1
|
Mukai T, Amikura K, Fu X, Söll D, Crnković A. Indirect Routes to Aminoacyl-tRNA: The Diversity of Prokaryotic Cysteine Encoding Systems. Front Genet 2022; 12:794509. [PMID: 35047015 PMCID: PMC8762117 DOI: 10.3389/fgene.2021.794509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023] Open
Abstract
Universally present aminoacyl-tRNA synthetases (aaRSs) stringently recognize their cognate tRNAs and acylate them with one of the proteinogenic amino acids. However, some organisms possess aaRSs that deviate from the accurate translation of the genetic code and exhibit relaxed specificity toward their tRNA and/or amino acid substrates. Typically, these aaRSs are part of an indirect pathway in which multiple enzymes participate in the formation of the correct aminoacyl-tRNA product. The indirect cysteine (Cys)-tRNA pathway, originally thought to be restricted to methanogenic archaea, uses the unique O-phosphoseryl-tRNA synthetase (SepRS), which acylates the non-proteinogenic amino acid O-phosphoserine (Sep) onto tRNACys. Together with Sep-tRNA:Cys-tRNA synthase (SepCysS) and the adapter protein SepCysE, SepRS forms a transsulfursome complex responsible for shuttling Sep-tRNACys to SepCysS for conversion of the tRNA-bound Sep to Cys. Here, we report a comprehensive bioinformatic analysis of the diversity of indirect Cys encoding systems. These systems are present in more diverse groups of bacteria and archaea than previously known. Given the occurrence and distribution of some genes consistently flanking SepRS, it is likely that this gene was part of an ancient operon that suffered a gradual loss of its original components. Newly identified bacterial SepRS sequences strengthen the suggestion that this lineage of enzymes may not rely on the m1G37 identity determinant in tRNA. Some bacterial SepRSs possess an N-terminal fusion resembling a threonyl-tRNA synthetase editing domain, which interestingly is frequently observed in the vicinity of archaeal SepCysS genes. We also found several highly degenerate SepRS genes that likely have altered amino acid specificity. Cross-analysis of selenocysteine (Sec)-utilizing traits confirmed the co-occurrence of SepCysE and the Sec-utilizing machinery in archaea, but also identified an unusual O-phosphoseryl-tRNASec kinase fusion with an archaeal Sec elongation factor in some lineages, where it may serve in place of SepCysE to prevent crosstalk between the two minor aminoacylation systems. These results shed new light on the variations in SepRS and SepCysS enzymes that may reflect adaptation to lifestyle and habitat, and provide new information on the evolution of the genetic code.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Xian Fu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
2
|
Eissler Y, Gálvez MJ, Dorador C, Hengst M, Molina V. Active microbiome structure and its association with environmental factors and viruses at different aquatic sites of a high-altitude wetland. Microbiologyopen 2018; 8:e00667. [PMID: 30062777 PMCID: PMC6436485 DOI: 10.1002/mbo3.667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/04/2018] [Accepted: 04/21/2018] [Indexed: 01/23/2023] Open
Abstract
Salar de Huasco is a high‐altitude wetland characterized by a highly diverse microbial life adapted to extreme climatic and environmental conditions. Our study aims to determine active microbial community structure changes within different aquatic sites and its relationship with environmental factors and viruses as potential drivers of diversification in different aquatic areas of this ecosystem. In this study, bacteria and archaea composition (16S rRNA subunit pyrolibraries) and picoplankton and viral abundance were determined at ponds, springs and lagoon sites of the wetland during wet and dry seasons (February and July 2012, respectively). In general, mixosaline waters (1,400–51,000 μS/cm) usually found in ponds and lagoon presented higher picoplanktonic abundances compared to freshwater (<800 μS/cm) spring sites, ranging from 1.07 × 105 to 1.83 × 107 cells/ml. Viral abundance and viral to picoplankton ratio (VPR) also presented greater values at ponds compared to spring sites, reaching up to 4.78 × 108 viruses‐like particles and up to 351 for VPR. In general, ponds hold a higher microbial diversity and complexity associated also with the presence of microbial mats compared with water sources or lagoon (Shannon index H′ 2.6–3.9 vs. <2.0). A greater richness of archaea was also detected in ponds characterized by functional groups such as known methanogens and ammonia oxidizers, and uncultured groups. In total, our results indicate that among the different aquatic sites of the wetland, ponds presented a great microbial community diversification associated to a higher top‐down control by viruses which may influence nutrient and greenhouse gases cycling.
Collapse
Affiliation(s)
- Yoanna Eissler
- Facultad de Ciencias, Centro de Investigación y Gestión de Recursos Naturales, Instituto de Química y Bioquímica, Universidad de Valparaíso, Valparaíso, Chile
| | - María-Jesús Gálvez
- Programa de Biodiversidad and Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Observatorio de Ecología Microbiana, Universidad de Playa Ancha, Valparaíso, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.,Centre for Biotechnology and Bioengineering, Santiago, Chile
| | - Martha Hengst
- Centre for Biotechnology and Bioengineering, Santiago, Chile.,Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Verónica Molina
- Programa de Biodiversidad and Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Observatorio de Ecología Microbiana, Universidad de Playa Ancha, Valparaíso, Chile
| |
Collapse
|
3
|
Tasiemski A, Jung S, Boidin-Wichlacz C, Jollivet D, Cuvillier-Hot V, Pradillon F, Vetriani C, Hecht O, Sönnichsen FD, Gelhaus C, Hung CW, Tholey A, Leippe M, Grötzinger J, Gaill F. Characterization and function of the first antibiotic isolated from a vent organism: the extremophile metazoan Alvinella pompejana. PLoS One 2014; 9:e95737. [PMID: 24776651 PMCID: PMC4002450 DOI: 10.1371/journal.pone.0095737] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/30/2014] [Indexed: 01/06/2023] Open
Abstract
The emblematic hydrothermal worm Alvinella pompejana is one of the most thermo tolerant animal known on Earth. It relies on a symbiotic association offering a unique opportunity to discover biochemical adaptations that allow animals to thrive in such a hostile habitat. Here, by studying the Pompeii worm, we report on the discovery of the first antibiotic peptide from a deep-sea organism, namely alvinellacin. After purification and peptide sequencing, both the gene and the peptide tertiary structures were elucidated. As epibionts are not cultivated so far and because of lethal decompression effects upon Alvinella sampling, we developed shipboard biological assays to demonstrate that in addition to act in the first line of defense against microbial invasion, alvinellacin shapes and controls the worm's epibiotic microflora. Our results provide insights into the nature of an abyssal antimicrobial peptide (AMP) and into the manner in which an extremophile eukaryote uses it to interact with the particular microbial community of the hydrothermal vent ecosystem. Unlike earlier studies done on hydrothermal vents that all focused on the microbial side of the symbiosis, our work gives a view of this interaction from the host side.
Collapse
Affiliation(s)
- Aurélie Tasiemski
- Université de Lille1-CNRS UMR8198, Laboratoire GEPV, Ecoimmunology of Marine Annelids (EMA), Villeneuve d'Ascq, France
| | - Sascha Jung
- Institute of Biochemistry, Christian-Albrechts-Universität, Kiel, Germany
| | - Céline Boidin-Wichlacz
- Université de Lille1-CNRS UMR8198, Laboratoire GEPV, Ecoimmunology of Marine Annelids (EMA), Villeneuve d'Ascq, France
| | - Didier Jollivet
- Université Pierre et Marie Curie-CNRS UMR7144, Laboratoire AD2M, Adaptation et Biologie des Invertébrés en Conditions Extrêmes (ABICE), Station Biologique, Roscoff, France
| | - Virginie Cuvillier-Hot
- Université de Lille1-CNRS UMR8198, Laboratoire GEPV, Ecoimmunology of Marine Annelids (EMA), Villeneuve d'Ascq, France
| | | | - Costantino Vetriani
- Department of Biochemistry and Microbiology and Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Oliver Hecht
- Institute of Biochemistry, Christian-Albrechts-Universität, Kiel, Germany
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-Universität, Kiel, Germany
| | - Christoph Gelhaus
- Institute of Zoology, Zoophysiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Chien-Wen Hung
- Division of Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Andreas Tholey
- Division of Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Matthias Leippe
- Institute of Zoology, Zoophysiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts-Universität, Kiel, Germany
| | - Françoise Gaill
- Université Pierre et Marie Curie-Muséum National d'Histoires Naturelles CNRS BOREA IRD, Paris, France
| |
Collapse
|
4
|
Molecular Characterization of the Archaeal Diversity in Vlasa Hot Spring, Bulgaria, by using 16S rRNA and Glycoside Hydrolase Family 4 Genes. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.2478/v10133-010-0065-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Modeling the Impact of Diffuse Vent Microorganisms Along Mid-Ocean Ridges and Flanks. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/178gm11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
6
|
Amenábar MJ, Flores PA, Pugin B, Boehmwald FA, Blamey JM. Archaeal diversity from hydrothermal systems of Deception Island, Antarctica. Polar Biol 2012. [DOI: 10.1007/s00300-012-1267-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Flores GE, Wagner ID, Liu Y, Reysenbach AL. Distribution, abundance, and diversity patterns of the thermoacidophilic "deep-sea hydrothermal vent euryarchaeota 2". Front Microbiol 2012; 3:47. [PMID: 22363325 PMCID: PMC3282477 DOI: 10.3389/fmicb.2012.00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/30/2012] [Indexed: 11/23/2022] Open
Abstract
Cultivation-independent studies have shown that taxa belonging to the “deep-sea hydrothermal vent euryarchaeota 2” (DHVE2) lineage are widespread at deep-sea hydrothermal vents. While this lineage appears to be a common and important member of the microbial community at vent environments, relatively little is known about their overall distribution and phylogenetic diversity. In this study, we examined the distribution, relative abundance, co-occurrence patterns, and phylogenetic diversity of cultivable thermoacidophilic DHVE2 in deposits from globally distributed vent fields. Results of quantitative polymerase chain reaction assays with primers specific for the DHVE2 and Archaea demonstrate the ubiquity of the DHVE2 at deep-sea vents and suggest that they are significant members of the archaeal communities of established vent deposit communities. Local similarity analysis of pyrosequencing data revealed that the distribution of the DHVE2 was positively correlated with 10 other Euryarchaeota phylotypes and negatively correlated with mostly Crenarchaeota phylotypes. Targeted cultivation efforts resulted in the isolation of 12 axenic strains from six different vent fields, expanding the cultivable diversity of this lineage to vents along the East Pacific Rise and Mid-Atlantic Ridge. Eleven of these isolates shared greater than 97% 16S rRNA gene sequence similarity with one another and the only described isolate of the DHVE2, Aciduliprofundum boonei T469T. Sequencing and phylogenetic analysis of five protein-coding loci, atpA, EF-2, radA, rpoB, and secY, revealed clustering of isolates according to geographic region of isolation. Overall, this study increases our understanding of the distribution, abundance, and phylogenetic diversity of the DHVE2.
Collapse
Affiliation(s)
- Gilberto E Flores
- Department of Biology, Center for Life in Extreme Environments, Portland State University Portland, OR, USA
| | | | | | | |
Collapse
|
8
|
Flores GE, Campbell JH, Kirshtein JD, Meneghin J, Podar M, Steinberg JI, Seewald JS, Tivey MK, Voytek MA, Yang ZK, Reysenbach AL. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ Microbiol 2011; 13:2158-71. [PMID: 21418499 DOI: 10.1111/j.1462-2920.2011.02463.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.
Collapse
Affiliation(s)
- Gilberto E Flores
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Activity and distribution of thermophilic prokaryotes in hydrothermal fluid, sulfidic structures, and sheaths of alvinellids (East Pacific Rise, 13°N). Appl Environ Microbiol 2011; 77:2803-6. [PMID: 21317258 DOI: 10.1128/aem.02266-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processes of inorganic carbon assimilation, methanogenesis, sulfate reduction, and acetate oxidation to CO(2) occurring in samples from the East Pacific Rise at 13°N were traced, using radioisotopically labeled substrates, at temperatures ranging from 65 to 100°C. Molecular hydrogen stimulated lithotrophic methanogenesis and sulfate reduction but inhibited inorganic carbon assimilation. Active mineralization of acetate was observed in an organic-rich Alvinella-associated system at 80°C. Members of the Thermococcales were the most numerous hyperthermophilic archaea in these samples, their density achieving 10(8) cells per cm(3), while the numbers of cultured hydrogen-utilizing thermophilic lithotrophs were several orders of magnitude lower.
Collapse
|
10
|
von Jan M, Lapidus A, Del Rio TG, Copeland A, Tice H, Cheng JF, Lucas S, Chen F, Nolan M, Goodwin L, Han C, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Chertkov O, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Saunders E, Brettin T, Detter JC, Chain P, Eichinger K, Huber H, Spring S, Rohde M, Göker M, Wirth R, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Archaeoglobus profundus type strain (AV18). Stand Genomic Sci 2010; 2:327-46. [PMID: 21304717 PMCID: PMC3035285 DOI: 10.4056/sigs.942153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaeoglobus profundus (Burggraf et al. 1990) is a hyperthermophilic archaeon in the euryarchaeal class Archaeoglobi, which is currently represented by the single family Archaeoglobaceae, containing six validly named species and two strains ascribed to the genus 'Geoglobus' which is taxonomically challenged as the corresponding type species has no validly published name. All members were isolated from marine hydrothermal habitats and are obligate anaerobes. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of a member of the class Archaeoglobi. The 1,563,423 bp genome with its 1,858 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
11
|
Sobecky PA, Hazen TH. Horizontal gene transfer and mobile genetic elements in marine systems. Methods Mol Biol 2009; 532:435-53. [PMID: 19271200 DOI: 10.1007/978-1-60327-853-9_25] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pool of mobile genetic elements (MGE) in microbial communities consists of viruses, plasmids, and associated elements (insertion sequences, transposons, and integrons) that are either self-transmissible or use mobile plasmids and viruses as vehicles for their dissemination. This mobilome facilitates the horizontal transfer of genes that promote the evolution and adaptation of microbial communities. Efforts to characterize MGEs from microbial populations resident in a variety of ecological habitats have revealed a surprisingly novel and seemingly untapped biodiversity. To better understand the impact of horizontal gene transfer (HGT), as well as the agents that promote HGT in marine ecosystems and to determine whether or not environmental parameters can effect the composition and structure of the mobilome in marine microbial communities, information on the distribution, diversity, and ecological traits of the marine mobilome is presented. In this chapter we discuss recent insights gained from different methodological approaches used to characterize the biodiversity and ecology of MGE in marine environments and their contributions to HGT. In addition, we present case studies that highlight specific HGT examples in coastal, open-ocean, and deep-sea marine ecosystems.
Collapse
|
12
|
Selective extraction of bacterial DNA from the surfaces of macroalgae. Appl Environ Microbiol 2008; 75:252-6. [PMID: 18978081 DOI: 10.1128/aem.01630-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel method has been developed for the selective extraction of DNA from surface-associated bacterial communities from the two model marine benthic algae Ulva australis and Delisea pulchra. The extracted DNA had no detectable contamination with host DNA, was recovered in high yield and quality, and was representative of the bacterial community on the algal surfaces. The DNA is suitable for a variety of subsequent applications, including the construction of large-insert clone libraries and metagenomic sequencing.
Collapse
|
13
|
Stott MB, Saito JA, Crowe MA, Dunfield PF, Hou S, Nakasone E, Daughney CJ, Smirnova AV, Mountain BW, Takai K, Alam M. Culture-independent characterization of a novel microbial community at a hydrothermal vent at Brothers volcano, Kermadec arc, New Zealand. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jb005477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. B. Stott
- GNS Science, Extremophile Research Group; Taupo New Zealand
| | - J. A. Saito
- Department of Microbiology; University of Hawaii; Honolulu Hawaii USA
| | - M. A. Crowe
- GNS Science, Extremophile Research Group; Taupo New Zealand
| | - P. F. Dunfield
- GNS Science, Extremophile Research Group; Taupo New Zealand
| | - S. Hou
- Department of Microbiology; University of Hawaii; Honolulu Hawaii USA
| | - E. Nakasone
- Department of Microbiology; University of Hawaii; Honolulu Hawaii USA
| | - C. J. Daughney
- GNS Science, Extremophile Research Group; Taupo New Zealand
| | - A. V. Smirnova
- GNS Science, Extremophile Research Group; Taupo New Zealand
| | - B. W. Mountain
- GNS Science, Extremophile Research Group; Taupo New Zealand
| | - K. Takai
- Subground Animalcule Retrieval Program; Japan Agency for Marine-Earth Science and Technology; Yokosuka Japan
| | - M. Alam
- Department of Microbiology; University of Hawaii; Honolulu Hawaii USA
| |
Collapse
|
14
|
Li Y, Li F, Zhang X, Qin S, Zeng Z, Dang H, Qin Y. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (approximately 13 degrees N). Extremophiles 2008; 12:573-85. [PMID: 18418544 DOI: 10.1007/s00792-008-0159-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 03/10/2008] [Indexed: 11/25/2022]
Abstract
The community structure and vertical distribution of prokaryotes in a deep-sea (ca. 3,191 m) cold sediment sample (ca. 43 cm long) collected at the East Pacific Rise (EPR) approximately 13 degrees N were studied with 16SrDNA-based molecular analyses. Total community DNA was extracted from each of four discrete layers EPRDS-1, -2, -3 and -4 (from top to bottom) and 16S rDNA were amplified by PCR. Cluster analysis of DGGE profiles revealed that the bacterial communities shifted sharply between EPRDS-1 and EPRDS-2 in similarity coefficient at merely 49%. Twenty-three sequences retrieved from DGGE bands fell into 11 groups based on BLAST and bootstrap analysis. The dominant groups in the bacterial communities were Chloroflexi, Gamma proteobacteria, Actinobacterium and unidentified bacteria, with their corresponding percentages varying along discrete layers. Pairwise Fst (F-statistics) values between the archaeal clone libraries indicated that the archaeal communities changed distinctly between EPRDS-2 and EPRDS-3. Sequences from the archaeal libraries were divided to eight groups. Crenarchaea Marine Group I (MGI) was prevalent in EPRDS-1 at 83%, while Uncultured Crenarchaea group II B (UCII B) abounded in EPRDS-4 at 61%. Our results revealed that the vertically stratified distribution of prokaryotic communities might be in response to the geochemical settings and suggested that the sampling area was influenced by hydrothermalism. The copresence of members related to hydrothermalism and cold deep-sea environments in the microbial community indicated that the area might be a transitional region from hydrothermal vents to cold deep-sea sediments.
Collapse
Affiliation(s)
- Youxun Li
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Moussard H, Henneke G, Moreira D, Jouffe V, López-García P, Jeanthon C. Thermophilic lifestyle for an uncultured archaeon from hydrothermal vents: evidence from environmental genomics. Appl Environ Microbiol 2006; 72:2268-71. [PMID: 16517686 PMCID: PMC1393191 DOI: 10.1128/aem.72.3.2268-2271.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a comparative analysis of two genome fragments isolated from a diverse and widely distributed group of uncultured euryarchaea from deep-sea hydrothermal vents. The optimal activity and thermostability of a DNA polymerase predicted in one fragment were close to that of the thermophilic archaeon Thermoplasma acidophilum, providing evidence for a thermophilic way of life of this group of uncultured archaea.
Collapse
Affiliation(s)
- Hélène Moussard
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Centre National de la Recherche Scientifique, Ifremer & Université de Bretagne Occidentale, Orsay, France
| | | | | | | | | | | |
Collapse
|