1
|
Gahan J, O’Sullivan O, Cotter PD, Schmalenberger A. Arbuscular Mycorrhiza Support Plant Sulfur Supply through Organosulfur Mobilizing Bacteria in the Hypho- and Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2022; 11:3050. [PMID: 36432779 PMCID: PMC9694294 DOI: 10.3390/plants11223050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to elucidate the role of bacteria colonising mycorrhizal hyphae in organically bound sulfur mobilisation, the dominant soil sulfur source that is not directly plant available. The effect of an intact mycorrhizal symbiosis with access to stable isotope organo-34S enriched soils encased in 35 µm mesh cores was tested in microcosms with Agrostis stolonifera and Plantago lanceolata. Hyphae and associated soil were sampled from static mesh cores with mycorrhizal ingrowth and rotating mesh cores that exclude mycorrhizal ingrowth as well as corresponding rhizosphere soil, while plant shoots were analysed for 34S uptake. Static cores increased uptake of 34S at early stages of plant growth when sulfur demand appeared to be high and harboured significantly larger populations of sulfonate mobilising bacteria. Bacterial and fungal communities were significantly different in the hyphospheres of static cores when compared to rotating cores, not associated with plant hosts. Shifts in bacterial and fungal communities occurred not only in rotated cores but also in the rhizosphere. Arylsulfatase activity was significantly higher in the rhizosphere when cores stayed static, while atsA and asfA gene diversity was distinct in the microcosms with static and rotating cores. This study demonstrated that AM symbioses can promote organo-S mobilization and plant uptake through interactions with hyphospheric bacteria, enabling AM fungal ingrowth into static cores creating a positive feedback-loop, detectable in the microbial rhizosphere communities.
Collapse
Affiliation(s)
- Jacinta Gahan
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Ireland, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Ireland, P61 C996 Cork, Ireland
| | - Achim Schmalenberger
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
2
|
Kavamura VN, Mendes R, Bargaz A, Mauchline TH. Defining the wheat microbiome: Towards microbiome-facilitated crop production. Comput Struct Biotechnol J 2021; 19:1200-1213. [PMID: 33680361 PMCID: PMC7902804 DOI: 10.1016/j.csbj.2021.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
Wheat is one of the world's most important crops, but its production relies heavily on agrochemical inputs which can be harmful to the environment when used excessively. It is well known that a multitude of microbes interact with eukaryotic organisms, including plants, and the sum of microbes and their functions associated with a given host is termed the microbiome. Plant-microbe interactions can be beneficial, neutral or harmful to the host plant. Over the last decade, with the development of next generation DNA sequencing technology, our understanding of the plant microbiome structure has dramatically increased. Considering that defining the wheat microbiome is key to leverage crop production in a sustainable way, here we describe how different factors drive microbiome assembly in wheat, including crop management, edaphic-environmental conditions and host selection. In addition, we highlight the benefits to take a multidisciplinary approach to define and explore the wheat core microbiome to generate solutions based on microbial (synthetic) communities or single inoculants. Advances in plant microbiome research will facilitate the development of microbial strategies to guarantee a sustainable intensification of crop production.
Collapse
Affiliation(s)
- Vanessa N. Kavamura
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariúna, SP, Brazil
| | - Adnane Bargaz
- Agrobiosciences, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Tim H. Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
3
|
Hamid H, Li LY, Grace JR. Effect of substrate concentrations on aerobic biotransformation of 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate. CHEMOSPHERE 2020; 261:128108. [PMID: 33113640 DOI: 10.1016/j.chemosphere.2020.128108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Biotransformation of 6:2 fluorotelomer sulfonate (FTS) results in the formation of short-chain (C4 - C6) perfluorocarboxylic acids (PFCAs) in landfill leachate. Although leachate substrate concentrations (i.e., organic carbon, ammonia) vary widely, their effects on 6:2 FTS biotransformation and PFCAs formation are unknown. This study investigated the effect of organic carbon and ammonia concentration in 6:2 FTS aerobic biotransformation and PFCA formation in leachate. Biotransformation experiments were conducted with sediment collected from a landfill leachate ditch, to which deionized (DI) water and various amounts of leachate were added. Microbial community analysis using 16S rRNA indicated that while phylum Proteobacteria dominated the bacterial composition throughout the 60 days, Actinobacteria increased with time. Many genera from Proteobacteria and Actinobacteria can synthesize a wide array of enzymes, indicating that these phyla are likely to play an important role in 6:2 FTS biotransformation. Higher biotransformation of 6:2 FTS was observed in leachate-added microcosms (∼21%), compared to DI water microcosm (∼14%), likely reflecting the substrate dependency of 6:2 FTS biotransformation. Substrate limiting conditions in DI water microcosm resulted in slightly greater formation of ∑(C4 - C6) PFCAs (∼14 mol%), compared with leachate added microcosms (10-13 mol%). The findings suggest that dilution of landfill leachate, (e.g., during wet seasons), likely results in reduced 6:2 FTS biotransformation and increased PFCAs formation compared to dry conditions. Observed formation of C7 - C8 PFCAs in the live microcosms suggested that landfills act as secondary sources of legacy PFCAs (e.g., perfluorooctanoic acid) in the environment.
Collapse
Affiliation(s)
- Hanna Hamid
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Loretta Y Li
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - John R Grace
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
4
|
Ikoyi I, Fowler A, Storey S, Doyle E, Schmalenberger A. Sulfate fertilization supports growth of ryegrass in soil columns but changes microbial community structures and reduces abundances of nematodes and arbuscular mycorrhiza. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135315. [PMID: 31787298 DOI: 10.1016/j.scitotenv.2019.135315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The increased use of sulfate fertilizers to compensate for soil sulphur (S) limitation in agricultural soils may affect soil microbes and micro-fauna involved in S mobilization. Here, columns with podzolic soil material and ryegrass (Lolium perenne) were fertilized with 0, 5, 10 and 20 kg ha-1 (S0/S5/S10/S20) inorganic sulfate-S alongside a full complement of other nutrients. In the S10 and S20 columns, significantly higher amounts of sulfate were present in soil solution. After two grass cuts (14 weeks in total), there was a significant decrease in arylsulfatase activity, bacterial-feeding nematode abundances and mycorrhizal colonization in the S10 and S20 columns compared to the S0. Bacterial, fungal and AM community structures shifted significantly across the treatments. After final harvest, the S10 and S20 columns had significantly higher grass dry matter yield and uptake of S, N, K, Ca and Mg compared to the S0. While the overall bacterial diversity was reduced in the S20 treatment, abundance (asfA) and diversity (ssuD and atsA) of bacterial genes involved in S cycling were not significantly affected by one-time sulfate fertilization. These results indicate that short-term sulfate fertilization benefits to plant growth outweighed the negative feedback from parts of the soil biota. To improve nutrient use efficiencies in a sustainable manner, future studies should consider alternative S fertilizers which may be beneficial to both, the soil biota and plants in the long-term.
Collapse
Affiliation(s)
- Israel Ikoyi
- University of Limerick, Faculty of Science and Engineering, School of Natural Sciences, Department of Biological Sciences, Ireland; University of Limerick, Faculty of Science and Engineering, Department of Mathematics and Statistics, Ireland
| | - Andrew Fowler
- University of Limerick, Faculty of Science and Engineering, Department of Mathematics and Statistics, Ireland; University of Oxford, OCIAM, Mathematical Institute, United Kingdom
| | - Sean Storey
- University College Dublin, School of Biology and Environmental Science and Earth Institute, Ireland
| | - Evelyn Doyle
- University College Dublin, School of Biology and Environmental Science and Earth Institute, Ireland
| | - Achim Schmalenberger
- University of Limerick, Faculty of Science and Engineering, School of Natural Sciences, Department of Biological Sciences, Ireland.
| |
Collapse
|
5
|
Agnolucci M, Palla M, Cristani C, Cavallo N, Giovannetti M, De Angelis M, Gobbetti M, Minervini F. Beneficial Plant Microorganisms Affect the Endophytic Bacterial Communities of Durum Wheat Roots as Detected by Different Molecular Approaches. Front Microbiol 2019; 10:2500. [PMID: 31736925 PMCID: PMC6834690 DOI: 10.3389/fmicb.2019.02500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
This study aimed at characterising the endophytic bacterial communities living in durum wheat roots, as affected by wheat cultivar and inoculation of the Arbuscular mycorrhizal fungus Funneliformis mosseae IMA1 and the wheat root endophytic bacterium Lactobacillus plantarum B.MD.R.A2. These microorganisms were inoculated, alone or in combination, in durum wheat (cultivars Odisseo and Saragolla). Non-inoculated plants of each cultivar represented the controls. Forty-three days after sowing, roots were deprived of the epiphytic microbiota and subjected to DNA extraction. The DNA was used as template in PCR-DGGE analysis of the 16S rRNA gene (variable region V3–V5) and 16S (region V1–V3) metagenetics. Odisseo and Saragolla root endophytic bacterial biotas differed for number of OTUs and composition. In detail, Pseudomonas was higher in Odisseo than in Saragolla. The inoculation of F. mosseae and L. plantarum increased the abundance of Pseudomonas, some Actinobacteria (e.g., Streptomyces, Microbacterium, two genera including several plant growth promoting (PGP) strains) and Bacteroidetes in both cultivars. However, the endophytic bacterial biota of Saragolla roots inoculated just with lactobacilli did not differ from that of the control. The inoculation of Saragolla with F. mosseae, alone or in combination with lactobacilli, led to higher abundance of Rhodococcus, belonging to Actinobacteria and encompassing PGP strains. First, this work showed that F. mosseae and L. plantarum shape the endophytic bacterial biota of durum wheat roots. Abundance of some OTUs was affected by the microbial inoculation, depending on the cultivar. This result represents a starting point for exploitation of beneficial endophytes of wheat roots.
Collapse
Affiliation(s)
- Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Michela Palla
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Caterina Cristani
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Noemi Cavallo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Bianco A, Fancello F, Balmas V, Dettori M, Motroni A, Zara G, Budroni M. Microbial communities and malt quality of durum wheat used in brewing. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Angela Bianco
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Francesco Fancello
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Virgilio Balmas
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Marco Dettori
- Agricultural Research Agency of Sardinia (Agris); Cagliari Sardinia Italy
| | - Andrea Motroni
- Hydro-Meteo-Climate Department, Sardinian Regional Agency for Environmental Protection; Sassari Italy
| | - Giacomo Zara
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Marilena Budroni
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| |
Collapse
|
7
|
Diversity of Sulfur-Oxidizing and Sulfur-Reducing Microbes in Diverse Ecosystems. ADVANCES IN SOIL MICROBIOLOGY: RECENT TRENDS AND FUTURE PROSPECTS 2018. [DOI: 10.1007/978-981-10-6178-3_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Schmalenberger A, Fox A. Bacterial Mobilization of Nutrients From Biochar-Amended Soils. ADVANCES IN APPLIED MICROBIOLOGY 2016; 94:109-59. [PMID: 26917243 DOI: 10.1016/bs.aambs.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur.
Collapse
|
9
|
Babalola OO. Does nature make provision for backups in the modification of bacterial community structures? Biotechnol Genet Eng Rev 2015; 30:31-48. [PMID: 25023461 DOI: 10.1080/02648725.2014.921497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Self-balancing is an inherent character in nature in response to community structure modification pressure and modern biotechnology has revolutionized the way such detections are made. Presented here is an overview of the forces and process interactions between released bacteria and indigenous microflora which encompass soil bacterial diversity, community structure, indigenous endorhizosphere micro-organisms, molecular detection methodologies, and transgenic plants and microbes. Issues of soil bacterial diversity and community structure as well as the interpretation of results from various findings are highlighted and discussed as inferred from research articles. An understanding of the factors influencing bio-inoculant modification of bacterial community structure in the colonization of the rhizosphere is essential for improved establishment of biocontrol agents, and is critically reviewed.
Collapse
Affiliation(s)
- Olubukola Oluranti Babalola
- a Faculty of Agriculture, Science and Technology, Department of Biological Sciences , North-West University , Private Bag X2046, Mmabatho 2735 , South Africa
| |
Collapse
|
10
|
Gahan J, Schmalenberger A. The role of bacteria and mycorrhiza in plant sulfur supply. FRONTIERS IN PLANT SCIENCE 2014; 5:723. [PMID: 25566295 PMCID: PMC4267179 DOI: 10.3389/fpls.2014.00723] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 05/23/2023]
Abstract
Plant growth is highly dependent on bacteria, saprophytic, and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S) in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax, and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted.
Collapse
|
11
|
Sieh D, Watanabe M, Devers EA, Brueckner F, Hoefgen R, Krajinski F. The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. THE NEW PHYTOLOGIST 2013; 197:606-616. [PMID: 23190168 DOI: 10.1111/nph.12034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/02/2012] [Indexed: 05/24/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction that occurs between the large majority of vascular plants and fungi of the phylum Glomeromycota. In addition to other nutrients, sulfur compounds are symbiotically transferred from AM fungus to host plants; however, the physiological importance of mycorrhizal-mediated sulfur for plant metabolism has not yet been determined. We applied different sulfur and phosphate fertilization treatments to Medicago truncatula and investigated whether mycorrhizal colonization influences leaf metabolite composition and the expression of sulfur starvation-related genes. The expression pattern of sulfur starvation-related genes indicated reduced sulfur starvation responses in mycorrhizal plants grown at 1 mM phosphate nutrition. Leaf metabolite concentrations clearly showed that phosphate stress has a greater impact than sulfur stress on plant metabolism, with no demand for sulfur at strong phosphate starvation. However, when phosphate nutrition is high enough, mycorrhizal colonization reduces sulfur stress responses, probably as a result of symbiotic sulfur uptake. Mycorrhizal colonization is able to reduce sulfur starvation responses in M. truncatula when the plant's phosphate status is high enough that sulfur starvation is of physiological importance. This clearly shows the impact of mycorrhizal sulfur transfer on plant metabolism.
Collapse
Affiliation(s)
- Daniela Sieh
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Emanuel A Devers
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Franziska Brueckner
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Franziska Krajinski
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
12
|
Schäfer H, Myronova N, Boden R. Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:315-334. [PMID: 20007683 DOI: 10.1093/jxb/erp355] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dimethylsulphide (DMS) plays a major role in the global sulphur cycle. It has important implications for atmospheric chemistry, climate regulation, and sulphur transport from the marine to the atmospheric and terrestrial environments. In addition, DMS acts as an info-chemical for a wide range of organisms ranging from micro-organisms to mammals. Micro-organisms that cycle DMS are widely distributed in a range of environments, for instance, oxic and anoxic marine, freshwater and terrestrial habitats. Despite the importance of DMS that has been unearthed by many studies since the early 1970s, the understanding of the biochemistry, genetics, and ecology of DMS-degrading micro-organisms is still limited. This review examines current knowledge on the microbial cycling of DMS and points out areas for future research that should shed more light on the role of organisms degrading DMS and related compounds in the biosphere.
Collapse
|