1
|
Høgslund S, Cedhagen T, Bowser SS, Risgaard-Petersen N. Sinks and Sources of Intracellular Nitrate in Gromiids. Front Microbiol 2017; 8:617. [PMID: 28473806 PMCID: PMC5397464 DOI: 10.3389/fmicb.2017.00617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/27/2017] [Indexed: 11/27/2022] Open
Abstract
A substantial nitrate pool is stored within living cells in various benthic marine environments. The fate of this bioavailable nitrogen differs according to the organisms managing the intracellular nitrate (ICN). While some light has been shed on the nitrate carried by diatoms and foraminiferans, no study has so far followed the nitrate kept by gromiids. Gromiids are large protists and their ICN concentration can exceed 1000x the ambient nitrate concentration. In the present study we investigated gromiids from diverse habitats and showed that they contained nitrate at concentrations ranging from 1 to 370 mM. We used 15N tracer techniques to investigate the source of this ICN, and found that it originated both from active nitrate uptake from the environment and from intracellular production, most likely through bacterial nitrification. Microsensor measurements showed that part of the ICN was denitrified to N2 when gromiids were exposed to anoxia. Denitrification seemed to be mediated by endobiotic bacteria because antibiotics inhibited denitrification activity. The active uptake of nitrate suggests that ICN plays a role in gromiid physiology and is not merely a consequence of the gromiid hosting a diverse bacterial community. Measurements of aerobic respiration rates and modeling of oxygen consumption by individual gromiid cells suggested that gromiids may occasionally turn anoxic by their own respiration activity and thus need strategies for coping with this self-inflicted anoxia.
Collapse
Affiliation(s)
- Signe Høgslund
- Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | - Tomas Cedhagen
- Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | - Samuel S Bowser
- Wadsworth Center, New York State Department of Health, AlbanyNY, USA
| | - Nils Risgaard-Petersen
- Department of Bioscience, Aarhus UniversityAarhus, Denmark.,Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
2
|
Kamp A, Høgslund S, Risgaard-Petersen N, Stief P. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes. Front Microbiol 2015; 6:1492. [PMID: 26734001 PMCID: PMC4686598 DOI: 10.3389/fmicb.2015.01492] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/10/2015] [Indexed: 11/13/2022] Open
Abstract
The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations.
Collapse
Affiliation(s)
- Anja Kamp
- AIAS, Aarhus Institute of Advanced Studies Aarhus University Aarhus, Denmark
| | - Signe Høgslund
- Department of Bioscience, Aarhus University Aarhus, Denmark
| | | | - Peter Stief
- Department of Biology, Nordic Center for Earth Evolution, University of Southern Denmark Odense, Denmark
| |
Collapse
|
3
|
Cable Bacteria in Freshwater Sediments. Appl Environ Microbiol 2015; 81:6003-11. [PMID: 26116678 PMCID: PMC4551263 DOI: 10.1128/aem.01064-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/19/2015] [Indexed: 11/20/2022] Open
Abstract
In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage.
Collapse
|
4
|
Kojima H, Ogura Y, Yamamoto N, Togashi T, Mori H, Watanabe T, Nemoto F, Kurokawa K, Hayashi T, Fukui M. Ecophysiology of Thioploca ingrica as revealed by the complete genome sequence supplemented with proteomic evidence. THE ISME JOURNAL 2015; 9:1166-76. [PMID: 25343513 PMCID: PMC4409161 DOI: 10.1038/ismej.2014.209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/15/2023]
Abstract
Large sulfur-oxidizing bacteria, which accumulate a high concentration of nitrate, are important constituents of aquatic sediment ecosystems. No representative of this group has been isolated in pure culture, and only fragmented draft genome sequences are available for these microorganisms. In this study, we successfully reconstituted the genome of Thioploca ingrica from metagenomic sequences, thereby generating the first complete genome sequence from this group. The Thioploca samples for the metagenomic analysis were obtained from a freshwater lake in Japan. A PCR-free paired-end library was constructed from the DNA extracted from the samples and was sequenced on the Illumina MiSeq platform. By closing gaps within and between the scaffolds, we obtained a circular chromosome and a plasmid-like element. The reconstituted chromosome was 4.8 Mbp in length with a 41.2% GC content. A sulfur oxidation pathway identical to that suggested for the closest relatives of Thioploca was deduced from the reconstituted genome. A full set of genes required for respiratory nitrate reduction to dinitrogen gas was also identified. We further performed a proteomic analysis of the Thioploca sample and detected many enzymes/proteins involved in sulfur oxidation, nitrate respiration and inorganic carbon fixation as major components of the protein extracts from the sample, suggesting that these metabolic activities are strongly associated with the physiology of T. ingrica in lake sediment.
Collapse
Affiliation(s)
- Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Yoshitoshi Ogura
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nozomi Yamamoto
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tomoaki Togashi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroshi Mori
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tomohiro Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Fumiko Nemoto
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Ken Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tetsuya Hayashi
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Kędzierski M, Uchman A, Sawlowicz Z, Briguglio A. Fossilized bioelectric wire - the trace fossil Trichichnus. ACTA ACUST UNITED AC 2015; 12:2301-2309. [PMID: 26290671 PMCID: PMC4538864 DOI: 10.5194/bg-12-2301-2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic–anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized “electric wire”.
Collapse
Affiliation(s)
- M Kędzierski
- Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
| | - A Uchman
- Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
| | - Z Sawlowicz
- Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
| | - A Briguglio
- Institut für Paläontologie, Universität Wien, Geozentrum, Althanstrasse 14, 1090 Vienna, Austria ; Faculty of Science, Department of Petroleum Geoscience, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| |
Collapse
|
6
|
Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME JOURNAL 2014; 8:1682-90. [PMID: 24577351 PMCID: PMC4817607 DOI: 10.1038/ismej.2014.19] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/06/2014] [Accepted: 01/17/2014] [Indexed: 11/17/2022]
Abstract
Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4–6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed.
Collapse
|
7
|
Stief P, Kamp A, de Beer D. Role of diatoms in the spatial-temporal distribution of intracellular nitrate in intertidal sediment. PLoS One 2013; 8:e73257. [PMID: 24023845 PMCID: PMC3762809 DOI: 10.1371/journal.pone.0073257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/19/2013] [Indexed: 11/23/2022] Open
Abstract
Intracellular nitrate storage allows microorganisms to survive fluctuating nutrient availability and anoxic conditions in aquatic ecosystems. Here we show that diatoms, ubiquitous and highly abundant microalgae, represent major cellular reservoirs of nitrate in an intertidal flat of the German Wadden Sea and are potentially involved in anaerobic nitrate respiration. Intracellular nitrate (ICNO3) was present year-round in the sediment and was spatially and temporally correlated with fucoxanthin, the marker photopigment of diatoms. Pyrosequencing of SSU rRNA genes of all domains of life confirmed that ICNO3 storage was most likely due to diatoms rather than other known nitrate-storing microorganisms (i.e., large sulfur bacteria and the eukaryotic foraminifers and gromiids). Sedimentary ICNO3 concentrations reached up to 22.3 µmol dm-3 at the sediment surface and decreased with sediment depth to negligible concentrations below 5 cm. Similarly, the ICNO3/fucoxanthin ratio and porewater nitrate (PWNO3) concentrations decreased with sediment depth, suggesting that ICNO3 of diatoms is in equilibrium with PWNO3, but is enriched relative to PWNO3 by 2-3 orders of magnitude. Cell-volume-specific ICNO3 concentrations in a diatom mat covering the sediment surface during spring were estimated at 9.3-46.7 mmol L-1. Retrieval of 18S rRNA gene sequences related to known nitrate-storing and nitrate-ammonifying diatom species suggested that diatoms in dark and anoxic sediment layers might be involved in anaerobic nitrate respiration. Due to the widespread dominance of diatoms in microphytobenthos, the total nitrate pool in coastal marine sediments may generally be at least two times larger than derived from porewater measurements and partially be recycled to ammonium.
Collapse
Affiliation(s)
- Peter Stief
- Max Planck Institute for Marine Microbiology, Microsensor Group, Bremen, Germany
- University of Southern Denmark, Institute of Biology, NordCEE, Odense, Denmark
- * E-mail:
| | - Anja Kamp
- Max Planck Institute for Marine Microbiology, Microsensor Group, Bremen, Germany
- Jacobs University Bremen, Molecular Life Science Research Center, Bremen, Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Microsensor Group, Bremen, Germany
| |
Collapse
|
8
|
Abstract
Diatoms survive in dark, anoxic sediment layers for months to decades. Our investigation reveals a correlation between the dark survival potential of marine diatoms and their ability to accumulate NO(3)(-) intracellularly. Axenic strains of benthic and pelagic diatoms that stored 11-274 mM NO(3)(-) in their cells survived for 6-28 wk. After sudden shifts to dark, anoxic conditions, the benthic diatom Amphora coffeaeformis consumed 84-87% of its intracellular NO(3)(-) pool within 1 d. A stable-isotope labeling experiment proved that (15)NO(3)(-) consumption was accompanied by the production and release of (15)NH(4)(+), indicating dissimilatory nitrate reduction to ammonium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dissimilatory nitrate reduction pathway used by a eukaryotic phototroph. Similar to large sulfur bacteria and benthic foraminifera, diatoms may respire intracellular NO(3)(-) in sediment layers without O(2) and NO(3)(-). The rapid depletion of the intracellular NO(3)(-) storage, however, implies that diatoms use DNRA to enter a resting stage for long-term survival. Assuming that pelagic diatoms are also capable of DNRA, senescing diatoms that sink through oxygen-deficient water layers may be a significant NH(4)(+) source for anammox, the prevalent nitrogen loss pathway of oceanic oxygen minimum zones.
Collapse
|