1
|
Iasakov TR, Kanapatskiy TA, Toshchakov SV, Korzhenkov AA, Ulyanova MO, Pimenov NV. The Baltic Sea methane pockmark microbiome: The new insights into the patterns of relative abundance and ANME niche separation. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105533. [PMID: 34875513 DOI: 10.1016/j.marenvres.2021.105533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/11/2021] [Accepted: 11/21/2021] [Indexed: 05/20/2023]
Abstract
Pockmarks are important "pumps", which are believed to play a significant role in the global methane cycling and harboring a unique assemblage of very diverse prokaryotes. This study reports the results of massive sequencing of the 16S rRNA gene V4 hypervariable regions for the samples from thirteen pockmark horizons (the Baltic Sea) collected at depths from 0 to 280 cm below seafloor (cmbsf) and the rates of microbially mediated anaerobic oxidation of methane (AOM) and sulfate reduction (SR). Altogether, 76 bacterial and 12 archaeal phyla were identified, 23 of which were candidate divisions. Of the total obtained in the pockmark sequences, 84.3% of them were classified as Bacteria and 12.4% as Archaea; 3.3% of the sequences were assigned to unknown operational taxonomic units (OTUs). Members of the phyla Planctomycetota, Chloroflexota, Desulfobacterota, Caldatribacteriota, Acidobacteriota and Proteobacteria predominated across all horizons, comprising 58.5% of the total prokaryotic community. These phyla showed different types of patterns of relative abundance. Analysis of AOM-SR-mediated prokaryotes abundance and biogeochemical measurements revealed that ANME-2a-2b subcluster was predominant in sulfate-rich upper horizons (including sulfate-methane transition zone (SMTZ)) and together with sulfate-reducing bacterial group SEEP-SRB1 had a primary role in AOM coupled to SR. At deeper sulfate-depleted horizons ANME-2a-2b shifted to ANME-1a and ANME-1b which alone mediated AOM or switch to methanogenic metabolism. Shifting of the ANME subclusters depending on depth reflect a tendency for niche separation in these groups. It was shown that the abundance of Caldatribacteriota and organohalide-respiring Dehalococcoidia (Chloroflexota) exhibited a strong correlation with AOM rates. This is the first detailed study of depth profiles of prokaryotic diversity, patterns of relative abundance, and ANME niche separation in the Baltic Sea pockmark microbiomes sheds light on assembly of prokaryotes in a pockmark.
Collapse
Affiliation(s)
- Timur R Iasakov
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054, Ufa, Russia.
| | - Timur A Kanapatskiy
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Leninsky prospect 33/2, 119071, Moscow, Russia
| | - Stepan V Toshchakov
- Kurchatov Center for Genome Research, NRC "Kurchatov Institute", Ac. Kurchatov square, 1, 123098, Moscow, Russia
| | - Aleksei A Korzhenkov
- Kurchatov Center for Genome Research, NRC "Kurchatov Institute", Ac. Kurchatov square, 1, 123098, Moscow, Russia
| | - Marina O Ulyanova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow, 117997, Russia; Immanuel Kant Baltic Federal University, 14, Nevskogo str., Kaliningrad, 236016, Russia
| | - Nikolay V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Leninsky prospect 33/2, 119071, Moscow, Russia
| |
Collapse
|
2
|
Glass JB, Ranjan P, Kretz CB, Nunn BL, Johnson AM, Xu M, McManus J, Stewart FJ. Microbial metabolism and adaptations in Atribacteria-dominated methane hydrate sediments. Environ Microbiol 2021; 23:4646-4660. [PMID: 34190392 DOI: 10.1111/1462-2920.15656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Gas hydrates harbour gigatons of natural gas, yet their microbiomes remain understudied. We bioprospected 16S rRNA amplicons, metagenomes, and metaproteomes from methane hydrate-bearing sediments under Hydrate Ridge (offshore Oregon, USA, ODP Site 1244, 2-69 mbsf) for novel microbial metabolic and biosynthetic potential. Atribacteria sequences generally increased in relative sequence abundance with increasing sediment depth. Most Atribacteria ASVs belonged to JS-1-Genus 1 and clustered with other sequences from gas hydrate-bearing sediments. We recovered 21 metagenome-assembled genomic bins spanning three geochemical zones in the sediment core: the sulfate-methane transition zone, the metal (iron/manganese) reduction zone, and the gas hydrate stability zone. We found evidence for bacterial fermentation as a source of acetate for aceticlastic methanogenesis and as a driver of iron reduction in the metal reduction zone. In multiple zones, we identified a Ni-Fe hydrogenase-Na+ /H+ antiporter supercomplex (Hun) in Atribacteria and Firmicutes bins and in other deep subsurface bacteria and cultured hyperthermophiles from the Thermotogae phylum. Atribacteria expressed tripartite ATP-independent transporters downstream from a novel regulator (AtiR). Atribacteria also possessed adaptations to survive extreme conditions (e.g. high salt brines, high pressure and cold temperatures) including the ability to synthesize the osmolyte di-myo-inositol-phosphate as well as expression of K+ -stimulated pyrophosphatase and capsule proteins.
Collapse
Affiliation(s)
- Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Piyush Ranjan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Abigail M Johnson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Manlin Xu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - James McManus
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
3
|
High-Level Abundances of Methanobacteriales and Syntrophobacterales May Help To Prevent Corrosion of Metal Sheet Piles. Appl Environ Microbiol 2019; 85:AEM.01369-19. [PMID: 31420342 DOI: 10.1128/aem.01369-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/11/2019] [Indexed: 11/20/2022] Open
Abstract
Iron sheet piles are widely used in flood protection, dike construction, and river bank reinforcement. Their corrosion leads to gradual deterioration and often makes replacement necessary. Natural deposit layers on these sheet piles can prevent degradation and significantly increase their life span. However, little is known about the mechanisms of natural protective layer formation. Here, we studied the microbially diverse populations of corrosion-protective deposit layers on iron sheet piles at the Gouderak pumping station in Zuid-Holland, the Netherlands. Deposit layers, surrounding sediment and top sediment samples were analyzed for soil physicochemical parameters, microbially diverse populations, and metabolic potential. Methanogens appeared to be enriched 18-fold in the deposit layers. After sequencing, metagenome assembly and binning, we obtained four nearly complete draft genomes of microorganisms (Methanobacteriales, two Coriobacteriales, and Syntrophobacterales) that were highly enriched in the deposit layers, strongly indicating a potential role in corrosion protection. Coriobacteriales and Syntrophobacterales could be part of a microbial food web degrading organic matter to supply methanogenic substrates. Methane-producing Methanobacteriales could metabolize iron, which may initially lead to mild corrosion but potentially stimulates the formation of a carbonate-rich protective deposit layer in the long term. In addition, Methanobacteriales and Coriobacteriales have the potential to interact with metal surfaces via direct interspecies or extracellular electron transfer. In conclusion, our study provides valuable insights into microbial populations involved in iron corrosion protection and potentially enables the development of novel strategies for in situ screening of iron sheet piles in order to reduce risks and develop more sustainable replacement practices.IMPORTANCE Iron sheet piles are widely used to reinforce dikes and river banks. Damage due to iron corrosion poses a significant safety risk and has significant economic impact. Different groups of microorganisms are known to either stimulate or inhibit the corrosion process. Recently, natural corrosion-protective deposit layers were found on sheet piles. Analyses of the microbial composition indicated a potential role for methane-producing archaea. However, the full metabolic potential of the microbial communities within these protective layers has not been determined. The significance of this work lies in the reconstruction of the microbial food web of natural corrosion-protective layers isolated from noncorroding metal sheet piles. With this work, we provide insights into the microbiological mechanisms that potentially promote corrosion protection in freshwater ecosystems. Our findings could support the development of screening protocols to assess the integrity of iron sheet piles to decide whether replacement is required.
Collapse
|
4
|
Hoshino T, Toki T, Ijiri A, Morono Y, Machiyama H, Ashi J, Okamura K, Inagaki F. Atribacteria from the Subseafloor Sedimentary Biosphere Disperse to the Hydrosphere through Submarine Mud Volcanoes. Front Microbiol 2017; 8:1135. [PMID: 28676800 PMCID: PMC5476839 DOI: 10.3389/fmicb.2017.01135] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/06/2017] [Indexed: 11/23/2022] Open
Abstract
Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth’s surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria, heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 104 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as “deep-biosphere seeds” into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.
Collapse
Affiliation(s)
- Tatsuhiko Hoshino
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Tomohiro Toki
- Faculty of Science, University of the RyukyusNishihara, Japan
| | - Akira Ijiri
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Hideaki Machiyama
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Juichiro Ashi
- Atmosphere and Ocean Research Institute, The University of TokyoTokyo, Japan
| | - Kei Okamura
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi UniversityNankoku, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science TechnologyYokohama, Japan
| |
Collapse
|
5
|
Kwon M, Kim M, Takacs-Vesbach C, Lee J, Hong SG, Kim SJ, Priscu JC, Kim OS. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environ Microbiol 2017; 19:2258-2271. [PMID: 28276129 DOI: 10.1111/1462-2920.13721] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022]
Abstract
Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys.
Collapse
Affiliation(s)
- Miye Kwon
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mincheol Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | | | - Jaejin Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Soon Gyu Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sang Jong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - John C Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Ok-Sun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| |
Collapse
|
6
|
Oni OE, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs KU, Friedrich MW. Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea. Front Microbiol 2015; 6:1290. [PMID: 26635758 PMCID: PMC4658423 DOI: 10.3389/fmicb.2015.01290] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30-530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments.
Collapse
Affiliation(s)
- Oluwatobi E Oni
- Department of Microbial Ecophysiology, University of Bremen Bremen, Germany ; MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; International Max-Planck Research School for Marine Microbiology Bremen, Germany
| | - Frauke Schmidt
- MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Tetsuro Miyatake
- Department of Microbial Ecophysiology, University of Bremen Bremen, Germany
| | - Sabine Kasten
- MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; Department of Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | | | - Kai-Uwe Hinrichs
- MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Michael W Friedrich
- Department of Microbial Ecophysiology, University of Bremen Bremen, Germany ; MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| |
Collapse
|
7
|
Carr SA, Orcutt BN, Mandernack KW, Spear JR. Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica. Front Microbiol 2015; 6:872. [PMID: 26379647 PMCID: PMC4549626 DOI: 10.3389/fmicb.2015.00872] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/10/2015] [Indexed: 02/01/2023] Open
Abstract
Bacteria belonging to the newly classified candidate phylum “Atribacteria” (formerly referred to as “OP9” and “JS1”) are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. In this study of deep sediment from Antarctica’s Adélie Basin, collected during Expedition 318 of the Integrated Ocean Drilling Program (IODP), Atribacteria-related sequences of the 16S rRNA gene were abundant (up to 51% of the sequences) and steadily increased in relative abundance with depth throughout the methane-rich zones. To better understand the metabolic potential of Atribacteria within this environment, and to compare with phylogenetically distinct Atribacteria from non-deep-sea environments, individual cells were sorted for single cell genomics from sediment collected from 97.41 m below the seafloor from IODP Hole U1357C. As observed for non-marine Atribacteria, a partial single cell genome suggests a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol, and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments. This first report of a single cell genome from deep sediment broadens the known diversity within the Atribacteria phylum and highlights the potential role of Atribacteria in carbon cycling in deep sediment.
Collapse
Affiliation(s)
- Stephanie A Carr
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden CO, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME, USA
| | - Kevin W Mandernack
- Department of Earth Sciences, Indiana University - Purdue University Indianapolis, Indianapolis IN, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden CO, USA
| |
Collapse
|
8
|
Algora C, Vasileiadis S, Wasmund K, Trevisan M, Krüger M, Puglisi E, Adrian L. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. FEMS Microbiol Ecol 2015; 91:fiv056. [PMID: 25994158 DOI: 10.1093/femsec/fiv056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 11/14/2022] Open
Abstract
The Arctic Baffin Bay between Canada and Greenland is sea ice-covered during the majority of the year, restricting primary production to the summer months. Sediments receive low amounts of mostly terrestrial- and less marine-derived organic matter. To study microbial communities constrained by physicochemical conditions changing with distance from land and ocean depth, we applied high-throughput 16S rRNA gene sequencing and compared sequence diversity with biogeochemical parameters in 40 different sediment samples. Samples originated from seven cores down to 470 cm below seafloor along a shelf-to-basin transect. Bacterial diversity decreased faster with depth in basin than in shelf sediments, suggesting higher organic matter content sustained diversity into greater depths. All samples were dominated by Betaproteobacteria (mostly order Burkholderiales), which were especially abundant in basin sediments with low organic carbon and high Mn and Fe pore water concentrations. Strong statistical correlations between concentrations of reduced Mn and/or Fe and the relative abundances of Betaproteobacteria suggest that this group is involved in metal reduction in Baffin Bay sediments. Dehalococcoidia (phylum Chloroflexi) were abundant in all samples, especially in shelf sediments with high organic content. This study indicates that Mn and/or Fe play important roles structuring microbial communities in Arctic sediments poor in organic matter.
Collapse
Affiliation(s)
- Camelia Algora
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Sotirios Vasileiadis
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Kenneth Wasmund
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Marco Trevisan
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Martin Krüger
- Department of Resource Geochemistry, Germany Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover; Germany
| | - Edoardo Puglisi
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
9
|
Oni O, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, Kulkarni A, Blumers M, Shylin SI, Ksenofontov V, Costa BFO, Klingelhöfer G, Friedrich MW. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol 2015; 6:365. [PMID: 25983723 PMCID: PMC4416451 DOI: 10.3389/fmicb.2015.00365] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/10/2015] [Indexed: 11/17/2022] Open
Abstract
Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and archaea were specifically higher around the peak of dissolved iron in the methanic zone (250–350 cm). The higher copy numbers at these depths were also reflected by the relative sequence abundances of members of the candidate division JS1, methanogenic and Methanohalobium/ANME-3 related archaea. The distribution of these populations was strongly correlated to the profile of pore-water Fe2+ while that of Desulfobacteraceae corresponded to the pore-water sulfate profile. Furthermore, specific JS1 populations also strongly co-varied with the distribution of Methanosaetaceae in the methanic zone. Our data suggest that the interplay among JS1 bacteria, methanogenic archaea and Methanohalobium/ANME-3-related archaea may be important for iron reduction and methane cycling in deep methanic sediments of the Helgoland mud area and perhaps in other methane-rich depositional environments.
Collapse
Affiliation(s)
- Oluwatobi Oni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany ; MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Tetsuro Miyatake
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - Sabine Kasten
- MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - David Fischer
- MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Laura Wagenknecht
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Ajinkya Kulkarni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - Mathias Blumers
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Germany
| | - Sergii I Shylin
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Germany ; Department of Chemistry, Taras Shevchenko National University of Kyiv Kyiv, Ukraine
| | - Vadim Ksenofontov
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Germany
| | - Benilde F O Costa
- CFisUC, Department of Physics, University of Coimbra, Coimbra Portugal
| | | | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany ; MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| |
Collapse
|
10
|
Mahmoudi N, Robeson MS, Castro HF, Fortney JL, Techtmann SM, Joyner DC, Paradis CJ, Pfiffner SM, Hazen TC. Microbial community composition and diversity in Caspian Sea sediments. FEMS Microbiol Ecol 2014; 91:1-11. [PMID: 25764536 PMCID: PMC4399438 DOI: 10.1093/femsec/fiu013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Caspian Sea is heavily polluted due to industrial and agricultural effluents as well as extraction of oil and gas reserves. Microbial communities can influence the fate of contaminants and nutrients. However, insight into the microbial ecology of the Caspian Sea significantly lags behind other marine systems. Here we describe microbial biomass, diversity and composition in sediments collected from three sampling stations in the Caspian Sea. Illumina sequencing of 16S rRNA genes revealed the presence of a number of known bacterial and archaeal heterotrophs suggesting that organic carbon is a primary factor shaping microbial communities. Surface sediments collected from bottom waters with low oxygen levels were dominated by Gammaproteobacteria while surface sediments collected from bottom waters under hypoxic conditions were dominated by Deltaproteobacteria, specifically sulfate-reducing bacteria. Thaumarchaeota was dominant across all surface sediments indicating that nitrogen cycling in this system is strongly influenced by ammonia-oxidizing archaea. This study provides a baseline assessment that may serve as a point of reference as this system changes or as the efficacy of new remediation efforts are implemented. This study describes microbial biomass, community composition and diversity in Caspian Sea sediments using lipid and genomic techniques.
Collapse
Affiliation(s)
- Nagissa Mahmoudi
- Department of Civil and Environmental Engineering, University of Tennessee, 37996-2313 Knoxville, TN Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN
| | - Michael S Robeson
- BioSciences Division, Oak Ridge National Laboratory, 37831-6038 Oak Ridge, TN
| | - Hector F Castro
- Department of Chemistry, University of Tennessee, 37996-1600 Knoxville, TN
| | - Julian L Fortney
- Department of Civil and Environmental Engineering, University of Tennessee, 37996-2313 Knoxville, TN Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN
| | - Stephen M Techtmann
- Department of Civil and Environmental Engineering, University of Tennessee, 37996-2313 Knoxville, TN Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN
| | - Dominique C Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, 37996-2313 Knoxville, TN Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN
| | - Charles J Paradis
- Department of Earth and Planetary Sciences, University of Tennessee, 37996-1410 Knoxville, TN
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, 37996-2313 Knoxville, TN BioSciences Division, Oak Ridge National Laboratory, 37831-6038 Oak Ridge, TN Center for Environmental Biotechnology, University of Tennessee, 37996-1605 Knoxville, TN Department of Earth and Planetary Sciences, University of Tennessee, 37996-1410 Knoxville, TN Department of Microbiology, University of Tennessee, 37996-0845 Knoxville, TN
| |
Collapse
|
11
|
Agarose gel purification of PCR products for denaturing gradient gel electrophoresis results in GC-clamp deletion. Appl Biochem Biotechnol 2014; 175:400-9. [PMID: 25300603 DOI: 10.1007/s12010-014-1282-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The 16S ribosomal RNA (rRNA) gene of marine archaeal samples was amplified using a nested PCR approach, and the V3 region of 16S rRNA gene of crab gut microbiota (CGM) was amplified using the V3 universal primer pair with a guanine and cytosine (GC)-clamp. Unpurified PCR products (UPPs), products purified from reaction solution (PPFSs), and products purified from gel (PPFGs) of above two DNA samples were used for denaturing gradient gel electrophoresis (DGGE) analysis, respectively. In contrast to almost identical band patterns shared by both the UPP and PPFS, the PPFGs were barely observed on the DGGE gel for both the marine archaea and CGM samples. Both PPFS and PPFG of CGM V3 regions were subjected to cloning. A small amount of positive clones was obtained for PPFS, but no positive clones were observed for PPFG. The melt curve and direct sequencing analysis of PPFS and PPFG of E. coli V3 region indicated that the Tm value of PPFG (82.35 ± 0.19 °C) was less than that of PPFS (83.81 ± 0.11 °C), and the number of shorter GC-clamps was significant higher in PPFG than in PPFS. The ultraviolet exposure experiment indicated that the ultraviolet was not responsible for the deletion of the GC-clamps. We conclude that the gel purification method is not suitable for DGGE PCR products or even other GC-rich DNA samples.
Collapse
|
12
|
Beckmann S, Manefield M. Acetoclastic methane formation from Eucalyptus detritus in pristine hydrocarbon-rich river sediments by Methanosarcinales. FEMS Microbiol Ecol 2014; 90:587-98. [PMID: 25154758 DOI: 10.1111/1574-6941.12418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 12/23/2022] Open
Abstract
Pristine hydrocarbon-rich river sediments in the Greater Blue Mountains World Heritage Area (Australia) release substantial amounts of methane. The present study aimed to unravel for the first time the active methanogens mediating methane formation and exploiting the bacterial diversity potentially involved in the trophic network. Quantitative PCR of 16S rRNA gene and functional genes as well as 454 pyrosequencing were used to address the unknown microbial diversity and abundance. Methane-releasing sediment cores derived from three different river sites of the Tootie River. Highest methane production rates of 10.8 ± 0.5 μg g(-1)(wet weight) day(-1) were detected in 40 cm sediment depth being in congruence with the detection of the highest abundances of the archaeal 16S rRNA gene and the methyl-coenzyme M reductase (mcrA) genes. Stable carbon and hydrogen isotopic signatures of the produced methane indicated an acetoclastic origin. Long-term enrichment cultures amended with either acetate or H2/CO2 revealed acetoclastic methanogenesis as key methane-formation process mediated by members of the order Methanosarcinales. Conditions prevailing in the river sediments might be suitable for hydrocarbon-degrading bacteria observed in the river sediments that were previously unclassified or closely related to the Bacteroidetes/Chlorobi group, the Firmicutes and the Chloroflexi group fuelling acetoclastic methanogensis in pristine river sediments.
Collapse
Affiliation(s)
- Sabrina Beckmann
- Centre for Marine Bioinnovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
13
|
Comparison of bacterial diversity from solar salterns and a simulated laboratory study. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0944-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
14
|
Wasmund K, Algora C, Müller J, Krüger M, Lloyd KG, Reinhardt R, Adrian L. Development and application of primers for the class Dehalococcoidia (phylum Chloroflexi) enables deep insights into diversity and stratification of subgroups in the marine subsurface. Environ Microbiol 2014; 17:3540-56. [PMID: 24889097 DOI: 10.1111/1462-2920.12510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/11/2014] [Indexed: 11/28/2022]
Abstract
Bacteria of the class Dehalococcoidia (DEH) (phylum Chloroflexi) are widely distributed in the marine subsurface and are especially prevalent in deep marine sediments. Nevertheless, little is known about the specific distributions of DEH subgroups at different sites and depths. This study therefore specifically examined the distributions of DEH through depths of various marine sediment cores by quantitative PCR and pyrosequencing using newly designed DEH 16S rRNA gene targeting primers. Quantification of DEH showed populations may establish in shallow sediments (i.e. upper centimetres), although as low relative proportions of total Bacteria, yet often became more prevalent in deeper sediments. Pyrosequencing revealed pronounced diversity co-exists within single biogeochemical zones, and that clear and sometimes abrupt shifts in relative proportions of DEH subgroups occur with depth. These shifts indicate varying metabolic properties exist among DEH subgroups. The distributional changes in DEH subgroups with depth may be related to a combination of biogeochemical factors including the availability of electron acceptors such as sulfate, the composition of organic matter and depositional regimes. Collectively, the results suggest DEH exhibit wider metabolic and genomic diversity than previously recognized, and this contributes to their widespread occurrence in the marine subsurface.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany.,Division of Microbial Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Camelia Algora
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany
| | - Josefine Müller
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany
| | - Martin Krüger
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Karen G Lloyd
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Lorenz Adrian
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany
| |
Collapse
|
15
|
Vigneron A, Cruaud P, Pignet P, Caprais JC, Gayet N, Cambon-Bonavita MA, Godfroy A, Toffin L. Bacterial communities and syntrophic associations involved in anaerobic oxidation of methane process of the Sonora Margin cold seeps, Guaymas Basin. Environ Microbiol 2013; 16:2777-90. [PMID: 24238139 DOI: 10.1111/1462-2920.12324] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 10/31/2013] [Indexed: 12/01/2022]
Abstract
SUMMARY The Sonora Margin cold seeps present on the seafloor a patchiness pattern of white microbial mats surrounded by polychaete and gastropod beds. These surface assemblages are fuelled by abundant organic inputs sedimenting from the water column and upward-flowing seep fluids. Elevated microbial density was observed in the underlying sediments. A previous study on the same samples identified anaerobic oxidation of methane (AOM) as the potential dominant archaeal process in these Sonora Margin sediments, probably catalysed by three clades of archaeal anaerobic methanotrophs (ANME-1, ANME-2 and ANME-3) associated with bacterial syntrophs. In this study, molecular surveys and microscopic observations investigating the diversity of Bacteria involved in AOM process, as well as the environmental parameters affecting the composition and the morphologies of AOM consortia in the Sonora Margin sediments were carried out. Two groups of Bacteria were identified within the AOM consortia, the Desulfosarcina/Desulfococcus SEEP SRB-1a group and a Desulfobulbus-related group. These bacteria showed different niche distributions, association specificities and consortia architectures, depending on sediment surface communities, geochemical parameters and ANME-associated phylogeny. Therefore, the syntrophic AOM process appears to depend on sulphate-reducing bacteria with different ecological niches and/or metabolisms, in a biofilm-like organic matrix.
Collapse
Affiliation(s)
- Adrien Vigneron
- Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Technopôle Brest Iroise, Plouzané, France; Université de Bretagne Occidentale, Technopôle Brest Iroise, Plouzané, France; CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Technopôle Brest Iroise, Plouzané, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Breuker A, Stadler S, Schippers A. Microbial community analysis of deeply buried marine sediments of the New Jersey shallow shelf (IODP Expedition 313). FEMS Microbiol Ecol 2013; 85:578-92. [DOI: 10.1111/1574-6941.12146] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Anja Breuker
- Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover Germany
| | - Susanne Stadler
- Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover Germany
| | - Axel Schippers
- Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover Germany
| |
Collapse
|
17
|
O'Sullivan LA, Sass AM, Webster G, Fry JC, Parkes RJ, Weightman AJ. Contrasting relationships between biogeochemistry and prokaryotic diversity depth profiles along an estuarine sediment gradient. FEMS Microbiol Ecol 2013; 85:143-57. [PMID: 23480711 DOI: 10.1111/1574-6941.12106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/27/2013] [Accepted: 03/03/2013] [Indexed: 11/30/2022] Open
Abstract
Detailed depth profiles of sediment geochemistry, prokaryotic diversity and activity (sulphate reduction and methanogenesis) were obtained along an estuarine gradient from brackish to marine, at three sites on the Colne estuary (UK). Distinct changes in prokaryotic populations [Archaea, Bacteria, sulphate-reducing bacteria (SRB) and methanogenic archaea (MA)] occurred with depth at the two marine sites, despite limited changes in sulphate and methane profiles. In contrast, the brackish site exhibited distinct geochemical zones (sulphidic and methanic) yet prokaryotic depth profiles were broadly homogenous. Sulphate reduction rates decreased with depth at the marine sites, despite nonlimiting sulphate concentrations, and hydrogenotrophic methanogenic rates peaked in the subsurface. Sulphate was depleted with depth at the brackish site, and acetotrophic methanogenesis was stimulated. Surprisingly, sulphate reduction was also stimulated in the brackish subsurface; potentially reflecting previous subsurface seawater incursions, anaerobic sulphide oxidation and/or anaerobic oxidation of methane coupled to sulphate reduction. Desulfobulbaceae, Desulfobacteraceae, Methanococcoides and members of the Methanomicrobiales were the dominant SRB and MA. Methylotrophic Methanococcoides often co-existed with SRB, likely utilising noncompetitive C1-substrates. Clear differences were found in SRB and MA phylotype distribution along the estuary, with only SRB2-a (Desulfobulbus) being ubiquitous. Results indicate a highly dynamic estuarine environment with a more complex relationship between prokaryotic diversity and sediment geochemistry, than previously suggested.
Collapse
|
18
|
Jorgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, Øvreås L, Steen IH, Thorseth IH, Pedersen RB, Schleper C. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci U S A 2012; 109:E2846-55. [PMID: 23027979 PMCID: PMC3479504 DOI: 10.1073/pnas.1207574109] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microbial communities and their associated metabolic activity in marine sediments have a profound impact on global biogeochemical cycles. Their composition and structure are attributed to geochemical and physical factors, but finding direct correlations has remained a challenge. Here we show a significant statistical relationship between variation in geochemical composition and prokaryotic community structure within deep-sea sediments. We obtained comprehensive geochemical data from two gravity cores near the hydrothermal vent field Loki's Castle at the Arctic Mid-Ocean Ridge, in the Norwegian-Greenland Sea. Geochemical properties in the rift valley sediments exhibited strong centimeter-scale stratigraphic variability. Microbial populations were profiled by pyrosequencing from 15 sediment horizons (59,364 16S rRNA gene tags), quantitatively assessed by qPCR, and phylogenetically analyzed. Although the same taxa were generally present in all samples, their relative abundances varied substantially among horizons and fluctuated between Bacteria- and Archaea-dominated communities. By independently summarizing covariance structures of the relative abundance data and geochemical data, using principal components analysis, we found a significant correlation between changes in geochemical composition and changes in community structure. Differences in organic carbon and mineralogy shaped the relative abundance of microbial taxa. We used correlations to build hypotheses about energy metabolisms, particularly of the Deep Sea Archaeal Group, specific Deltaproteobacteria, and sediment lineages of potentially anaerobic Marine Group I Archaea. We demonstrate that total prokaryotic community structure can be directly correlated to geochemistry within these sediments, thus enhancing our understanding of biogeochemical cycling and our ability to predict metabolisms of uncultured microbes in deep-sea sediments.
Collapse
Affiliation(s)
| | - Bjarte Hannisdal
- Centre for Geobiology, Department of Earth Science, University of Bergen, 5007 Bergen, Norway
| | - Anders Lanzén
- Centre for Geobiology, Department of Biology, and
- Computational Biology Unit, Uni Computing, Uni Research, 5007 Bergen, Norway
| | - Tamara Baumberger
- Centre for Geobiology, Department of Earth Science, University of Bergen, 5007 Bergen, Norway
- Institute for Geochemistry and Petrology, Eidgenössische Technische Hochschule Zürich, 8092 Zurich, Switzerland
| | - Kristin Flesland
- Centre for Geobiology, Department of Earth Science, University of Bergen, 5007 Bergen, Norway
| | - Rita Fonseca
- Department of Geosciences, University of Évora, 7000 Évora, Portugal
- Creminer Laboratory of Robotics and Systems in Engineering Science (LARSyS), Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal; and
| | - Lise Øvreås
- Centre for Geobiology, Department of Biology, and
| | - Ida H. Steen
- Centre for Geobiology, Department of Biology, and
| | - Ingunn H. Thorseth
- Centre for Geobiology, Department of Earth Science, University of Bergen, 5007 Bergen, Norway
| | - Rolf B. Pedersen
- Centre for Geobiology, Department of Earth Science, University of Bergen, 5007 Bergen, Norway
| | - Christa Schleper
- Centre for Geobiology, Department of Biology, and
- Department of Genetics in Ecology, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
19
|
Rocchetti L, Beolchini F, Hallberg KB, Johnson DB, Dell'Anno A. Effects of prokaryotic diversity changes on hydrocarbon degradation rates and metal partitioning during bioremediation of contaminated anoxic marine sediments. MARINE POLLUTION BULLETIN 2012; 64:1688-1698. [PMID: 22748839 DOI: 10.1016/j.marpolbul.2012.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 06/01/2023]
Abstract
We investigated changes of prokaryotic diversity during bioremediation experiments carried out on anoxic marine sediments characterized by high hydrocarbon and metal content. Microcosms containing contaminated sediments were amended with lactose and acetate and incubated in anaerobic conditions up to 60 d at 20 or 35 °C. Microcosms displaying higher degradation efficiency of hydrocarbons were characterized by the dominance of Alphaproteobacteria and Methanosarcinales and the lack of gene sequences belonging to known hydrocarbonoclastic bacteria. Multivariate analyses support the hypothesis that Alphaproteobacteria are important for hydrocarbon degradation and highlight a potential synergistic effect of archaea and bacteria in changes of metal partitioning. Overall, these results point out that the identification of changes in the prokaryotic diversity during bioremediation of contaminated marine sediments is not only important for the improvement of bio-treatment performance towards hydrocarbons, but also for a better comprehension of changes occurring in metal partitioning which affect their mobility and toxicity.
Collapse
Affiliation(s)
- Laura Rocchetti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | |
Collapse
|
20
|
Gorra R, Webster G, Martin M, Celi L, Mapelli F, Weightman AJ. Dynamic microbial community associated with iron-arsenic co-precipitation products from a groundwater storage system in Bangladesh. MICROBIAL ECOLOGY 2012; 64:171-186. [PMID: 22349905 DOI: 10.1007/s00248-012-0014-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/19/2012] [Indexed: 05/31/2023]
Abstract
The prokaryotic community in Fe-As co-precipitation product from a groundwater storage tank in Bangladesh was investigated over a 5-year period to assess the diversity of the community and to infer biogeochemical mechanisms that may contribute to the formation and stabilisation of co-precipitation products and to Fe and As redox cycling. Partial 16S rRNA gene sequences from Bacteria and Archaea, functional markers (mcrA and dsrB) and iron-oxidising Gallionella-related 16S rRNA gene sequences were determined using denaturing gradient gel electrophoresis (DGGE). Additionally, a bacterial 16S rRNA gene library was also constructed from one representative sample. Biogeochemical characterization demonstrated that co-precipitation products consist of a mixture of inorganic minerals, mainly hydrous ferric oxides, intimately associated with organic matter of microbial origin that contribute to the chemical and physical stabilisation of a poorly ordered structure. DGGE analysis and polymerase chain reaction-cloning revealed that the diverse bacterial community structure in the co-precipitation product progressively stabilised with time resulting in a prevalence of methylotrophic Betaproteobacteria, while the archaeal community was less diverse and was dominated by members of the Euryarchaeota. Results show that Fe-As co-precipitation products provide a habitat characterised by anoxic/oxic niches that supports a phylogenetically and metabolically diverse group of prokaryotes involved in metal, sulphur and carbon cycling, supported by the presence of Gallionella-like iron-oxidizers, methanogens, methylotrophs, and sulphate reducers. However, no phylotypes known to be directly involved in As(V) respiration or As(III) oxidation were found.
Collapse
Affiliation(s)
- Roberta Gorra
- DIVAPRA, University of Turin, Grugliasco, TO, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Roalkvam I, Dahle H, Chen Y, Jørgensen SL, Haflidason H, Steen IH. Fine-Scale Community Structure Analysis of ANME in Nyegga Sediments with High and Low Methane Flux. Front Microbiol 2012; 3:216. [PMID: 22715336 PMCID: PMC3375579 DOI: 10.3389/fmicb.2012.00216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/28/2012] [Indexed: 11/13/2022] Open
Abstract
To obtain knowledge on how regional variations in methane seepage rates influence the stratification, abundance, and diversity of anaerobic methanotrophs (ANME), we analyzed the vertical microbial stratification in a gravity core from a methane micro-seeping area at Nyegga by using 454-pyrosequencing of 16S rRNA gene tagged amplicons and quantitative PCR. These data were compared with previously obtained data from the more active G11 pockmark, characterized by higher methane flux. A down core stratification and high relative abundance of ANME were observed in both cores, with transition from an ANME-2a/b dominated community in low-sulfide and low methane horizons to ANME-1 dominance in horizons near the sulfate-methane transition zone. The stratification was over a wider spatial region and at greater depth in the core with lower methane flux, and the total 16S rRNA copy numbers were two orders of magnitude lower than in the sediments at G11 pockmark. A fine-scale view into the ANME communities at each location was achieved through operational taxonomical units (OTU) clustering of ANME-affiliated sequences. The majority of ANME-1 sequences from both sampling sites clustered within one OTU, while ANME-2a/b sequences were represented in unique OTUs. We suggest that free-living ANME-1 is the most abundant taxon in Nyegga cold seeps, and also the main consumer of methane. The observation of specific ANME-2a/b OTUs at each location could reflect that organisms within this clade are adapted to different geochemical settings, perhaps due to differences in methane affinity. Given that the ANME-2a/b population could be sustained in less active seepage areas, this subgroup could be potential seed populations in newly developed methane-enriched environments.
Collapse
Affiliation(s)
- Irene Roalkvam
- Center for Geobiology, Department of Biology, University of Bergen Bergen, Norway
| | | | | | | | | | | |
Collapse
|
22
|
Phylogenetic diversity of microbial communities associated with the crude-oil, large-insoluble-particle and formation-water components of the reservoir fluid from a non-flooded high-temperature petroleum reservoir. J Biosci Bioeng 2012; 113:204-10. [DOI: 10.1016/j.jbiosc.2011.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 11/20/2022]
|
23
|
Pachiadaki MG, Kallionaki A, Dählmann A, De Lange GJ, Kormas KA. Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. MICROBIAL ECOLOGY 2011; 62:655-668. [PMID: 21538105 DOI: 10.1007/s00248-011-9855-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/06/2011] [Indexed: 05/30/2023]
Abstract
We investigated the top 30-cm sediment prokaryotic community structure in 5-cm spatial resolution, at an active site of the Amsterdam mud volcano, East Mediterranean Sea, based on the 16S rRNA gene diversity. A total of 339 and 526 sequences were retrieved, corresponding to 25 and 213 unique (≥98% similarity) phylotypes of Archaea and Bacteria, respectively, in all depths. The Shannon-Wiener diversity index H was higher for Bacteria (1.92-4.03) than for Archaea (0.99-1.91) and varied differently between the two groups. Archaea were dominated by anaerobic methanotrophs ANME-1, -2 and -3 groups and were related to phylotypes involved in anaerobic oxidation of methane from similar habitats. The much more complex Bacteria community consisted of 20 phylogenetic groups at the phylum/candidate division level. Proteobacteria, in particular δ-Proteobacteria, was the dominant group. In most sediment layers, the dominant phylotypes of both the Archaea and Bacteria communities were found in neighbouring layers, suggesting some overlap in species richness. The similarity of certain prokaryotic communities was also depicted by using four different similarity indices. The direct comparison of the retrieved phylotypes with those from the Kazan mud volcano of the same field revealed that 40.0% of the Archaea and 16.9% of the Bacteria phylotypes are common between the two systems. The majority of these phylotypes are closely related to phylotypes originating from other mud volcanoes, implying a degree of endemicity in these systems.
Collapse
Affiliation(s)
- Maria G Pachiadaki
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Magnesia, Greece
| | | | | | | | | |
Collapse
|
24
|
Roalkvam I, Jørgensen SL, Chen Y, Stokke R, Dahle H, Hocking WP, Lanzén A, Haflidason H, Steen IH. New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiol Ecol 2011; 78:233-43. [PMID: 21676010 DOI: 10.1111/j.1574-6941.2011.01153.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Methane seepages typically harbor communities of anaerobic methane oxidizers (ANME); however, knowledge about fine-scale vertical variation of ANME in response to geochemical gradients is limited. We investigated microbial communities in sediments below a white microbial mat in the G11 pockmark at Nyegga by 16S rRNA gene tag pyrosequencing and real-time quantitative PCR. A vertical stratification of dominating ANME communities was observed at 4 cmbsf (cm below seafloor) and below in the following order: ANME-2a/b, ANME-1 and ANME-2c. The ANME-1 community was most numerous and comprised single or chains of cells with typical rectangular morphology, accounting up to 89.2% of the retrieved 16S rRNA gene sequences. Detection rates for sulfate-reducing Deltaproteobacteria possibly involved in anaerobic oxidation of methane were low throughout the core. However, a correlation in the abundance of Candidate division JS-1 with ANME-2 was observed, indicating involvement in metabolisms occurring in ANME-2-dominated horizons. The white microbial mat and shallow sediments were dominated by organisms affiliated with Sulfurovum (Epsilonproteobacteria) and Methylococcales (Gammaproteobacteria), suggesting that aerobic oxidation of sulfur and methane is taking place. In intermediate horizons, typical microbial groups associated with methane seeps were recovered. The data are discussed with respect to co-occurring microbial assemblages and interspecies interactions.
Collapse
Affiliation(s)
- Irene Roalkvam
- Department of Biology, Centre for Geobiology, University of Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Webster G, Sass H, Cragg BA, Gorra R, Knab NJ, Green CJ, Mathes F, Fry JC, Weightman AJ, Parkes RJ. Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions. FEMS Microbiol Ecol 2011; 77:248-63. [PMID: 21477007 DOI: 10.1111/j.1574-6941.2011.01109.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The prokaryotic activity, diversity and culturability of diffusion-controlled Aarhus Bay sediments, including the sulphate-methane transition zone (SMTZ), were determined using a combination of geochemical, molecular (16S rRNA and mcrA genes) and cultivation techniques. The SMTZ had elevated sulphate reduction and anaerobic oxidation of methane, and enhanced cell numbers, but no active methanogenesis. The prokaryotic population was similar to that in other SMTZs, with Deltaproteobacteria, Gammaproteobacteria, JS1, Planctomycetes, Chloroflexi, ANME-1, MBG-D and MCG. Many of these groups were maintained in a heterotrophic (10 mM glucose, acetate), sediment slurry with periodic low sulphate and acetate additions (~2 mM). Other prokaryotes were also enriched including methanogens, Firmicutes, Bacteroidetes, Synergistetes and TM6. This slurry was then inoculated into a matrix of substrate and sulphate concentrations for further selective enrichment. The results demonstrated that important SMTZ bacteria can be maintained in a long-term, anaerobic culture under specific conditions. For example, JS1 grew in a mixed culture with acetate or acetate/glucose plus sulphate. Chloroflexi occurred in a mixed culture, including in the presence of acetate, which had previously not been shown to be a Chloroflexi subphylum I substrate, and was more dominant in a medium with seawater salt concentrations. In contrast, archaeal diversity was reduced and limited to the orders Methanosarcinales and Methanomicrobiales. These results provide information about the physiology of a range of SMTZ prokaryotes and shows that many can be maintained and enriched under heterotrophic conditions, including those with few or no cultivated representatives.
Collapse
Affiliation(s)
- Gordon Webster
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, Wales, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Microbial diversity in Frenulata (Siboglinidae, Polychaeta) species from mud volcanoes in the Gulf of Cadiz (NE Atlantic). Antonie van Leeuwenhoek 2011; 100:83-98. [PMID: 21359663 DOI: 10.1007/s10482-011-9567-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
Frenulates are a group of gutless marine annelids belonging to the Siboglinidae that are nutritionally dependent upon endosymbiotic bacteria. We have characterized the bacteria associated with several frenulate species from mud volcanoes in the Gulf of Cadiz by PCR-DGGE of bacterial 16S rRNA genes, coupled with analysis of 16S rRNA gene libraries. In addition to the primary symbiont, bacterial consortia (microflora) were found in all species analysed. Phylogenetic analyses indicate that the primary symbiont in most cases belongs to the Gammaproteobacteria and were related to thiotrophic and methanotrophic symbionts from other marine invertebrates, whereas members of the microflora were related to multiple bacterial phyla. This is the first molecular evidence of methanotrophic bacteria in at least one frenulate species. In addition, the occurrence of the same bacterial phylotype in different Frenulata species, from different depths and mud volcanoes suggests that there is no selection for specific symbionts and corroborates environmental acquisition as previously proposed for this group of siboglinids.
Collapse
|
27
|
Blazejak A, Schippers A. High abundance of JS-1- andChloroflexi-relatedBacteriain deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol 2010; 72:198-207. [DOI: 10.1111/j.1574-6941.2010.00838.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
28
|
Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 2010; 72:429-44. [PMID: 20370830 DOI: 10.1111/j.1574-6941.2010.00857.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (> or = 98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers.
Collapse
Affiliation(s)
- Maria G Pachiadaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes-Heraklion, Greece
| | | | | | | |
Collapse
|
29
|
Brady SF, Simmons L, Kim JH, Schmidt EW. Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat Prod Rep 2009; 26:1488-503. [PMID: 19844642 DOI: 10.1039/b817078a] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sean F Brady
- The Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
30
|
Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 2008; 66:181-96. [DOI: 10.1111/j.1574-6941.2008.00566.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W. How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 2008; 10:1571-81. [PMID: 18331337 DOI: 10.1111/j.1462-2920.2008.01572.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Community-level molecular techniques are widely used in comparative microbial ecology to assess the diversity of microbial communities and their response to changing environments. These include among others denaturing and temperature gradient gel electrophoresis (DGGE/TGGE), single-strand conformation polymorphism (SSCP), length heterogeneity-PCR (LH-PCR), terminal-restriction fragment length polymorphism (tRFLP) and 16S rRNA gene clone libraries. The amount of data derived from these techniques available in literature is continuously increasing and the lack of a universal way to interpret the raw fingerprint itself makes it difficult to compare between different results. Taking the DGGE technique as an example, we propose a setting-independent theoretical interpretation of the DGGE pattern, based on a straightforward processing on three levels of analysis: (i) the range-weighted richness (Rr) reflecting the carrying capacity of the system, (ii) the dynamics (Dy) reflecting the specific rate of species coming to significance, and (iii) functional organization (Fo), defined through a relation between the structure of a microbial community and its functionality. These Rr, Dy and Fo values, each representing a score to describe a microbial community, can be plotted in a 3D graph. The latter represents a visual ecological interpretation of the initial raw fingerprinting pattern.
Collapse
Affiliation(s)
- Massimo Marzorati
- Laboratory for Microbial Ecology and Technology (LabMET), Gent University, B9000 Gent, Belgium
| | | | | | | | | |
Collapse
|