1
|
Guo Y, Askari N, Smets I, Appels L. A review on co-metabolic degradation of organic micropollutants during anaerobic digestion: Linkages between functional groups and digestion stages. WATER RESEARCH 2024; 256:121598. [PMID: 38663209 DOI: 10.1016/j.watres.2024.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
The emerging presence of organic micropollutants (OMPs) in water bodies produced by human activities is a source of growing concern due to their environmental and health issues. Biodegradation is a widely employed treatment method for OMPs in wastewater owing to its high efficiency and low operational cost. Compared to aerobic degradation, anaerobic degradation has numerous advantages, including energy efficiency and superior performance for certain recalcitrant compounds. Nonetheless, the low influent concentrations of OMPs in wastewater treatment plants (WWTPs) and their toxicity make it difficult to support the growth of microorganisms. Therefore, co-metabolism is a promising mechanism for OMP biodegradation in which co-substrates are added as carbon and energy sources and stimulate increased metabolic activity. Functional microorganisms and enzymes exhibit significant variations at each stage of anaerobic digestion affecting the environment for the degradation of OMPs with different structural properties, as these factors substantially influence OMPs' biodegradability and transformation pathways. However, there is a paucity of literature reviews that explicate the correlations between OMPs' chemical structure and specific metabolic conditions. This study provides a comprehensive review of the co-metabolic processes which are favored by each stage of anaerobic digestion and attempts to link various functional groups to their favorable degradation pathways. Furthermore, potential co-metabolic processes and strategies that can enhance co-digestion are also identified, providing directions for future research.
Collapse
Affiliation(s)
- Yutong Guo
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Najmeh Askari
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Ilse Smets
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F box 2424, Heverlee 3001, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
2
|
Mitschke N, Jarling R, Rabus R, Christoffers J, Wilkes H. Metabolites of the anaerobic degradation of diethyl ether by denitrifying betaproteobacterium strain HxN1. Org Biomol Chem 2020; 18:7098-7109. [PMID: 32897282 DOI: 10.1039/d0ob01419b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The constitutions of five metabolites formed during co-metabolic, anaerobic degradation of diethyl ether by the denitrifying betaproteobacterium Aromatoleum sp. strain HxN1 were elucidated by comparison of mass spectrometric and gas chromatographic data with those of synthetic reference standards. Furthermore, the absolute configurations of two stereogenic centers in the metabolites were established. Based on these results a degradation pathway for diethyl ether by Aromatoleum sp. HxN1 analogous to that of n-hexane is proposed. Synthesis of both enantiomers of methyl (E)-4-ethoxy-2-pentenoate was accomplished by etherification of ethyl (R)- or (S)-lactate, followed by hydrolysis of the ester group and reduction to furnish 2-ethoxy-1-propanol. The primary alcohol was converted by a Swern oxidation followed by a Horner-Wadsworth-Emmons reaction to methyl (E)-4-ethoxy-2-pentenoate that was finally hydrogenated to methyl 4-ethoxypentanoate. Methyl (S)-4-ethoxy-3-oxopentanoate was prepared by conversion of (S)-2-ethoxypropanoyl chloride with Meldrum's acid. Reduction of the resulting β-oxoester with NaBH4 or baker's yeast gave both diastereoisomers of methyl 4-ethoxy-3-hydroxypentanoate. The stereocenter at C-3 of the main diastereoisomer produced with baker's yeast was determined by Mosher ester analysis to be (R)-configurated. Dimethyl 2-(1-ethoxyethyl)succinate was prepared by Michael addition of nitroethane to diethyl maleate, followed by conjugate addition of sodium ethanolate, hydrolysis and esterification with diazomethane.
Collapse
Affiliation(s)
- Nico Mitschke
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - René Jarling
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - Ralf Rabus
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - Jens Christoffers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - Heinz Wilkes
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
3
|
Thornton SF, Nicholls HCG, Rolfe SA, Mallinson HEH, Spence MJ. Biodegradation and fate of ethyl tert-butyl ether (ETBE) in soil and groundwater: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122046. [PMID: 32145642 DOI: 10.1016/j.jhazmat.2020.122046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/07/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
This review summarises the current state of knowledge on the biodegradation and fate of the gasoline ether oxygenate ethyl tert-butyl ether (ETBE) in soil and groundwater. Microorganisms have been identified in soil and groundwater with the ability to degrade ETBE aerobically as a carbon and energy source, or via cometabolism using alkanes as growth substrates. Aerobic biodegradation of ETBE initially occurs via hydroxylation of the ethoxy carbon by a monooxygenase enzyme, with subsequent formation of intermediates which include acetaldehyde, tert-butyl acetate (TBAc), tert-butyl alcohol (TBA), 2-hydroxy-2-methyl-1-propanol (MHP) and 2-hydroxyisobutyric acid (2-HIBA). Slow cell growth and low biomass yields on ETBE are believed to result from the ether structure and slow degradation kinetics, with potential limitations on ETBE metabolism. Genes known to facilitate transformation of ETBE include ethB (within the ethRABCD cluster), encoding a cytochrome P450 monooxygenase, and alkB-encoding alkane hydroxylases. Other genes have been identified in microorganisms but their activity and specificity towards ETBE remains poorly characterised. Microorganisms and pathways supporting anaerobic biodegradation of ETBE have not been identified, although this potential has been demonstrated in limited field and laboratory studies. The presence of co-contaminants (other ether oxygenates, hydrocarbons and organic compounds) in soil and groundwater may limit aerobic biodegradation of ETBE by preferential metabolism and consumption of available dissolved oxygen or enhance ETBE biodegradation through cometabolism. Both ETBE-degrading microorganisms and alkane-oxidising bacteria have been characterised, with potential for use in bioaugmentation and biostimulation of ETBE degradation in groundwater.
Collapse
Affiliation(s)
- S F Thornton
- Groundwater Protection and Restoration Group, Dept of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - H C G Nicholls
- Groundwater Protection and Restoration Group, Dept of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - S A Rolfe
- Dept of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield S10 2TN, UK
| | - H E H Mallinson
- Groundwater Protection and Restoration Group, Dept of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - M J Spence
- Concawe, Environmental Science for European Refining, Boulevard du Souverain 165, 1160 Brussels, Belgium
| |
Collapse
|
4
|
van der Waals MJ, Pijls C, Sinke AJC, Langenhoff AAM, Smidt H, Gerritse J. Anaerobic degradation of a mixture of MtBE, EtBE, TBA, and benzene under different redox conditions. Appl Microbiol Biotechnol 2018; 102:3387-3397. [PMID: 29478141 PMCID: PMC5852185 DOI: 10.1007/s00253-018-8853-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 11/30/2022]
Abstract
The increasing use of biobased fuels and fuel additives can potentially change the typical fuel-related contamination in soil and groundwater. Anaerobic biotransformation of the biofuel additive ethyl tert-butyl ether (EtBE), as well as of methyl tert-butyl ether (MtBE), benzene, and tert-butyl alcohol (TBA, a possible oxygenate metabolite), was studied at an industrially contaminated site and in the laboratory. Analysis of groundwater samples indicated that in the field MtBE was degraded, yielding TBA as major product. In batch microcosms, MtBE was degraded under different conditions: unamended control, with medium without added electron acceptors, or with ferrihydrite or sulfate (with or without medium) as electron acceptor, respectively. Degradation of EtBE was not observed under any of these conditions tested. TBA was partially depleted in parallel with MtBE. Results of microcosm experiments with MtBE substrate analogues, i.e., syringate, vanillate, or ferulate, were in line with the hypothesis that the observed TBA degradation is a cometabolic process. Microcosms with ferulate, syringate, isopropanol, or diethyl ether showed EtBE depletion up to 86.5% of the initial concentration after 83 days. Benzene was degraded in the unamended controls, with medium without added electron acceptors and with ferrihydrite, sulfate, or chlorate as electron acceptor, respectively. In the presence of nitrate, benzene was only degraded after addition of an anaerobic benzene-degrading community. Nitrate and chlorate hindered MtBE, EtBE, and TBA degradation.
Collapse
Affiliation(s)
- Marcelle J van der Waals
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK, Utrecht, the Netherlands. .,Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Charles Pijls
- Tauw, Handelskade 37, 7400 AC, Deventer, the Netherlands
| | - Anja J C Sinke
- BP International Limited, Sunbury on Thames, Middlesex, TW167BP, UK
| | - Alette A M Langenhoff
- Department of Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Jan Gerritse
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK, Utrecht, the Netherlands
| |
Collapse
|
5
|
Ghattas AK, Fischer F, Wick A, Ternes TA. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. WATER RESEARCH 2017; 116:268-295. [PMID: 28347952 DOI: 10.1016/j.watres.2017.02.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 05/22/2023]
Abstract
Although strictly anaerobic conditions prevail in several environmental compartments, up to now, biodegradation studies with emerging organic contaminants (EOCs), such as pharmaceuticals and personal care products, have mainly focused on aerobic conditions. One of the reasons probably is the assumption that the aerobic degradation is more energetically favorable than degradation under strictly anaerobic conditions. Certain aerobically recalcitrant contaminants, however, are biodegraded under strictly anaerobic conditions and little is known about the organisms and enzymatic processes involved in their degradation. This review provides a comprehensive survey of characteristic anaerobic biotransformation reactions for a variety of well-studied, structurally rather simple contaminants (SMOCs) bearing one or a few different functional groups/structural moieties. Furthermore it summarizes anaerobic degradation studies of more complex contaminants with several functional groups (CMCs), in soil, sediment and wastewater treatment. While strictly anaerobic conditions are able to promote the transformation of several aerobically persistent contaminants, the variety of observed reactions is limited, with reductive dehalogenations and the cleavage of ether bonds being the most prevalent. Thus, it becomes clear that the transferability of degradation mechanisms deduced from culture studies of SMOCs to predict the degradation of CMCs, such as EOCs, in environmental matrices is hampered due the more complex chemical structure bearing different functional groups, different environmental conditions (e.g. matrix, redox, pH), the microbial community (e.g. adaptation, competition) and the low concentrations typical for EOCs.
Collapse
Affiliation(s)
- Ann-Kathrin Ghattas
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Ferdinand Fischer
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany.
| |
Collapse
|
6
|
Liu T, Ahn H, Sun W, McGuinness LR, Kerkhof LJ, Häggblom MM. Identification of a Ruminococcaceae Species as the Methyl tert-Butyl Ether (MTBE) Degrading Bacterium in a Methanogenic Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1455-1464. [PMID: 26727046 DOI: 10.1021/acs.est.5b04731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The widespread use of methyl tert-butyl ether (MTBE) has caused major contamination of groundwater sources and is a concern due to its taste and odor problems, as well as its toxicity. MTBE can be degraded anaerobically which makes bioremediation of contaminated aquifers a potential solution. Nevertheless, the organisms and mechanisms that are responsible for anaerobic MTBE degradation are still unknown. The aim of our research was to identify the organisms actively degrading MTBE. For this purpose we characterized an anaerobic methanogenic culture enriched with MTBE as the sole carbon source from the New Jersey Arthur Kill intertidal strait sediment. The cultures were analyzed using stable isotope probing (SIP) combined with terminal restriction fragment length polymorphism (T-RFLP), high-throughput sequencing and clone library analysis of bacterial 16S rRNA genes. The sequence data indicated that phylotypes belonging to the Ruminococcaceae in the Firmicutes were predominant in the methanogenic cultures. SIP experiments also showed sequential incorporation of the (13)C labeled MTBE by the bacterial community with a bacterium most closely related to Saccharofermentans acetigenes identified as the bacterium active in O-demethylation of MTBE. Identification of the microorganisms responsible for the activity will help us better understand anaerobic MTBE degradation processes in the field and determine biomarkers for monitoring natural attenuation.
Collapse
Affiliation(s)
- Tong Liu
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Hyeri Ahn
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Weimin Sun
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Lora R McGuinness
- Department of Marine and Coastal Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Lee J Kerkhof
- Department of Marine and Coastal Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| |
Collapse
|
7
|
Key KC, Sublette KL, Duncan K, Mackay DM, Scow KM, Ogles D. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater. GROUND WATER MONITORING & REMEDIATION 2013; 33:57-68. [PMID: 25525320 PMCID: PMC4267322 DOI: 10.1111/gwmr.12031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate.
Collapse
Affiliation(s)
- Katherine C. Key
- Department of Chemical Engineering, University of Tulsa, Tulsa, OK, USA
| | - Kerry L. Sublette
- Department of Chemical Engineering, University of Tulsa, Tulsa, OK, USA
| | - Kathleen Duncan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK
| | - Douglas M. Mackay
- Department of Land, Air, and Water Resources, University of California at Davis, Davis, CA
| | - Kate M. Scow
- Department of Land, Air, and Water Resources, University of California at Davis, Davis, CA
| | | |
Collapse
|
8
|
Hyman M. Biodegradation of gasoline ether oxygenates. Curr Opin Biotechnol 2012; 24:443-50. [PMID: 23116604 DOI: 10.1016/j.copbio.2012.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/17/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Ether oxygenates such as methyl tertiary butyl ether (MTBE) are added to gasoline to improve fuel combustion and decrease exhaust emissions. Ether oxygenates and their tertiary alcohol metabolites are now an important group of groundwater pollutants. This review highlights recent advances in our understanding of the microorganisms, enzymes and pathways involved in both the aerobic and anaerobic biodegradation of these compounds. This review also aims to illustrate how these microbiological and biochemical studies have guided, and have helped refine, molecular and stable isotope-based analytical approaches that are increasingly being used to detect and quantify biodegradation of these compounds in contaminated environments.
Collapse
Affiliation(s)
- Michael Hyman
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
9
|
Anaerobic methyl tert-butyl ether-degrading microorganisms identified in wastewater treatment plant samples by stable isotope probing. Appl Environ Microbiol 2012; 78:2973-80. [PMID: 22327600 DOI: 10.1128/aem.07253-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrifugation, fractioning, and terminal restriction fragment length polymorphism (TRFLP). In addition, bacterial and archaeal 16S rRNA gene clone libraries were constructed. The SIP experiments indicated bacteria in the phyla Firmicutes (family Ruminococcaceae) and Alphaproteobacteria (genus Sphingopyxis) were the dominant MTBE degraders. Previous studies have suggested a role for Firmicutes in anaerobic MTBE degradation; however, the putative MTBE-degrading microorganism in the current study is a novel MTBE-degrading phylotype within this phylum. Two archaeal phylotypes (genera Methanosarcina and Methanocorpusculum) were also enriched in the heavy fractions, and these organisms may be responsible for minor amounts of MTBE degradation or for the uptake of metabolites released from the primary MTBE degraders. Currently, limited information exists on the microorganisms able to degrade MTBE under anaerobic conditions. This work represents the first application of DNA-based SIP to identify anaerobic MTBE-degrading microorganisms in laboratory microcosms and therefore provides a valuable set of data to definitively link identity with anaerobic MTBE degradation.
Collapse
|
10
|
Rasa E, Chapman SW, Bekins BA, Fogg GE, Scow KM, Mackay DM. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media. JOURNAL OF CONTAMINANT HYDROLOGY 2011; 126:235-47. [PMID: 22115089 PMCID: PMC3267905 DOI: 10.1016/j.jconhyd.2011.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/27/2011] [Accepted: 08/18/2011] [Indexed: 05/19/2023]
Abstract
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.
Collapse
Affiliation(s)
- Ehsan Rasa
- Department of Civil and Environmental Engineering, University of California-Davis, One Shields Avenue, Davis, California, 95616, USA
- Tel.: +1 530 574 8193; fax: +1 530 752 1552.
| | - Steven W. Chapman
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Barbara A. Bekins
- U.S. Geological Survey, 345 Middlefield Rd, Menlo Park, California 94025, USA.
| | - Graham E. Fogg
- Department of Land, Air, and Water Resources, University of California-Davis, One Shields Avenue, Davis, California, 95616, USA.
| | - Kate M. Scow
- Department of Land, Air, and Water Resources, University of California-Davis, One Shields Avenue, Davis, California, 95616, USA.
| | - Douglas M. Mackay
- Department of Land, Air, and Water Resources, University of California-Davis, One Shields Avenue, Davis, California, 95616, USA.
| |
Collapse
|
11
|
Liang SH, Kao CM, Kuo YC, Chen KF, Yang BM. In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system. WATER RESEARCH 2011; 45:2496-2506. [PMID: 21396673 DOI: 10.1016/j.watres.2011.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 05/30/2023]
Abstract
Groundwater contamination by gasoline spill is a worldwide environmental problem. Gasoline contains methyl tertiary-butyl ether (MTBE) (a fuel oxygenates) and benzene, which are the chemicals of concerns among the gasoline components. In this study, an in situ chemical oxidation (ISCO) barrier system was developed to evaluate the feasibility of applying this passive system on the control of MTBE and benzene plume in aquifer. The developed ISCO barrier contained oxidant-releasing materials, which could release oxidants (e.g., persulfate) when contact with water for the contaminants' oxidation in groundwater. In this study, laboratory-scale fill-and-draw experiments were conducted to determine the component ratios of the oxidant-releasing materials and evaluate the persulfate release rates. Results indicate that the average persulfate-releasing rate of 7.26 mg S(2)O(8)(2-)/d/g was obtained when the mass ratio of sodium persulfate/cement/sand/water was 1/1.4/0.24/0.7. The column study was conducted to evaluate the efficiency of in situ application of the developed ISCO barrier system on MTBE and benzene oxidation. Results from the column study indicate that approximately 86-92% of MTBE and 95-99% of benzene could be removed during the early persulfate-releasing stage (before 48 pore volumes of groundwater pumping). The removal efficiencies for MTBE and benzene dropped to approximately 40-56% and 85-93%, respectively, during the latter part of the releasing period due to the decreased persulfate-releasing rate. Results reveal that acetone, byproduct of MTBE, was observed and then further oxidized completely. Results suggest that the addition of ferrous ion would activate the persulfate oxidation. However, excess ferrous ion would compete with organic contaminants for persulfate, and thus, cause the decrease in contaminant oxidation rates. The proposed treatment scheme would be expected to provide a more cost-effective alternative to remediate MTBE, benzene, and other petroleum-hydrocarbon contaminated aquifers. Results from this study will be useful in designing a scale-up system for field application.
Collapse
Affiliation(s)
- S H Liang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Wei N, Finneran KT. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3012-3018. [PMID: 21384909 DOI: 10.1021/es103362k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Anaerobic mineralization of tert-butyl alcohol (TBA) and methyl tert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3±9.9% of [U-(14)C]-TBA to 14CO2 without electron acceptor amendment. Fe(III), sulfate, and Fe(III) plus anthraquinone-2,6-disulfonate addition also promoted U-[14C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-(14)C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(III)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.
Collapse
Affiliation(s)
- Na Wei
- Environmental Engineering and Earth Sciences, Clemson University, 168 Rich Laboratory, Anderson, South Carolina 29625, United States
| | | |
Collapse
|
13
|
Assessment of MTBE biodegradation pathways by two-dimensional isotope analysis in mixed bacterial consortia under different redox conditions. Appl Microbiol Biotechnol 2010; 88:309-17. [DOI: 10.1007/s00253-010-2730-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/02/2010] [Accepted: 06/12/2010] [Indexed: 11/27/2022]
|