1
|
Fischer-Kešo R, Breuninger S, Hofmann S, Henn M, Röhrig T, Ströbel P, Stoecklin G, Hofmann I. Plakophilins 1 and 3 bind to FXR1 and thereby influence the mRNA stability of desmosomal proteins. Mol Cell Biol 2014; 34:4244-56. [PMID: 25225333 PMCID: PMC4248750 DOI: 10.1128/mcb.00766-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/28/2014] [Accepted: 09/11/2014] [Indexed: 12/21/2022] Open
Abstract
Plakophilins 1 and 3 (PKP1/3) are members of the arm repeat family of catenin proteins and serve as structural components of desmosomes, which are important for cell-cell-adhesion. In addition, PKP1/3 occur as soluble proteins outside desmosomes, yet their role in the cytoplasm is not known. We found that cytoplasmic PKP1/3 coprecipitated with the RNA-binding proteins FXR1, G3BP, PABPC1, and UPF1, and these PKP1/3 complexes also comprised desmoplakin and PKP2 mRNAs. Moreover, we showed that the interaction of PKP1/3 with G3BP, PABPC1, and UPF1 but not with FXR1 was RNase sensitive. To address the cytoplasmic function of PKP1/3, we performed gain-and-loss-of-function studies. Both PKP1 and PKP3 knockdown cell lines showed reduced protein and mRNA levels for desmoplakin and PKP2. Whereas global rates of translation were unaffected, desmoplakin and PKP2 mRNA were destabilized. Furthermore, binding of PKP1/3 to FXR1 was RNA independent, and both PKP3 and FXR1 stabilized PKP2 mRNA. Our results demonstrate that cytoplasmic PKP1/3 are components of mRNA ribonucleoprotein particles and act as posttranscriptional regulators of gene expression.
Collapse
Affiliation(s)
- Regina Fischer-Kešo
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Breuninger
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sarah Hofmann
- Helmholtz Junior Research Group, Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany Center for Molecular Biology at the Heidelberg University, Heidelberg, Germany
| | - Manuela Henn
- Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Theresa Röhrig
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University Göttingen, Göttingen, Germany
| | - Georg Stoecklin
- Helmholtz Junior Research Group, Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany Center for Molecular Biology at the Heidelberg University, Heidelberg, Germany
| | - Ilse Hofmann
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Lachance C, Wojewodka G, Skinner TAA, Guilbault C, De Sanctis JB, Radzioch D. Fenretinide corrects the imbalance between omega-6 to omega-3 polyunsaturated fatty acids and inhibits macrophage inflammatory mediators via the ERK pathway. PLoS One 2013; 8:e74875. [PMID: 24069363 PMCID: PMC3771966 DOI: 10.1371/journal.pone.0074875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/09/2013] [Indexed: 12/24/2022] Open
Abstract
We previously identified Fragile X-related protein 1 (FXR1) as an RNA-binding protein involved in the post-transcriptional control of TNF and other cytokines in macrophages. Macrophages derived from FXR1-KO mice overexpress several inflammatory cytokines including TNF. Recently, we showed that fenretinide (4HPR) is able to inhibit several inflammatory cytokines in the lungs of cystic fibrosis mice, which also have abnormal immune responses. Therefore, we hypothesized that 4HPR might also be able to downregulate excessive inflammation even in macrophages with ablated FXR1. Indeed, our results demonstrate that 4HPR inhibited the excessive production of inflammatory mediators, including TNF, IL-6, CCL2 and CCL-5 in LPS-stimulated FXR1-KO macrophages, by selectively inhibiting phosphorylation of ERK1/2, which is naturally more phosphorylated in FXR1-KO cells. We also found that LPS stimulation of FXR1-KO macrophages led to significantly higher ratio of arachidonic acid/docosahexaenoic acid than observed in FXR1-WT macrophages. Interestingly, treatment with 4HPR was associated with the normalization of arachidonic acid/docosahexaenoic acid ratio in macrophages, which we found to impact phosphorylation of ERK1/2. Overall, this study shows for the first time that 4HPR modulates inflammatory cytokine expression in macrophages by correcting a phospholipid-bound fatty acid imbalance that impacts the phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Claude Lachance
- McGill University, Department of Medicine and Department of Human Genetics, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Gabriella Wojewodka
- McGill University, Department of Medicine and Department of Human Genetics, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Tom A. A. Skinner
- McGill University, Department of Medicine and Department of Human Genetics, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Claudine Guilbault
- McGill University, Department of Medicine and Department of Human Genetics, McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Juan B. De Sanctis
- Central University of Venezuela, Institute of Immunology, Caracas, Venezuela
| | - Danuta Radzioch
- McGill University, Department of Medicine and Department of Human Genetics, McGill University Health Center Research Institute, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
3
|
Ricci G, Astolfi A, Remondini D, Cipriani F, Formica S, Dondi A, Pession A. Pooled genome-wide analysis to identify novel risk loci for pediatric allergic asthma. PLoS One 2011; 6:e16912. [PMID: 21359210 PMCID: PMC3040188 DOI: 10.1371/journal.pone.0016912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/03/2011] [Indexed: 11/22/2022] Open
Abstract
Background Genome-wide association studies of pooled DNA samples were shown to be a valuable tool to identify candidate SNPs associated to a phenotype. No such study was up to now applied to childhood allergic asthma, even if the very high complexity of asthma genetics is an appropriate field to explore the potential of pooled GWAS approach. Methodology/Principal Findings We performed a pooled GWAS and individual genotyping in 269 children with allergic respiratory diseases comparing allergic children with and without asthma. We used a modular approach to identify the most significant loci associated with asthma by combining silhouette statistics and physical distance method with cluster-adapted thresholding. We found 97% concordance between pooled GWAS and individual genotyping, with 36 out of 37 top-scoring SNPs significant at individual genotyping level. The most significant SNP is located inside the coding sequence of C5, an already identified asthma susceptibility gene, while the other loci regulate functions that are relevant to bronchial physiopathology, as immune- or inflammation-mediated mechanisms and airway smooth muscle contraction. Integration with gene expression data showed that almost half of the putative susceptibility genes are differentially expressed in experimental asthma mouse models. Conclusion/Significance Combined silhouette statistics and cluster-adapted physical distance threshold analysis of pooled GWAS data is an efficient method to identify candidate SNP associated to asthma development in an allergic pediatric population.
Collapse
Affiliation(s)
- Giampaolo Ricci
- Pediatric Unit, Department of Gynecologic, Obstetric and Pediatric Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
4
|
Khera TK, Dick AD, Nicholson LB. Mechanisms of TNFα regulation in uveitis: Focus on RNA-binding proteins. Prog Retin Eye Res 2010; 29:610-21. [DOI: 10.1016/j.preteyeres.2010.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|