1
|
Baev V, Iliev I, Apostolova E, Gozmanova M, Hristova Y, Ilieva Y, Yahubyan G, Gochev V. Genomic Exploration of a Chitinolytic Streptomyces albogriseolus PMB5 Strain from European mantis ( Mantis religiosa). Curr Issues Mol Biol 2024; 46:9359-9375. [PMID: 39329906 PMCID: PMC11430731 DOI: 10.3390/cimb46090554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
The genus Streptomyces is renowned not only for its natural antibiotic production but also for its abundant chitinolytic enzymes, which break down stubborn chitin into chitooligosaccharides. Despite this, there have been limited studies utilizing whole-genome sequencing to explore the repertoire of chitin degradation and utilization genes in Streptomyces. A particularly compelling source of novel antimicrobials and enzymes lies in the microbiota of insects, where bacterial symbionts produce antimicrobials to protect against opportunistic pathogens and enzymes to adapt to the environment. In this study, we present the chitinolytic strain Streptomyces albogriseolus PMB5, isolated from the insectivorous Mantis religiosa (European mantis). Whole-genome sequencing revealed that PMB5 harbors a linear chromosome of 7,211,961 bp and a linear plasmid of 327,989 bp. The genome comprises 6683 genes, including 6592 protein-coding sequences and 91 RNA genes. Furthermore, genome analysis revealed 19 biosynthetic gene clusters covering polyketides, terpenes, and RiPPs, with 10 clusters showing significant gene similarity (>80%) to known clusters like antimycin, hopene, and geosmin. In the genome of S. albogriseolus PMB5, we were able to identify several antibiotic resistance genes; these included cml (resistance to phenicol), gimA (resistance to macrolides), parY (resistance to aminocoumarin), oleC/oleD (resistance to macrolides), novA (resistance to aminocoumarin) and bla/blc (resistance to beta-lactams). Additionally, three clusters displayed no similarity to known sequences, suggesting novel bioactive compound discovery potential. Remarkably, strain PMB5 is the first reported S. albogriseolus capable of thriving on a medium utilizing chitin as a carbon source, with over 50 chitin-utilizing genes identified, including five AA10 family LPMOs, five GH18 chitinases, and one GH19 chitinase. This study significantly enhances the genomic understanding of S. albogriseolus, a species previously underrepresented in research, paving the way to further exploration of the biotechnological potential of the species.
Collapse
Affiliation(s)
- Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Ivan Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Mariyana Gozmanova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Yana Hristova
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Yanitsa Ilieva
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| | - Velizar Gochev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Li F, Zhao H, Liu Y, Zhang J, Yu H. Chitin Biodegradation by Lytic Polysaccharide Monooxygenases from Streptomyces coelicolor In Vitro and In Vivo. Int J Mol Sci 2022; 24:ijms24010275. [PMID: 36613716 PMCID: PMC9820598 DOI: 10.3390/ijms24010275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have the potential to improve recalcitrant polysaccharide hydrolysis by the oxidizing cleavage of glycosidic bond. Streptomyces species are major chitin decomposers in soil ecological environments and encode multiple lpmo genes. In this study, we demonstrated that transcription of the lpmo gene, Sclpmo10G, in the Streptomyces coelicolor A3(2) (ScA3(2)) strain is strongly induced by chitin. The ScLPMO10G protein was further expressed in Escherichia coli and characterized in vitro. The ScLPMO10G protein showed oxidation activity towards chitin. Chitinase synergy experiments demonstrated that the addition of ScLPMO10G resulted in a substantial in vitro increase in the reducing sugar levels. Moreover, in vivo the LPMO-overexpressing strain ScΔLPMO10G(+) showed stronger chitin-degrading ability than the wild-type, leading to a 2.97-fold increase in reducing sugar level following chitin degradation. The total chitinase activity of ScΔLPMO10G(+) was 1.5-fold higher than that of ScA3(2). In summary, ScLPMO10G may play a role in chitin biodegradation in S. coelicolor, which could have potential applications in biorefineries.
Collapse
Affiliation(s)
- Fei Li
- Department of Bioengineering, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Honglu Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence:
| |
Collapse
|
3
|
Duhsaki L, Mukherjee S, Rani TS, Madhuprakash J. Genome analysis of Streptomyces sp. UH6 revealed the presence of potential chitinolytic machinery crucial for chitosan production. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:431-442. [PMID: 34192819 DOI: 10.1111/1758-2229.12986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Chitosan and its derivatives have numerous applications in wastewater treatment as bio-coagulants, flocculants and bio-adsorbents against both particulate and dissolved pollutants. Chitinolytic bacteria secrete an array of enzymes, which play crucial role in chitin to chitosan conversion. Consequently, there is a growing demand for identification and characterization of novel bacterial isolates with potential implications in chitosan production. We describe genomic features of the new isolate Streptomyces sp. UH6. Analysis of the 6.51 Mb genome revealed the GC content as 71.95% and presence of 6990 coding sequences of which 63% were functionally annotated. Further, we identified two possible chitin-utilization pathways, which employ secreted enzymes like lytic polysaccharide monooxygenases and family-18 glycoside hydrolases (GHs). More importantly, the genome has six family-4 polysaccharide deacetylases with probable role in chitin to chitosan conversion, as well as two chitosanases belonging to GH46 and GH75 families. In addition, the gene clusters, dasABC and ngcEFG coding for transporters, which mediate the uptake of N,N'-diacetylchitobiose and N-acetyl-d-glucosamine were identified. Several genes responsible for hydrolysis of other polysaccharides and fermentation of sugars were also identified. Taken together, the phylogenetic and genomic analyses suggest that the isolate Streptomyces sp. UH6 secretes potential chitin-active enzymes responsible for chitin to chitosan conversion.
Collapse
Affiliation(s)
- Lal Duhsaki
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | - Saumashish Mukherjee
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | | | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Campos-Avelar I, Colas de la Noue A, Durand N, Cazals G, Martinez V, Strub C, Fontana A, Schorr-Galindo S. Aspergillus flavus Growth Inhibition and Aflatoxin B 1 Decontamination by Streptomyces Isolates and Their Metabolites. Toxins (Basel) 2021; 13:toxins13050340. [PMID: 34066812 PMCID: PMC8151643 DOI: 10.3390/toxins13050340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/02/2022] Open
Abstract
Aflatoxin B1 is a potent carcinogen produced by Aspergillus flavus, mainly during grain storage. As pre-harvest methods are insufficient to avoid mycotoxin presence during storage, diverse curative techniques are being investigated for the inhibition of fungal growth and aflatoxin detoxification. Streptomyces spp. represent an alternative as they are a promising source of detoxifying enzymes. Fifty-nine Streptomyces isolates and a Streptomyces griseoviridis strain from the commercial product Mycostop®, evaluated against Penicillium verrucosum and ochratoxin A during previous work, were screened for their ability to inhibit Aspergillus flavus growth and decrease the aflatoxin amount. The activities of bacterial cells and cell-free extracts (CFEs) from liquid cultures were also evaluated. Fifty-eight isolates were able to inhibit fungal growth during dual culture assays, with a maximal reduction going down to 13% of the control. Aflatoxin-specific production was decreased by all isolates to at least 54% of the control. CFEs were less effective in decreasing fungal growth (down to 40% and 55% for unheated and heated CFEs, respectively) and aflatoxin-specific production, with a few CFEs causing an overproduction of mycotoxins. Nearly all Streptomyces isolates were able to degrade AFB1 when growing in solid and liquid media. A total degradation of AFB1 was achieved by Mycostop® on solid medium, as well as an almost complete degradation by IX20 in liquid medium (6% of the control). CFE maximal degradation went down to 37% of the control for isolate IX09. The search for degradation by-products indicated the presence of a few unknown molecules. The evaluation of residual toxicity of the tested isolates by the SOS chromotest indicated a detoxification of at least 68% of AFB1’s genotoxicity.
Collapse
Affiliation(s)
- Ixchel Campos-Avelar
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
- Correspondence: (I.C.-A.); (A.C.d.l.N.)
| | - Alexandre Colas de la Noue
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
- Correspondence: (I.C.-A.); (A.C.d.l.N.)
| | - Noël Durand
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
- CIRAD, UMR Qualisud, 34398 Montpellier, France
| | - Guillaume Cazals
- IBMMUMR5247, University of Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France;
| | - Véronique Martinez
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
| | - Caroline Strub
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
| | - Angélique Fontana
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
| | - Sabine Schorr-Galindo
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
| |
Collapse
|
5
|
Minimizing Ochratoxin A Contamination through the Use of Actinobacteria and Their Active Molecules. Toxins (Basel) 2020; 12:toxins12050296. [PMID: 32380688 PMCID: PMC7290465 DOI: 10.3390/toxins12050296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 01/24/2023] Open
Abstract
Ochratoxin A (OTA) is a secondary metabolite produced by fungal pathogens such as Penicilliumverrucosum, which develops in food commodities during storage such as cereals, grapes, and coffee. It represents public health concerns due to its genotoxicity, carcinogenicity, and teratogenicity. The objective of this study was to evaluate the ability of actinobacteria and their metabolites to degrade OTA and/or to decrease its production. Sixty strains of actinobacteria were tested for their ability to prevent OTA formation by in vitro dual culture assays or with cell free extracts (CFEs). In dual culture, 17 strains strongly inhibited fungal growth, although it was generally associated with an increase in OTA specific production. Seventeen strains inhibited OTA specific production up to 4% of the control. Eleven actinobacteria CFEs reduced OTA specific production up to 62% of the control, while no substantial growth inhibition was observed except for two strains up to 72% of the control. Thirty-three strains were able to degrade OTA almost completely in liquid medium whereas only five were able to decrease it on solid medium, and two of them reduced OTA to an undetectable amount. Our results suggest that OTA decrease could be related to different strategies of degradation/metabolization by actinobacteria, through enzyme activities and secretion of secondary metabolites interfering with the OTA biosynthetic pathway. CFEs appeared to be ineffective at degrading OTA, raising interesting questions about the detoxification mechanisms. Common degradation by-products (e.g., OTα or L-β-phenylalanine) were searched by HPLC-MS/MS, however, none of them were found, which implies a different mechanism of detoxification and/or a subsequent degradation into unknown products.
Collapse
|
6
|
Niki D, Higashitani A, Osada H, Bito T, Shimizu K, Arima J. Chitinolytic proteins secreted by Cellulosimicrobium sp. NTK2. FEMS Microbiol Lett 2020; 367:5815077. [PMID: 32239207 DOI: 10.1093/femsle/fnaa055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Cellulosimicrobium sp. NTK2 (NTK2 strain) was isolated as a chitinolytic bacterium from mature compost derived from chitinous waste. The growth of the NTK2 strain was enhanced by supplementation of the culture medium with 2% crystalline chitin. Approximately 70% of the supplemented crystalline chitin was degraded during cultivation. Whole genome analysis of the NTK2 strain identified eight chitinases and two chitin-binding proteins. The NTK2 strain secreted two bacterial extracellular solute-binding proteins, three family 18 glycosyl hydrolases and one lytic polysaccharide monooxygenase specifically in the presence of crystalline chitin. A chitinolytic enzyme with a molecular mass of 29 kDa on SDS-PAGE under native conditions was also secreted. This chitinolytic enzyme exhibited the largest band upon zymography but could not be identified. In an attempt to identify all the chitinases secreted by the NTK2 strain, we expressed recombinant versions of the proteins exhibiting chitinolytic activity in Escherichia coli. Our results suggest that the 29 kDa protein belonging to family 19 glycosyl hydrolase was expressed specifically in the presence of 2% crystalline chitin.
Collapse
Affiliation(s)
- Daisuke Niki
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Akari Higashitani
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Haruki Osada
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Katsuhiko Shimizu
- Platform for Community-Based Research and Education, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Jiro Arima
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| |
Collapse
|
7
|
Xu T, Qi M, Liu H, Cao D, Xu C, Wang L, Qi B. Chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801. AMB Express 2020; 10:29. [PMID: 32036475 PMCID: PMC7007918 DOI: 10.1186/s13568-020-0963-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801, which had been screened out in our previous work. The results of fermentation revealed that CS1801 can convert the chitin derived from crab shells, colloidal chitin and N-acetylglucosamine to chitooligosaccharide. Additional genome-wide analysis of CS1801 was also performed to explore the genomic basis for chitin degradation. The results showed that CS1801 possesses a chromosome with 5,611,479 bp (73% GC) and a plasmid with 1,388,284 bp (73% GC). The CS1801 genome consists of 7584 protein-coding genes, 90 tRNA and 21 rRNA operons. In addition, the results of genomic CAZyme analysis indicated that CS1801 comprises 103 glycoside hydrolase family genes, which could regulate the glycoside hydrolases that contribute to chitin degradation. The whole-genome information of CS1801 could highlight the mechanism underlying the chitin degradation activity of CS1801, strongly indicating that CS1801 is characterized by a substantial number of genes encoding chitinases and the complete metabolic pathway of chitin, conferring CS1801 with promising potential applicability in chitooligosaccharide production.
Collapse
|
8
|
Ordóñez-Robles M, Rodríguez-García A, Martín JF. Genome-wide transcriptome response of Streptomyces tsukubaensis to N-acetylglucosamine: effect on tacrolimus biosynthesis. Microbiol Res 2018; 217:14-22. [DOI: 10.1016/j.micres.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
|
9
|
Iinuma C, Saito A, Ohnuma T, Tenconi E, Rosu A, Colson S, Mizutani Y, Liu F, Świątek-Połatyńska M, van Wezel GP, Rigali S, Fujii T, Miyashita K. NgcE Sco Acts as a Lower-Affinity Binding Protein of an ABC Transporter for the Uptake of N,N'-Diacetylchitobiose in Streptomyces coelicolor A3(2). Microbes Environ 2018; 33:272-281. [PMID: 30089751 PMCID: PMC6167110 DOI: 10.1264/jsme2.me17172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In the model species Streptomyces coelicolor A3(2), the uptake of chitin-degradation byproducts, mainly N,N′- diacetylchitobiose ([GlcNAc]2) and N-acetylglucosamine (GlcNAc), is performed by the ATP-binding cassette (ABC) transporter DasABC-MsiK and the sugar-phosphotransferase system (PTS), respectively. Studies on the S. coelicolor chromosome have suggested the occurrence of additional uptake systems of GlcNAc-related compounds, including the SCO6005–7 cluster, which is orthologous to the ABC transporter NgcEFG of S. olivaceoviridis. However, despite conserved synteny between the clusters in S. coelicolor and S. olivaceoviridis, homology between them is low, with only 35% of residues being identical between NgcE proteins, suggesting different binding specificities. Isothermal titration calorimetry experiments revealed that recombinant NgcESco interacts with GlcNAc and (GlcNAc)2, with Kd values (1.15 and 1.53 μM, respectively) that were higher than those of NgcE of S. olivaceoviridis (8.3 and 29 nM, respectively). The disruption of ngcESco delayed (GlcNAc)2 consumption, but did not affect GlcNAc consumption ability. The ngcESco-dasA double mutation severely decreased the ability to consume (GlcNAc)2 and abolished the induction of chitinase production in the presence of (GlcNAc)2, but did not affect the GlcNAc consumption rate. The results of these biochemical and reverse genetic analyses indicate that NgcESco acts as a (GlcNAc)2- binding protein of the ABC transporter NgcEFGSco-MsiK. Transcriptional and biochemical analyses of gene regulation demonstrated that the ngcESco gene was slightly induced by GlcNAc, (GlcNAc)2, and chitin, but repressed by DasR. Therefore, a model was proposed for the induction of the chitinolytic system and import of (GlcNAc)2, in which (GlcNAc)2 generated from chitin by chitinase produced leakily, is mainly transported via NgcEFG-MsiK and induces the expression of chitinase genes and dasABCD.
Collapse
Affiliation(s)
- Chiharu Iinuma
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University
| | - Akihiro Saito
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University.,Department of Materials and Life Science, Shizuoka Institute of Science and Technology
| | | | - Elodie Tenconi
- InBioS-Center for Protein Engineering, Institut de Chimie B6a, University of Liège
| | - Adeline Rosu
- InBioS-Center for Protein Engineering, Institut de Chimie B6a, University of Liège
| | - Séverine Colson
- InBioS-Center for Protein Engineering, Institut de Chimie B6a, University of Liège
| | - Yuuki Mizutani
- Department of Materials and Life Science, Shizuoka Institute of Science and Technology
| | - Feng Liu
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University
| | | | | | - Sébastien Rigali
- InBioS-Center for Protein Engineering, Institut de Chimie B6a, University of Liège
| | | | | |
Collapse
|
10
|
Ashfield-Crook NR, Woodward Z, Soust M, Kurtböke Dİ. Assessment of the Detrimental Impact of Polyvalent Streptophages Intended to be Used as Biological Control Agents on Beneficial Soil Streptoflora. Curr Microbiol 2018; 75:1589-1601. [PMID: 30242439 DOI: 10.1007/s00284-018-1565-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022]
Abstract
Streptophages are currently being investigated to control potato common scab, however, since a majority of streptophages are reported to be polyvalent, their potential to infect beneficial soil streptomycetes during the application process may have unintended consequences. To test this hypothesis, two phytopathogenic fungi, namely Fusarium solani and Rhizoctonia solani, were tested for their detrimental effect on the test crop wheat (Triticum aestivum cv. Gutha). F. solani caused a significant root weight reduction (34%) in the wheat plant and therefore was tested further in the pot trials with actinomycetes present. Sixty-seven streptomycete isolates from a Tasmanian potato farm were screened for their antifungal abilities against the two phytopathogenic fungi. Four actinomycetes found to be strongly antifungal were then tested for their disease-protective abilities against F. solani in pot trials again using wheat. Addition of the streptomycetes into the container media protected the plants against F. solani, indicating that streptomycetes have a disease-suppressive effect. A further pot trial was conducted to evaluate whether these beneficial streptomycete species would be affected by streptophage treatment and subsequently result in an increased risk of fungal infections. When streptophages were added to the pots, the shoot and root growth of wheat declined by 23.6% and 8.0%, respectively, in the pots with the pathogenic fungus compared to the control pots. These differences might suggest that removal of antifungal streptomycetes by polyvalent phages from plant rhizosphere when biocontrol of plant pathogenic streptomycetes (e.g. Streptomyces scabiei) is targeted might encourage secondary fungal infections in the farm environment. The presented data provide preliminary evidence that streptophage treatment of pathogenic streptomycetes may lead to an aggravated disease risk by soil-borne fungal pathogens when naturally present antagonists are removed. As a result, extensive farm site trials are required to determine the long-term detrimental impact of polyvalent streptophage treatments on beneficial soil streptoflora.
Collapse
Affiliation(s)
- Nina R Ashfield-Crook
- GeneCology Research Centre and the Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Zachary Woodward
- Terragen Biotech Pty. Ltd., Level 5, 171 Collins Street, PO Box 24082, Melbourne, VIC, 3001, Australia
| | - Martin Soust
- Terragen Biotech Pty. Ltd., Level 5, 171 Collins Street, PO Box 24082, Melbourne, VIC, 3001, Australia
| | - D İpek Kurtböke
- GeneCology Research Centre and the Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.
| |
Collapse
|
11
|
GntR Family Regulator DasR Controls Acetate Assimilation by Directly Repressing the acsA Gene in Saccharopolyspora erythraea. J Bacteriol 2018; 200:JB.00685-17. [PMID: 29686136 DOI: 10.1128/jb.00685-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
The GntR family regulator DasR controls the transcription of genes involved in chitin and N-acetylglucosamine (GlcNAc) metabolism in actinobacteria. GlcNAc is catabolized to ammonia, fructose-6-phosphate (Fru-6P), and acetate, which are nitrogen and carbon sources. In this work, a DasR-responsive element (dre) was observed in the upstream region of acsA1 in Saccharopolyspora erythraea This gene encodes acetyl coenzyme A (acetyl-CoA) synthetase (Acs), an enzyme that catalyzes the conversion of acetate into acetyl-CoA. We found that DasR repressed the transcription of acsA1 in response to carbon availability, especially with GlcNAc. Growth inhibition was observed in a dasR-deleted mutant (ΔdasR) in the presence of GlcNAc in minimal medium containing 10 mM acetate, a condition under which Acs activity is critical to growth. These results demonstrate that DasR controls acetate assimilation by directly repressing the transcription of the acsA1 gene and performs regulatory roles in the production of intracellular acetyl-CoA in response to GlcNAc.IMPORTANCE Our work has identified the DasR GlcNAc-sensing regulator that represses the generation of acetyl-CoA by controlling the expression of acetyl-CoA synthetase, an enzyme responsible for acetate assimilation in S. erythraea The finding provides the first insights into the importance of DasR in the regulation of acetate metabolism, which encompasses the regulatory network between nitrogen and carbon metabolism in actinobacteria, in response to environmental changes.
Collapse
|
12
|
Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Microbiol Mol Biol Rev 2017; 81:81/3/e00015-17. [PMID: 28659491 DOI: 10.1128/mmbr.00015-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria have long been known to secrete enzymes that degrade cellulose and chitin. The degradation of these two polymers predominantly involves two enzyme families that work synergistically with one another: glycoside hydrolases (GHs) and polysaccharide monooxygenases (PMOs). Although bacterial PMOs are a relatively recent addition to the known biopolymer degradation machinery, there is an extensive amount of literature implicating PMO in numerous physiological roles. This review focuses on these diverse and physiological aspects of bacterial PMOs, including facilitating endosymbiosis, conferring a nutritional advantage, and enhancing virulence in pathogenic organisms. We also discuss the correlation between the presence of PMOs and bacterial lifestyle and speculate on the advantages conferred by PMOs under these conditions. In addition, the molecular aspects of bacterial PMOs, as well as the mechanisms regulating PMO expression and the function of additional domains associated with PMOs, are described. We anticipate that increasing research efforts in this field will continue to expand our understanding of the molecular and physiological roles of bacterial PMOs.
Collapse
|
13
|
Elucidating biochemical features and biological roles of Streptomyces proteins recognizing crystalline chitin- and cellulose-types and their soluble derivatives. Carbohydr Res 2017; 448:220-226. [PMID: 28712648 DOI: 10.1016/j.carres.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Pioneering biochemical, immunological, physiological and microscopic studies in combination with gene cloning allowed uncovering previously unknown genes encoding proteins of streptomycetes to target crystalline chitin and cellulose as well as their soluble degradation-compounds via binding protein dependent transporters. Complementary analyses provoked an understanding of novel regulators governing transcription of selected genes. These discoveries induced detecting close and distant homologues of former orphan proteins encoded by genes from different bacteria. Grounded on structure-function-relationships, several researchers identified a few of these proteins as novel members of the growing family for lytic polysaccharides monooxygenases. Exemplary, the ecological significance of the characterized proteins including their role to promote interactions among organisms is outlined and discussed.
Collapse
|
14
|
Vaikuntapu PR, Rambabu S, Madhuprakash J, Podile AR. A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin. BIORESOURCE TECHNOLOGY 2016; 220:200-207. [PMID: 27567481 DOI: 10.1016/j.biortech.2016.08.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
The current study describes heterologous expression and biochemical characterization of single-modular chitinase-D from Serratia marcescens (SmChiD) with unprecedented catalytic properties which include chitobiase and transglycosylation (TG) activities besides hydrolytic activity. Without accessory domains, SmChiD, hydrolyzed insoluble polymeric chitin substrates like colloidal, α- and β-chitin. Activity studies on CHOS with degree of polymerization (DP) 2-6 as substrate revealed that SmChiD hydrolyzed DP2 with a chitobiase activity and showed TG activity on CHOS with DP3-6, producing longer chain CHOS. But, the TG products were further hydrolyzed to shorter chain CHOS with DP1-2 products. SmChiD with its unique catalytic properties, could be a potential enzyme for the production of long chain CHOS and also for the preparation of efficient enzyme cocktails for chitin degradation.
Collapse
Affiliation(s)
- Papa Rao Vaikuntapu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Samudrala Rambabu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India.
| |
Collapse
|
15
|
Plumbridge J. Regulation of the Utilization of Amino Sugars by Escherichia coli and Bacillus subtilis: Same Genes, Different Control. J Mol Microbiol Biotechnol 2015; 25:154-67. [DOI: 10.1159/000369583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amino sugars are dual-purpose compounds in bacteria: they are essential components of the outer wall peptidoglycan (PG) and the outer membrane of Gram-negative bacteria and, in addition, when supplied exogenously their catabolism contributes valuable supplies of energy, carbon and nitrogen to the cell. The enzymes for both the synthesis and degradation of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) are highly conserved but during evolution have become subject to different regulatory regimes. <i>Escherichia coli</i> grows more rapidly using GlcNAc as a carbon source than with GlcN. On the other hand, <i>Bacillus subtilis,</i> but not other <i>Bacilli</i> tested, grows more efficiently on GlcN than GlcNAc. The more rapid growth on this sugar is associated with the presence of a second, GlcN-specific operon, which is unique to this species. A single locus is associated with the genes for catabolism of GlcNAc and GlcN in <i>E. coli,</i> although they enter the cell via different transporters. In <i>E. coli</i> the amino sugar transport and catabolic genes have also been requisitioned as part of the PG recycling process. Although PG recycling likely occurs in <i>B. subtilis,</i> it appears to have different characteristics.
Collapse
|
16
|
Tenconi E, Urem M, Świątek-Połatyńska MA, Titgemeyer F, Muller YA, van Wezel GP, Rigali S. Multiple allosteric effectors control the affinity of DasR for its target sites. Biochem Biophys Res Commun 2015; 464:324-9. [PMID: 26123391 DOI: 10.1016/j.bbrc.2015.06.152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023]
Abstract
The global transcriptional regulator DasR connects N-acetylglucosamine (GlcNAc) utilization to the onset of morphological and chemical differentiation in the model actinomycete Streptomyces coelicolor. Previous work revealed that glucosamine-6-phosphate (GlcN-6P) acts as an allosteric effector which disables binding by DasR to its operator sites (called dre, for DasR responsive element) and allows derepression of DasR-controlled/GlcNAc-dependent genes. To unveil the mechanism by which DasR controls S. coelicolor development, we performed a series of electromobility shift assays with histidine-tagged DasR protein, which suggested that N-acetylglucosamine-6-phosphate (GlcNAc-6P) could also inhibit the formation of DasR-dre complexes and perhaps even more efficiently than GlcN-6P. The possibility that GlcNAc-6P is indeed an efficient allosteric effector of DasR was further confirmed by the high and constitutive activity of the DasR-repressed nagKA promoter in the nagA mutant, which lacks GlcNAc-6P deaminase activity and therefore accumulates GlcNAc-6P. In addition, we also observed that high concentrations of organic or inorganic phosphate enhanced binding of DasR to its recognition site, suggesting that the metabolic status of the cell could determine the selectivity of DasR in vivo, and hence its effect on the expression of its regulon.
Collapse
Affiliation(s)
- Elodie Tenconi
- Center for Protein Engineering, Institut de chimie B6a, University of Liège, B-4000 Liège, Belgium
| | - Mia Urem
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Magdalena A Świątek-Połatyńska
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Fritz Titgemeyer
- Department of Oecotrophologie, Münster University of Applied Sciences, Corrensstr. 25, 48149 Münster, Germany
| | - Yves A Muller
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestrasse 91, D-91052 Erlangen, Germany
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sébastien Rigali
- Center for Protein Engineering, Institut de chimie B6a, University of Liège, B-4000 Liège, Belgium.
| |
Collapse
|
17
|
Świątek-Połatyńska MA, Bucca G, Laing E, Gubbens J, Titgemeyer F, Smith CP, Rigali S, van Wezel GP. Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets. PLoS One 2015; 10:e0122479. [PMID: 25875084 PMCID: PMC4398421 DOI: 10.1371/journal.pone.0122479] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/22/2015] [Indexed: 11/30/2022] Open
Abstract
Streptomycetes produce a wealth of natural products, including over half of all known antibiotics. It was previously demonstrated that N-acetylglucosamine and secondary metabolism are closely entwined in streptomycetes. Here we show that DNA recognition by the N-acetylglucosamine-responsive regulator DasR is growth-phase dependent, and that DasR can bind to sites in the S. coelicolor genome that have no obvious resemblance to previously identified DasR-responsive elements. Thus, the regulon of DasR extends well beyond what was previously predicted and includes a large number of genes with functions far removed from N-acetylglucosamine metabolism, such as genes for small RNAs and DNA transposases. Conversely, the DasR regulon during vegetative growth largely correlates to the presence of canonical DasR-responsive elements. The changes in DasR binding in vivo following N-acetylglucosamine induction were studied in detail and a possible molecular mechanism by which the influence of DasR is extended is discussed. Discussion of DasR binding was further informed by a parallel transcriptome analysis of the respective cultures. Evidence is provided that DasR binds directly to the promoters of all genes encoding pathway-specific regulators of antibiotic production in S. coelicolor, thereby providing an exquisitely simple link between nutritional control and secondary metabolism.
Collapse
Affiliation(s)
| | - Giselda Bucca
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Emma Laing
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Jacob Gubbens
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Fritz Titgemeyer
- Department of Oecotrophologie, Münster University of Applied Sciences, Corrensstr. 25, 48149 Münster, Germany
| | - Colin P. Smith
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Sébastien Rigali
- Centre for Protein Engineering, Université de Liège, Institut de Chimie B6a, Sart-Tilman, B-4000 Liège, Belgium
| | - Gilles P. van Wezel
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Viens P, Dubeau MP, Kimura A, Desaki Y, Shinya T, Shibuya N, Saito A, Brzezinski R. Uptake of chitosan-derived D-glucosamine oligosaccharides in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 2015; 362:fnv048. [DOI: 10.1093/femsle/fnv048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 12/23/2022] Open
|
19
|
Liao C, Rigali S, Cassani CL, Marcellin E, Nielsen LK, Ye BC. Control of chitin and N-acetylglucosamine utilization in Saccharopolyspora erythraea. MICROBIOLOGY-SGM 2014; 160:1914-1928. [PMID: 25009237 DOI: 10.1099/mic.0.078261-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chitin degradation and subsequent N-acetylglucosamine (GlcNAc) catabolism is thought to be a common trait of a large majority of actinomycetes. Utilization of aminosugars had been poorly investigated outside the model strain Streptomyces coelicolor A3(2), and we examined here the genetic setting of the erythromycin producer Saccharopolyspora erythraea for GlcNAc and chitin utilization, as well as the transcriptional control thereof. Sacch. erythraea efficiently utilize GlcNAc most likely via the phosphotransferase system (PTS(GlcNAc)); however, this strain is not able to grow when chitin or N,N'-diacetylchitobiose [(GlcNAc)2] is the sole nutrient source, despite a predicted extensive chitinolytic system (chi genes). The inability of Sacch. erythraea to utilize chitin and (GlcNAc)2 is probably because of the loss of genes encoding the DasABC transporter for (GlcNAc)2 import, and genes for intracellular degradation of (GlcNAc)2 by β-N-acetylglucosaminidases. Transcription analyses revealed that in Sacch. erythraea all putative chi and GlcNAc utilization genes are repressed by DasR, whereas in Strep. coelicolor DasR displayed either activating or repressing functions whether it targets genes involved in the polymer degradation or genes for GlcNAc dimer and monomer utilization, respectively. A transcriptomic analysis further showed that GlcNAc not only activates the transcription of GlcNAc catabolism genes but also activates chi gene expression, as opposed to the previously reported GlcNAc-mediated catabolite repression in Strep. coelicolor. Finally, synteny exploration revealed an identical genetic background for chitin utilization in other rare actinomycetes, which suggests that screening procedures that used only the chitin-based protocol for selective isolation of antibiotic-producing actinomycetes could have missed the isolation of many industrially promising strains.
Collapse
Affiliation(s)
- Chengheng Liao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Sébastien Rigali
- Centre for Protein Engineering, Institut de Chimie B6a, B-4000 Liège, Belgium
| | - Cuauhtemoc Licona Cassani
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
20
|
Gaugué I, Oberto J, Plumbridge J. Regulation of amino sugar utilization in Bacillus subtilis by the GntR family regulators, NagR and GamR. Mol Microbiol 2014; 92:100-15. [PMID: 24673833 DOI: 10.1111/mmi.12544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 11/30/2022]
Abstract
In Bacillus subtilis separate sets of genes are implicated in the transport and metabolism of the amino sugars, glucosamine and N-acetylglucosamine. The genes for use of N-acetylglucosamine (nagAB and nagP) are found in most firmicutes and are controlled by a GntR family repressor NagR (YvoA). The genes for use of glucosamine (gamAP) are repressed by another GntR family repressor GamR (YbgA). The gamR-gamAP synton is only found in B. subtilis and a few very close relatives. Although NagR and GamR are close phylogenetically, there is no cross regulation between their operons. GlcN6P prevents all binding of GamR to its targets. NagR binds specifically to targets containing the previously identified dre palindrome but its binding is not inhibited by GlcN6P or GlcNAc6P. GamR-like binding sites were also found in some other Bacilli associated with genes for use of chitin, the polymer of N-acetylglucosamine, and with a gene for another GamR homologue (yurK). We show that GamR can bind to two regions in the chi operon of B. licheniformis and that GamR and YurK are capable of heterologous regulation. GamR can repress the B. licheniformis licH-yurK genes and YurK can repress B. subtilis gamA.
Collapse
Affiliation(s)
- Isabelle Gaugué
- UPR9073-CNRS (associated with Université Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13, Pierre et Marie Curie, Paris, 75005, France
| | | | | |
Collapse
|
21
|
Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection. Appl Microbiol Biotechnol 2013; 97:9597-608. [PMID: 24068337 DOI: 10.1007/s00253-013-5250-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022]
Abstract
Gram-positive bacteria are widely used to produce recombinant proteins, amino acids, organic acids, higher alcohols, and polymers. Many proteins have been expressed in Gram-positive hosts such as Corynebacterium, Brevibacterium, and Streptomyces. The favorable and advantageous characteristics (e.g., high secretion capacity and efficient production of metabolic products) of these species have increased the biotechnological applications of bacteria. However, owing to multiplicity from genes encoding the proteins and expression hosts, the expression of recombinant proteins is limited in Gram-positive bacteria. Because there is a very recent review about protein expression in Bacillus subtilis, here we summarize recent strategies for efficient expression of recombinant proteins in the other three typical Gram-positive bacteria (Corynebacterium, Brevibacterium, and Streptomyces) and discuss future prospects. We hope that this review will contribute to the development of recombinant protein expression in Corynebacterium, Brevibacterium, and Streptomyces.
Collapse
|
22
|
Nagpure A, Choudhary B, Gupta RK. Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi. J Basic Microbiol 2013; 54:397-407. [PMID: 23686763 DOI: 10.1002/jobm.201200474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/29/2012] [Indexed: 11/07/2022]
Abstract
Extracellular mycolytic enzymes produced under submerged fermentation by the fungal antagonist Streptomyces violaceusniger MTCC 3959 were characterized. This streptomycete produced higher amounts of extracellular chitinase and protease during late exponential phase, whereas β-1,3-glucanase production was at peak in mid-stationary phase. Cell-free culture filtrate (CCF) exhibited a broad range of antifungal activity against both white rot and brown rot fungi. The inhibitory activity was completely lost after treatment with proteinase K and heat, indicating that extracellular antifungal metabolites are heat labile and proteinaceous in nature. Optimum pH and temperature for enzyme activity were: 9.0 and 60 °C for chitinase; 6.0 and 60 °C for β-1,3-glucanase; and 9.0 and 70 °C for protease. Mycolytic enzymes were moderately thermostable, and had a wide pH stability range extending from pH 5.0 to 10.0. The zymogram analysis of CCF revealed five chitinase isoenzymes with an apparent molecular weight of 20.8, 33.3, 45.6, 67.4, and 114.8 kDa, one β-1,3-glucanase appeared as a single band of ∼131.8 kDa and four protease isoenzymes with approximate molecular weights of 22.8, 62.52, 74.64, and 120.5 kDa. S. violaceusniger MTCC 3959 produced mycolytic enzymes that can be effectively used for suppression of phytopathogenic basidiomycetes. It has the potential to be an effective biofungicide.
Collapse
Affiliation(s)
- Anand Nagpure
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi-, 110 078, India
| | | | | |
Collapse
|
23
|
Wang Y, Hayatsu M, Fujii T. Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ 2012; 27:111-21. [PMID: 22791042 PMCID: PMC4036013 DOI: 10.1264/jsme2.me11304] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Detection of bacterial gene expression in soil emerged in the early 1990s and provided information on bacterial responses in their original soil environments. As a key procedure in the detection, extraction of bacterial RNA from soil has attracted much interest, and many methods of soil RNA extraction have been reported in the past 20 years. In addition to various RT-PCR-based technologies, new technologies for gene expression analysis, such as microarrays and high-throughput sequencing technologies, have recently been applied to examine bacterial gene expression in soil. These technologies are driving improvements in RNA extraction protocols. In this mini-review, progress in the extraction of bacterial RNA from soil is summarized with emphasis on the major difficulties in the development of methodologies and corresponding strategies to overcome them.
Collapse
Affiliation(s)
- Yong Wang
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | |
Collapse
|
24
|
Chitin-induced gene expression in secondary metabolic pathways of Streptomyces coelicolor A3(2) grown in soil. Appl Environ Microbiol 2012; 79:707-13. [PMID: 23124229 DOI: 10.1128/aem.02217-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microarray analyses revealed that the expression of genes for secondary metabolism together with that of primary metabolic genes was induced by chitin in autoclaved soil cultures of Streptomyces coelicolor A3(2). The data also indicated that DasR was involved in the regulation of gene expression for chitin catabolism, secondary metabolism, and stress responses.
Collapse
|
25
|
Purushotham P, Sarma PVSRN, Podile AR. Multiple chitinases of an endophytic Serratia proteamaculans 568 generate chitin oligomers. BIORESOURCE TECHNOLOGY 2012; 112:261-269. [PMID: 22406064 DOI: 10.1016/j.biortech.2012.02.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 05/31/2023]
Abstract
Serratia proteamaculans 568 genome revealed the presence of four family 18 chitinases (Sp ChiA, Sp ChiB, Sp ChiC, and Sp ChiD). Heterologous expression and characterization of Sp ChiA, Sp ChiB, and Sp ChiC showed that these enzymes were optimally active at pH 6.0-7.0, and 40°C. The three Sp chitinases displayed highest activity/binding to β-chitin and showed broad range of substrate specificities, and released dimer as major end product from oligomeric and polymeric substrates. Longer incubation was required for hydrolysis of trimer for the three Sp chitinases. The three Sp chitinases released up to tetramers from colloidal chitin substrate. Sp ChiA and Sp ChiB were processive chitinases, while Sp ChiC was a non-processive chitinase. Based on the known structures of ChiA and ChiB from S. marcescens, 3D models of Sp ChiA and Sp ChiB were generated.
Collapse
Affiliation(s)
- Pallinti Purushotham
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad-500 046, India
| | | | | |
Collapse
|
26
|
Nazari B, Saito A, Kobayashi M, Miyashita K, Wang Y, Fujii T. High expression levels of chitinase genes in Streptomyces coelicolorA3(2) grown in soil. FEMS Microbiol Ecol 2012. [DOI: 10.1111/j.1574-6941.2012.01307.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Akihiro Saito
- Department of Bioresource Chemistry; Faculty of Horticulture; Chiba University; Matsudo; Chiba; Japan
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry; Graduate School of Life and Environmental Sciences; The University of Tsukuba; Tsukuba; Ibaraki; Japan
| | - Kiyotaka Miyashita
- Environmental Biofunction Division; National Institute for Agro-Environmental Sciences; Tsukuba; Ibaraki; Japan
| | - Youg Wang
- Environmental Biofunction Division; National Institute for Agro-Environmental Sciences; Tsukuba; Ibaraki; Japan
| | - Takeshi Fujii
- Environmental Biofunction Division; National Institute for Agro-Environmental Sciences; Tsukuba; Ibaraki; Japan
| |
Collapse
|
27
|
Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol 2011; 194:1136-44. [PMID: 22194457 DOI: 10.1128/jb.06370-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acetylglucosamine, the monomer of chitin, is a favored carbon and nitrogen source for streptomycetes. Its intracellular catabolism requires the combined actions of the N-acetylglucosamine-6-phosphate (GlcNAc-6P) deacetylase NagA and the glucosamine-6-phosphate (GlcN-6P) deaminase/isomerase NagB. GlcNAc acts as a signaling molecule in the DasR-mediated nutrient sensing system, activating development and antibiotic production under poor growth conditions (famine) and blocking these processes under rich conditions (feast). In order to understand how a single nutrient can deliver opposite information according to the nutritional context, we carried out a mutational analysis of the nag metabolic genes nagA, nagB, and nagK. Here we show that the nag genes are part of the DasR regulon in Streptomyces coelicolor, which explains their transcriptional induction by GlcNAc. Most likely as the result of the intracellular accumulation of GlcN-6P, nagB deletion mutants fail to grow in the presence of GlcNAc. This toxicity can be alleviated by the additional deletion of nagA. We recently showed that in S. coelicolor, GlcNAc is internalized as GlcNAc-6P via the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS). Considering the relevance of GlcNAc for the control of antibiotic production, improved insight into GlcNAc metabolism in Streptomyces may provide new leads toward biotechnological applications.
Collapse
|