1
|
Abstract
INTRODUCTION Proteomics, i.e. the study of the set of proteins produced in a cell, tissue, organism, or biological entity, has made possible analyses and contextual comparisons of proteomes/proteins and biological functions among the most disparate entities, from viruses to the human being. In this way, proteomic scrutiny of tumor-associated proteins, autoantigens, and pathogen antigens offers the tools for fighting cancer, autoimmunity, and infections. AREAS COVERED Comparative proteomics and immunoproteomics, the new scientific disciplines generated by proteomics, are the main themes of the present review that describes how comparative analyses of pathogen and human proteomes led to re-modulate the molecular mimicry concept of the pre-proteomic era. I.e. before proteomics, molecular mimicry - the sharing of peptide sequences between two biological entities - was considered as intrinsically endowed with immunologic properties and was related to cross-reactivity. Proteomics allowed to redefine such an assumption using physicochemical parameters according to which frequency and hydrophobicity preferentially confer an immunologic potential to shared peptide sequences. EXPERT OPINION Proteomics is outlining peptide platforms to be used for the diagnostics and management of human diseases. A Molecular Medicine targeted to obtain healing without paying the price for adverse events is on the horizon. The next step is to take up the challenge and operate the paradigm shift that the current proteomic era requires.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
2
|
Kanduc D. Oligopeptides for Immunotherapy Approaches in Ovarian Cancer Treatment. Curr Drug Discov Technol 2020; 16:285-289. [PMID: 29793409 DOI: 10.2174/1570163815666180525071740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anti-ovarian cancer vaccines based on minimal immune determinants uniquely expressed in ovarian cancer biomarkers appear to promise a high level of sensitivity and specificity for ovarian cancer immunodiagnostics, immunoprevention, and immunotherapy. METHODS Using the Pir Peptide Match program, three ovarian cancer biomarkers - namely, sperm surface protein Sp17, WAP four-disulfide core domain protein 2, and müllerian-inhibiting substance - were searched for unique peptide segments not shared with other human proteins. Then, the unique peptide segments were assembled to define oligopeptides potentially usable as synthetic ovarian cancer antigens. RESULTS AND CONCLUSION This study describes a methodology for constructing ovarian cancer biomarkerderived oligopeptide constructs that might induce powerful, specific, and non-crossreactive immune responses against ovarian cancer.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
3
|
Kanduc D. The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity. Biol Chem 2019; 400:629-638. [PMID: 30504522 DOI: 10.1515/hsz-2018-0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 11/15/2022]
Abstract
Analyses of the peptide sharing between five common human viruses (Borna disease virus, influenza A virus, measles virus, mumps virus and rubella virus) and the human proteome highlight a massive viral vs. human peptide overlap that is mathematically unexpected. Evolutionarily, the data underscore a strict relationship between viruses and the origin of eukaryotic cells. Indeed, according to the viral eukaryogenesis hypothesis and in light of the endosymbiotic theory, the first eukaryotic cell (our lineage) originated as a consortium consisting of an archaeal ancestor of the eukaryotic cytoplasm, a bacterial ancestor of the mitochondria and a viral ancestor of the nucleus. From a pathologic point of view, the peptide sequence similarity between viruses and humans may provide a molecular platform for autoimmune crossreactions during immune responses following viral infections/immunizations.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, I-70124 Bari, Italy
| |
Collapse
|
4
|
Kanduc D, Shoenfeld Y. Inter-Pathogen Peptide Sharing and the Original Antigenic Sin: Solving a Paradox. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1874226201808010016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims:To analyse the peptide commonality among viral, bacterial, and protozoan pathogens, and the immunopathologic consequences in the human host.Methods:HPV16, HCMV,C. diphtheriae, B. pertussis, C. tetani, T. gondii,andT. cruziwere analysed for common amino acid sequences that are additionally shared with the human host. The pentapeptide, a minimal immune determinant in humoral and cellular immune recognition, was used as a measurement unit of the peptide similarity level. Molecular modeling was applied to compare the amino acid contexts containing common minimal determinants.Results:Twenty-nine pentapeptides were found to occur, even hundreds of times, throughout the analyzed pathogen proteomes as well as in the human proteome. Such vast peptide commonalities together with molecular modeling data support the possibility that a pre-existing immune response to a first pathogen can be boosted by a successive exposure to a second different pathogen,i.e., the primary response to a pathogen can be transformed into a secondary response to a previously encountered different pathogen. Two possible consequences emerge. Firstly, no responses might be elicited against the pathogen lastly encountered either by infection or active immunization, but reactions could occur only with the early sensitizing pathogen, which is no more present in the organism. Secondly, the immune response boosted by the pathogen lastly encountered will find a way out by cross-reacting with human proteins.Conclusion:This study might explain the “original antigenic sin” phenomenon described seven decades ago [Francis T. Jr. Ann Intern Med 1953;39:203], thus providing explanations for vaccine failures and offering possible clues for designing successful vaccines.
Collapse
|
5
|
Kaliamurthi S, Selvaraj G, Kaushik AC, Gu KR, Wei DQ. Designing of CD8 + and CD8 +-overlapped CD4 + epitope vaccine by targeting late and early proteins of human papillomavirus. Biologics 2018; 12:107-125. [PMID: 30323556 PMCID: PMC6174296 DOI: 10.2147/btt.s177901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Human papillomavirus (HPV) is an oncogenic agent that causes over 90% of cases of cervical cancer in the world. Currently available prophylactic vaccines are type specific and have less therapeutic efficiency. Therefore, we aimed to predict the potential species-specific and therapeutic epitopes from the protein sequences of HPV45 by using different immunoinformatics tools. METHODS Initially, we determined the antigenic potential of late (L1 and L2) and early (E1, E2, E4, E5, E6, and E7) proteins. Then, major histocompatibility complex class I-restricted CD8+ T-cell epitopes were selected based on their immunogenicity. In addition, epitope conservancy, population coverage (PC), and target receptor-binding affinity of the immunogenic epitopes were determined. Moreover, we predicted the possible CD8+, nested interferon gamma (IFN-γ)-producing CD4+, and linear B-cell epitopes. Further, antigenicity, allergenicity, immunogenicity, and system biology-based virtual pathway associated with cervical cancer were predicted to confirm the therapeutic efficiency of overlapped epitopes. RESULTS Twenty-seven immunogenic epitopes were found to exhibit cross-protection (≥55%) against the 15 high-risk HPV strains (16, 18, 31, 33, 35, 39, 51, 52, 56, 58, 59, 68, 69, 73, and 82). The highest PC was observed in Europe (96.30%), North America (93.98%), West Indies (90.34%), North Africa (90.14%), and East Asia (89.47%). Binding affinities of 79 docked complexes observed as global energy ranged from -10.80 to -86.71 kcal/mol. In addition, CD8+ epitope-overlapped segments in CD4+ and B-cell epitopes demonstrated that immunogenicity and IFN-γ-producing efficiency ranged from 0.0483 to 0.5941 and 0.046 to 18, respectively. Further, time core simulation revealed the overlapped epitopes involved in pRb, p53, COX-2, NF-X1, and HPV45 infection signaling pathways. CONCLUSION Even though the results of this study need to be confirmed by further experimental peptide sensitization studies, the findings on immunogenic and IFN-γ-producing CD8+ and overlapped epitopes provide new insights into HPV vaccine development.
Collapse
Affiliation(s)
- Satyavani Kaliamurthi
- Centre of Interdisciplinary Science - Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,
| | - Gurudeeban Selvaraj
- Centre of Interdisciplinary Science - Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,
| | - Aman Chandra Kaushik
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,
| | - Ke-Ren Gu
- Centre of Interdisciplinary Science - Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou, China
| | - Dong-Qing Wei
- Centre of Interdisciplinary Science - Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,
| |
Collapse
|
6
|
Lucchese A, Guida A, Capone G, Donnarumma G, Laino L, Petruzzi M, Serpico R, Silvestre F, Gargari M. Proteomic peptide scan of porphyromonas gingivalis fima type ii for searching potential b-cell epitopes. ORAL & IMPLANTOLOGY 2017; 9:83-88. [PMID: 28042435 DOI: 10.11138/orl/2016.9.2.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To identify potential antigenic targets for Porphyromonas gingivalis vaccine development. MATERIALS AND METHODS In the present study, we analyzed the Porphyromonas gingivalis, fimA type II primary amino acid sequence and characterized the similarity to the human proteome at the pentapeptide level. RESULTS We found that exact peptide-peptide profiling of the fimbrial antigen versus the human proteome shows that only 19 out of 344 fimA type II pentapeptides are uniquely owned by the bacterial protein. CONCLUSIONS The concept that protein immunogenicity is allocated in rare peptide sequences and the search the Porphyromonas gingivalis fimA type II sequence for peptides unique to the bacterial protein and absent in the human host, might be used in new therapeutical approaches as a significant adjunct to current periodontal therapies.
Collapse
Affiliation(s)
- A Lucchese
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, Second University of Naples SUN, Naples, Italy
| | - A Guida
- Postgraduate School in Oral Surgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - G Capone
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy
| | - G Donnarumma
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | - L Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, Second University of Naples SUN, Naples, Italy
| | - M Petruzzi
- Interdisciplinary Department of Medicine (DIM) - Section of Dentistry, University "Aldo Moro" of Bari, Bari, Italy
| | - R Serpico
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, Second University of Naples SUN, Naples, Italy
| | - F Silvestre
- Departimento de Estomatologia, University of Valencia, Valencia, Spain
| | - M Gargari
- Department of Clinical Sciences And Translational Medicine, University of Rome "Tor Vergata", Rome, Italy; Department of dentistry "Fra G.B. Orsenigo - Ospedale San Pietro F.B.F.", Rome, Italy
| |
Collapse
|
7
|
Kanduc D, Fasano C, Bavaro SL, Novello G, Lucchese G, Capone G. Peptide profiling of the route from Mahoney to Sabin, and return. J Basic Microbiol 2014; 54:369-77. [DOI: 10.1002/jobm.201200642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/07/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Candida Fasano
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Simona Lucia Bavaro
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Giuseppe Novello
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Guglielmo Lucchese
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Giovanni Capone
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| |
Collapse
|
8
|
Lucchese G, Capone G, Kanduc D. Peptide sharing between influenza A H1N1 hemagglutinin and human axon guidance proteins. Schizophr Bull 2014; 40:362-75. [PMID: 23378012 PMCID: PMC3932078 DOI: 10.1093/schbul/sbs197] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidemiologic data suggest that maternal microbial infections may cause fetal neurodevelopmental disorders, potentially increasing susceptibility to heavy psychopathologies such as schizophrenia, schizophreniform disorder, autism, pervasive developmental disorders, bipolar disorders, psychosis, epilepsy, language and speech disorders, and cognitive impairment in adult offspring. However, the molecular pathomechanisms underlying such a relationship are not clear. Here we analyze the potential role of the maternal immune response to viral infection in determining fetal brain injuries that increase the risk of neurological disorders in the adult. We use influenza infection as a disease model and human axon guidance pathway, a key process in the formation of neural network during midgestation, as a potential fetal target of immune insults. Specifically, we examined influenza A H1N1 hemagglutinin (HA), an antigenic viral protein, for amino acid sequence similarity to a random library of 188 axon guidance proteins. We obtain the results that (1) contrary to any theoretical expectations, 45 viral pentapeptide matches are distributed throughout a subset of 36 guidance molecules; (2) in 24 guidance proteins, the peptide sharing with HA antigen involves already experimentally validated influenza HA epitopes; and (3) most of the axon guidance vs HA peptide overlap is conserved among influenza A viral strains and subsets. Taken together, our data indicate that immune cross-reactivity between influenza HA and axon guidance molecules is possible and may well represent a pathologic mechanism capable of determining neurodevelopmental disruption in the fetus.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- To whom correspondence should be addressed; tel: +39.080.544.3321, fax: +39.080.544.3317, e-mail:
| | - Giovanni Capone
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy,To whom correspondence should be addressed; tel: +39.080.544.3321, fax: +39.080.544.3317, e-mail:
| |
Collapse
|
9
|
Spinosa JP, Kanduc D. Ovarian cancer: designing effective vaccines and specific diagnostic tools. Immunotherapy 2014; 6:35-41. [DOI: 10.2217/imt.13.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: Notwithstanding a renewed interest in the application of immunotherapy as an alternative to chemotherapy and radiotherapy for the treatment of ovarian cancer (OC), and in spite of the available knowledge about ovarian tumor-associated-antigens, the search for a vaccine against OC remains a scientific and clinical challenge. Likewise, immunodiagnostics can detect only a late stage of the disease. Thus, the development of new therapeutic and diagnostic options is highly desirable. Methods: Based on the low-similarity hypothesis, which supports the concept that immunogenicity is preferentially associated to sequences with no/low-similarity to the host proteome, and using Protein Information Resource peptide match program, we searched the ovarian tumor antigen CA125 for amino acid sequences unique to CA125 and absent in the remaining human proteins. Results & conclusion: We identified a set of 159 pentapeptides unique to CA125 that might be used to design specific and effective immunological tools for diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jean Pierre Spinosa
- Department Biosciences, Biotechnologies & Biopharmaceutics, University of Bari, Bari, Italy
- Faculty of Biology & Medicine, University of Lausanne, Lausanne, Switzerland
| | - Darja Kanduc
- Department Biosciences, Biotechnologies & Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
10
|
Ngubane NAC, Gresh L, Ioerger TR, Sacchettini JC, Zhang YJ, Rubin EJ, Pym A, Khati M. High-throughput sequencing enhanced phage display identifies peptides that bind mycobacteria. PLoS One 2013; 8:e77844. [PMID: 24265677 PMCID: PMC3827053 DOI: 10.1371/journal.pone.0077844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell wall components have been previously used as infection biomarkers detectable by antibodies. However, it is possible that the surface of the Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), also possesses molecules which might be non-antigenic. This makes the probing of biomarkers on the surface of M. tb cell wall difficult using antibodies. Here we demonstrate the use of phage display technology to identify peptides that bind to mycobacteria. We identified these clones using both random clone picking and high throughput sequencing. We demonstrate that random clone picking does not necessarily identify highly enriched clones. We further showed that the clone displaying the CPLHARLPC peptide which was identified by Illumina sequencing as the most enriched, binds better to mycobacteria than three clones selected by random picking. Using surface plasmon resonance, we showed that chemically synthesised CPLHARLPC peptide binds to a 15 KDa peptide from M.tb H37Rv whole cell lysates. These observations demonstrate that phage display technology combined with high-throughput sequencing is a powerful tool to identify peptides that can be used for investigating potential non-antigenic biomarkers for TB and other bacterial infections.
Collapse
Affiliation(s)
- Nqobile A C Ngubane
- Emerging Health Technologies Platform, Council for Scientific and Industrial Research, Biosciences Unit, Pretoria, Gauteng, South Africa ; KwaZulu-Natal Research Institute for Tuberculosis and Human Immunodeficiency Virus, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Capone G, Calabrò M, Lucchese G, Fasano C, Girardi B, Polimeno L, Kanduc D. Peptide matching between Epstein-Barr virus and human proteins. Pathog Dis 2013; 69:205-12. [DOI: 10.1111/2049-632x.12066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022] Open
Affiliation(s)
- Giovanni Capone
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Michele Calabrò
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Guglielmo Lucchese
- Brain and Language Laboratory; Cluster of Excellence “Languages of Emotions”; Free University of Berlin; Berlin Germany
| | - Candida Fasano
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Bruna Girardi
- Section of Gastroenterology; Department of Emergency and Organ Transplantation (DETO); University of Bari; Bari Italy
| | - Lorenzo Polimeno
- Section of Gastroenterology; Department of Emergency and Organ Transplantation (DETO); University of Bari; Bari Italy
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| |
Collapse
|
12
|
Kanduc D. Homology, similarity, and identity in peptide epitope immunodefinition. J Pept Sci 2012; 18:487-94. [PMID: 22696298 DOI: 10.1002/psc.2419] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 01/03/2023]
Abstract
The tendency to use the terms homology, similarity, and identity interchangeably persists in comparative biology. When translated to immunology, overlapping the concepts of homology, similarity, and identity complicates the exact definition of the self-nonself dichotomy and, in particular, affects immunopeptidomics, an emerging field aimed at cataloging and distinguishing immunoreactive peptide epitopes from silent nonreactive amino acid sequences. The definition of similar/dissimilar peptides in immunology is discussed with special attention to the analysis of immunological (dis)similarity between two or more protein sequences that equates to measuring sequence similarity with the use of a proper measurement unit such as a length determinant.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy.
| |
Collapse
|
13
|
Lucchese G. A peptide talk between JC virus and the human host: from silent infection to autoimmunity. Immunopharmacol Immunotoxicol 2012; 34:1067-74. [PMID: 22594935 DOI: 10.3109/08923973.2012.686510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Analysis of JC virus (JCV) polyprotein for peptide sharing with the human proteome reveals that the virus has hundreds of pentapeptide sequences in common with the human proteins. The datum is interesting in light of the fundamental role exerted by short amino acid sequences in protein-protein interactions and, consequently, in biochemical reactions and immune recognition. Searching for new approaches to understand the JCV infection scenarios, from the immunoevasion phenomenon underlying the viral asymptomatic stay in the human host to the (re)activation phase and associated pathogenic sequelae, the present study describes the diffuse pentapeptide communication network between JCV and the human host.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- Department of Biochemistry and Molecular Biology, University of Bari, Italy.
| |
Collapse
|
14
|
Lucchese G, Pesce Delfino A. Developing an anti-Campylobacter jejunivaccine. Immunopharmacol Immunotoxicol 2012; 34:385-90. [DOI: 10.3109/08923973.2011.608685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Capone G, Novello G, Bavaro SL, Fasano C, Pesce Delfino A, Polito AN, Kanduc D. A qualitative description of the peptide sharing between poliovirus and Homo sapiens. Immunopharmacol Immunotoxicol 2012; 34:779-85. [PMID: 22303874 DOI: 10.3109/08923973.2012.654610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In a companion paper, we reported that pentapeptides from human poliovirus 1, Mahoney strain, occur repeatedly in human proteins for a total of more than 18,000 overlaps. In the present study, we describe the distribution of the polio pentapeptides throughout biochemical pathways and networks characterizing functions and tissues in the human host. The present study might be of help to better define the poliovirus-host relationships as well as for designing peptide modules with anti-polio activity.
Collapse
Affiliation(s)
- Giovanni Capone
- Department of Biochemistry and Molecular Biology, Universityof Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Novello G, Capone G, Fasano C, Bavaro SL, Polito AN, Kanduc D. A quantitative description of the peptide sharing between poliovirus and Homo sapiens. Immunopharmacol Immunotoxicol 2011; 34:373-8. [PMID: 22145926 DOI: 10.3109/08923973.2011.608360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present study, we analyze the peptide commonality between poliovirus polyprotein and the human proteins. We report on the following findings: (1) the extent of polio peptide overlap on the human proteome is high, and involves the entire viral polyprotein; (2) viral peptide matching affects human proteins linked to fundamental cellular functions. The data may help to further our understanding of the relationships between poliovirus and the human host.
Collapse
Affiliation(s)
- Giuseppe Novello
- Department of Biochemistry and Molecular Biology, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Fasano C, Kanduc D. Selfness-nonselfness in designing an anti-B19 erythrovirus vaccine. SELF/NONSELF 2011; 2:114-119. [PMID: 22299063 PMCID: PMC3268997 DOI: 10.4161/self.2.2.16190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 11/19/2022]
Abstract
Although B19 erythrovirus infection may be associated with severe clinical outcomes, especially in early infancy, pregnancy and in immunocompromised or hemolytic subjects, no vaccine is currently available. Using the concept that effective immune responses to an infectious agent may be restricted to the specific peptidome unique to that agent, we analyzed primary amino acid sequence of B19 erythrovirus, searching for peptide motifs to be used in vaccine formulations. Here, we identify and describe a set of unique viral peptides that may guarantee both high efficacy and practically no cross-reactive autoimmune responses in anti-B19 immunotherapeutic approaches.
Collapse
Affiliation(s)
- Candida Fasano
- Department of Biochemistry and Molecular Biology; University of Bari; Bari, Italy
| | | |
Collapse
|
18
|
Kanduc D. HCV: Written in our DNA. SELF NONSELF 2011; 2:108-113. [PMID: 22299062 DOI: 10.4161/self.2.2.15795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/19/2022]
Abstract
An inspection of the sequence similarity between the hepatitis C virus (HCV) polyprotein and human proteins revealed a high level of peptide sharing, with a limited number of motifs unique to the virus (i.e., with no counterpart in the human proteome). Using pentapeptide matching, only 214 motifs out of a total of 3,007 (7.11%) identified HCV as nonself compared to the Homo sapiens proteome. However, this virus-versus-human phenetic difference disappeared at the genetic level. Indeed, a BLAST analysis of pentadecameric oligodeoxynucleotide sequences corresponding to the 214 pentapeptides unique to HCV revealed that almost all of them are present in the human genome, located in the non-coding strand, introns, and/or pseudogenes, thus being, as such, untranslatable. The present data warn against using DNA-based vaccines to fight HCV infection and emphasize peptide uniqueness as the molecular basis for designing effective anti-HCV immunotherapeutic approaches.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biochemistry and Molecular Biology; University of Bari; Bari, Italy
| |
Collapse
|
19
|
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics for development of vaccine. J Proteomics 2011; 74:2596-616. [PMID: 21310271 DOI: 10.1016/j.jprot.2011.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The success of genome projects has provided us with a vast amount of information on genes of many pathogenic species and has raised hopes for rapid progress in combating infectious diseases, both by construction of new effective vaccines and by creating a new generation of therapeutic drugs. Proteomics, a strategy complementary to the genomic-based approach, when combined with immunomics (looking for immunogenic proteins) and vaccinomics (characterization of host response to immunization), delivers valuable information on pathogen-host cell interaction. It also speeds the identification and detailed characterization of new antigens, which are potential candidates for vaccine development. This review begins with an overview of the global status of vaccinology based on WHO data. The main part of this review describes the impact of proteomic strategies on advancements in constructing effective antibacterial, antiviral and anticancer vaccines. Diverse aspects of disease mechanisms and disease preventions have been investigated by proteomics.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Biology Faculty, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
20
|
Kanduc D. Describing the hexapeptide identity platform between the influenza A H5N1 and Homo sapiens proteomes. Biologics 2010; 4:245-61. [PMID: 20859452 PMCID: PMC2943197 DOI: 10.2147/btt.s12097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Indexed: 11/23/2022]
Abstract
We searched the primary sequence of influenza A H5N1 polyprotein for hexamer amino acid sequences shared with human proteins using the Protein International Resource database and the exact peptide matching analysis program. We find that the viral polyprotein shares numerous hexapeptides with the human proteome. The human proteins involved in the viral overlap are represented by antigens associated with basic cell functions such as proliferation, development, and differentiation. Of special importance, many human proteins that share peptide sequences with influenza A polyprotein are antigens such as reelin, neurexin I-α, myosin-IXa, Bardet–Biedl syndrome 10 protein, Williams syndrome transcription factor, disrupted in schizophrenia 1 protein, amyotrophic lateral sclerosis 2 chromosomal region candidate gene 17 protein, fragile X mental retardation 2 protein, and jouberin. That is, the viral-vs-human overlap involves human proteins that, when altered, have been reported to be potentially associated with multiple neurological disorders that can include autism, epilepsy, obesity, dystonia, ataxia–telangiectasia, amyotrophic lateral sclerosis, sensorineural deafness, sudden infant death syndrome, Charcot-Marie-Tooth disease, and myelination. The present data are discussed as a possible molecular basis for understanding influenza A viral escape from immunosurveillance and for defining anti-influenza immune-therapeutic approaches devoid of collateral adverse events.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biochemistry and Molecular Biology, University of Bari, Italy
| |
Collapse
|
21
|
Capone G, Novello G, Fasano C, Trost B, Bickis M, Kusalik A, Kanduc D. The oligodeoxynucleotide sequences corresponding to never-expressed peptide motifs are mainly located in the non-coding strand. BMC Bioinformatics 2010; 11:383. [PMID: 20646284 PMCID: PMC2919516 DOI: 10.1186/1471-2105-11-383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We study the usage of specific peptide platforms in protein composition. Using the pentapeptide as a unit of length, we find that in the universal proteome many pentapeptides are heavily repeated (even thousands of times), whereas some are quite rare, and a small number do not appear at all. To understand the physico-chemical-biological basis underlying peptide usage at the proteomic level, in this study we analyse the energetic costs for the synthesis of rare and never-expressed versus frequent pentapeptides. In addition, we explore residue bulkiness, hydrophobicity, and codon number as factors able to modulate specific peptide frequencies. Then, the possible influence of amino acid composition is investigated in zero- and high-frequency pentapeptide sets by analysing the frequencies of the corresponding inverse-sequence pentapeptides. As a final step, we analyse the pentadecamer oligodeoxynucleotide sequences corresponding to the never-expressed pentapeptides. RESULTS We find that only DNA context-dependent constraints (such as oligodeoxynucleotide sequence location in the minus strand, introns, pseudogenes, frameshifts, etc.) provide a coherent mechanistic platform to explain the occurrence of never-expressed versus frequent pentapeptides in the protein world. CONCLUSIONS This study is of importance in cell biology. Indeed, the rarity (or lack of expression) of specific 5-mer peptide modules implies the rarity (or lack of expression) of the corresponding n-mer peptide sequences (with n < 5), so possibly modulating protein compositional trends. Moreover the data might further our understanding of the role exerted by rare pentapeptide modules as critical biological effectors in protein-protein interactions.
Collapse
Affiliation(s)
- Giovanni Capone
- Department of Biochemistry and Molecular Biology "Ernesto Quagliariello", University of Bari, Bari, Italy
| | - Giuseppe Novello
- Department of Biochemistry and Molecular Biology "Ernesto Quagliariello", University of Bari, Bari, Italy
| | - Candida Fasano
- Department of Biochemistry and Molecular Biology "Ernesto Quagliariello", University of Bari, Bari, Italy
| | - Brett Trost
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Mik Bickis
- Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Darja Kanduc
- Department of Biochemistry and Molecular Biology "Ernesto Quagliariello", University of Bari, Bari, Italy
| |
Collapse
|
22
|
Proposing low-similarity peptide vaccines against Mycobacterium tuberculosis. J Biomed Biotechnol 2010; 2010:832341. [PMID: 20625421 PMCID: PMC2896900 DOI: 10.1155/2010/832341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/02/2009] [Accepted: 03/24/2010] [Indexed: 12/03/2022] Open
Abstract
Using the currently available proteome databases and based on the concept that a rare sequence is a potential epitope, epitopic sequences derived from Mycobacterium tuberculosis were examined for similarity score to the proteins of the host in which the epitopes were defined. We found that: (i) most of the bacterial linear determinants had peptide fragment(s) that were rarely found in the host proteins and (ii) the relationship between low similarity and epitope definition appears potentially applicable to T-cell determinants. The data confirmed the hypothesis that low-sequence similarity shapes or determines the epitope definition at the molecular level and provides a potential tool for designing new approaches to prevent, diagnose, and treat tuberculosis and other infectious diseases.
Collapse
|
23
|
Stufano A, Capone G, Pesetti B, Polimeno L, Kanduc D. Clustering of rare peptide segments in the HCV immunome. SELF/NONSELF 2010; 1:154-162. [PMID: 21487517 PMCID: PMC3065674 DOI: 10.4161/self.1.2.11391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 01/01/2023]
Abstract
Our previous research and a comprehensive meta-analysis of data from the literature on epitope mapping has revealed that the B cell epitope repertoire is allocated to rare peptide motifs, i.e., antigenic peptide sequences endowed with a low level of similarity to the host proteome. From a clinical point of view, low-similarity peptides able to evoke an immune response appear to be of special interest for the rational design of vaccines for poorly treatable diseases such as hepatitis-C virus (HCV) infection. Indeed, low similarity peptides would guarantee the highest specificity and lowest cross-reactivity, i.e., effectiveness without adverse side-effects. In this study, aimed at gaining further information for the development of effective anti-HCV peptide-based vaccines, the HCV epitopes recognized by human antibodies and currently catalogued in the Immune Epitope Data Base (IEDB) were examined for pentamer sequence similarities to the human proteome. We report that the analyzed HCV determinants are characterized by the presence of fragment absent from (or scarcely represented in) human proteins. These data confirm the low-similarity hypothesis, according to which a low-similarity to the host proteome defines the nonself character of microbial antigens and modulates peptide immunogenicity. Moreover, this study indicates a concrete and safe immunotherapeutic approach which might be used in a universal anti-HCV vaccine.
Collapse
Affiliation(s)
- Angela Stufano
- Department of Biochemistry and Molecular Biology; University of Bari; Bari, Italy
| | | | | | | | | |
Collapse
|