulation and increased lipid peroxidation as assessed by increased malondialdehyde production within both jejunum and duodenum. These effects were associated with the concomitant deregulation of vagus nerve. Administration of aminoguanidine protected against the effects of lipid overload and normalized glucose homeostasis and vagus nerve activity. Conclusions/Significance Lipid overload within the intestine led to deregulation of gastrointestinal lipid sensing that in turn impaired glucose homeostasis through changes in autonomic nervous system activity.
Collapse
|
10
|
Bassotti G, Villanacci V, Nascimbeni R, Cadei M, Fisogni S, Antonelli E, Corazzi N, Salerni B. Enteric neuroglial apoptosis in inflammatory bowel diseases. J Crohns Colitis 2009; 3:264-70. [PMID: 21172285 DOI: 10.1016/j.crohns.2009.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Enteric nervous system abnormalities have been described in patients with inflammatory bowel diseases. However, the mechanisms responsible for these abnormalities remain to date largely unknown. AIMS We investigated the potential role of apoptotic phenomena in enteric neurons and enteroglial cells in patients with inflammatory bowel diseases. PATIENTS AND METHODS Full-thickness surgical specimens of 19 patients undergoing surgery for medically refractory disease (9 from the ileum of patients with Crohn's disease, 10 from the colon of patients with ulcerative colitis) were assessed for the presence of enteric neurons and enteroglial cells and for their apoptosis by two immunohistochemical methods, one also able to distinguish apoptosis from necrosis. The results were compared with those obtained in control specimens. RESULTS Concerning Crohn's disease, the ileal segments displayed a significant increase of apoptotic enteric neurons and enteroglial cells in both the submucous and the myenteric plexus compared to controls. In patients with ulcerative colitis, compared to controls, apoptotic phenomena were significantly reduced in enteric neurons, whereas they were increased in the enteroglial cell population (submucous and myenteric plexus). CONCLUSIONS In patients with inflammatory bowel disease apoptotic phenomena involve both enteric neurons and enteroglial cells, and may play a role in the abnormalities of the enteric nervous system. The importance of these findings in the pathophysiology of these conditions remains to be determined.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Gastroenterology and Hepatology Section, Department of Clinical and Experimental Medicine, University of Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|