1
|
Isticato R. Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines. Biomolecules 2023; 13:947. [PMID: 37371527 DOI: 10.3390/biom13060947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal vaccines offer several advantages over injectable conventional vaccines, such as the induction of adaptive immunity, with secretory IgA production at the entry site of most pathogens, and needle-less vaccinations. Despite their potential, only a few mucosal vaccines are currently used. Developing new effective mucosal vaccines strongly relies on identifying innovative antigens, efficient adjuvants, and delivery systems. Several approaches based on phages, bacteria, or nanoparticles have been proposed to deliver antigens to mucosal surfaces. Bacterial spores have also been considered antigen vehicles, and various antigens have been successfully exposed on their surface. Due to their peculiar structure, spores conjugate the advantages of live microorganisms with synthetic nanoparticles. When mucosally administered, spores expressing antigens have been shown to induce antigen-specific, protective immune responses. This review accounts for recent progress in the formulation of spore-based mucosal vaccines, describing a spore's structure, specifically the spore surface, and the diverse approaches developed to improve its efficiency as a vehicle for heterologous antigen presentation.
Collapse
Affiliation(s)
- Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| |
Collapse
|
2
|
de Souza Pereira G, Batista MT, Dos Santos NFB, Passos HM, da Silva DA, Ferreira EL, de Souza Ferreira LC, de Cássia Café Ferreira R. Streptococcus mutans glutamate binding protein (GlnH) as antigen target for a mucosal anti-caries vaccine. Braz J Microbiol 2022; 53:1941-1949. [PMID: 36098933 PMCID: PMC9679091 DOI: 10.1007/s42770-022-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In recent years, several studies have demonstrated that bacterial ABC transporters present relevant antigen targets for the development of vaccines against bacteria such as Streptococcus pneumoniae and Enterococcus faecalis. In Streptococcus mutans, the glutamate transporter operon (glnH), encoding an ABC transporter, is associated with acid tolerance and represents an important virulence-associated factor for the development of dental caries. RESULTS In this study, we generated a recombinant form of the S. mutans GlnH protein (rGlnH) in Bacillus subtilis. Mice immunized with this protein antigen elicited strong antigen-specific antibody responses after sublingual administration of a vaccine formulation containing a mucosal adjuvant, a non-toxic derivative of the heat-labile toxin (LTK63) originally produced by enterotoxigenic Escherichia coli (ETEC) strains. Serum anti-rGlnH antibodies reduced adhesion of S. mutans to the oral cavity of naïve mice. Moreover, mice actively immunized with rGlnH were partially protected from oral colonization after exposure to the S. mutans NG8 strain. CONCLUSIONS Our results indicate that S. mutans rGlnH is a potential target antigen capable of inducing specific and protective antibody responses after immunization. Overall, these observations raise the prospect of the development of mucosal anti-caries vaccines.
Collapse
Affiliation(s)
- Gisela de Souza Pereira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Milene Tavares Batista
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | | | - Hélic Moreira Passos
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Dalva Adelina da Silva
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Ewerton Lucena Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Luís Carlos de Souza Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Rita de Cássia Café Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil.
| |
Collapse
|
3
|
LT adjuvant modulates epitope specificity and improves the efficacy of murine antibodies elicited by sublingual vaccination with the N-terminal domain of Streptococcus mutans P1. Vaccine 2017; 35:7273-7282. [PMID: 29146379 DOI: 10.1016/j.vaccine.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
In this study, we evaluated the immunogenicity, protective efficacy and peptide-based immune signatures of antibodies raised in mice after sublingual immunization with a recombinant form of the P1 (aka AgI/II, PAc) adhesin (P139-512) of Streptococcus mutans, a major etiological agent of dental caries. Sublingual administration of P139-512 in combination with the mucosal adjuvant LTK4R (a derivative of heat-labile LT toxin) induced strong and long-lasting systemic and mucosal immune responses. Incorporation of the adjuvant resulted in an enhancement of the anti-adhesive and anti-colonization activity against S. mutans as evaluated both under in vitro and in vivo conditions. Incorporation of the adjuvant to the vaccine formulation also changed the epitope specificity of the induced antibodies as determined by immunological signatures of sera collected from vaccinated mice. Use of a peptide microarray library led to the identification of peptide targets recognized by antibodies in serum samples with enhanced anti-adhesive effects. Altogether, the results presented herein showed that the sublingual administration of a P1-based subunit vaccine represents a promising approach for the prevention of dental caries caused by S. mutans. In addition, the present study disclosed the role of adjuvants on the epitope specificity and functionality of antibodies raised by subunit vaccines.
Collapse
|
4
|
Ferreira EL, Batista MT, Cavalcante RCM, Pegos VR, Passos HM, Silva DA, Balan A, Ferreira LCS, Ferreira RCC. Sublingual immunization with the phosphate-binding-protein (PstS) reduces oral colonization by Streptococcus mutans. Mol Oral Microbiol 2015; 31:410-22. [PMID: 26462737 DOI: 10.1111/omi.12142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 11/29/2022]
Abstract
Bacterial ATP-binding cassette (ABC) transporters play a crucial role in the physiology and pathogenicity of different bacterial species. Components of ABC transporters have also been tested as target antigens for the development of vaccines against different bacterial species, such as those belonging to the Streptococcus genus. Streptococcus mutans is the etiological agent of dental caries, and previous studies have demonstrated that deletion of the gene encoding PstS, the substrate-binding component of the phosphate uptake system (Pst), reduced the adherence of the bacteria to abiotic surfaces. In the current study, we generated a recombinant form of the S. mutans PstS protein (rPstS) with preserved structural features, and we evaluated the induction of antibody responses in mice after sublingual mucosal immunization with a formulation containing the recombinant protein and an adjuvant derived from the heat-labile toxin from enterotoxigenic Escherichia coli strains. Mice immunized with rPstS exhibited systemic and secreted antibody responses, measured by the number of immunoglobulin A-secreting cells in draining lymph nodes. Serum antibodies raised in mice immunized with rPstS interfered with the adhesion of bacteria to the oral cavity of naive mice challenged with S. mutans. Similarly, mice actively immunized with rPstS were partially protected from oral colonization after challenge with the S. mutans NG8 strain. Therefore, our results indicate that S. mutans PstS is a potential target antigen capable of inducing specific and protective antibody responses after sublingual administration. Overall, these observations raise interesting perspectives for the development of vaccines to prevent dental caries.
Collapse
Affiliation(s)
- E L Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - M T Batista
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - R C M Cavalcante
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - V R Pegos
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil.,Biosciences National Laboratory (LNBio), Materials and Energy Research Center, Campinas, SP, Brazil
| | - H M Passos
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - D A Silva
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - A Balan
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil.,Biosciences National Laboratory (LNBio), Materials and Energy Research Center, Campinas, SP, Brazil
| | - L C S Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - R C C Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Immunogenicity and in vitro and in vivo protective effects of antibodies targeting a recombinant form of the Streptococcus mutans P1 surface protein. Infect Immun 2014; 82:4978-88. [PMID: 25225243 DOI: 10.1128/iai.02074-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation. P1 is a large (185-kDa) and complex multidomain protein considered a promising target antigen for anticaries vaccines. Previous observations showed that a recombinant P1 fragment (P1(39-512)), produced in Bacillus subtilis and encompassing a functional domain, induces antibodies that recognize the native protein and interfere with S. mutans adhesion in vitro. In the present study, we further investigated the immunological features of P1(39-512) in combination with the following different adjuvants after parenteral administration to mice: alum, a derivative of the heat-labile toxin (LT), and the phase 1 flagellin of S. Typhimurium LT2 (FliCi). Our results demonstrated that recombinant P1(39-512) preserves relevant conformational epitopes as well as salivary agglutinin (SAG)-binding activity. Coadministration of adjuvants enhanced anti-P1 serum antibody responses and affected both epitope specificity and immunoglobulin subclass switching. Importantly, P1(39-512)-specific antibodies raised in mice immunized with adjuvants showed significantly increased inhibition of S. mutans adhesion to SAG, with less of an effect on SAG-mediated bacterial aggregation, an innate defense mechanism. Oral colonization of mice by S. mutans was impaired in the presence of anti-P1(39-512) antibodies, particularly those raised in combination with adjuvants. In conclusion, our results confirm the utility of P1(39-512) as a potential candidate for the development of anticaries vaccines and as a tool for functional studies of S. mutans P1.
Collapse
|
6
|
de Souza RD, Batista MT, Luiz WB, Cavalcante RCM, Amorim JH, Bizerra RSP, Martins EG, de Souza Ferreira LC. Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action. PLoS One 2014; 9:e87454. [PMID: 24475289 PMCID: PMC3903701 DOI: 10.1371/journal.pone.0087454] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/27/2013] [Indexed: 12/20/2022] Open
Abstract
Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains.
Collapse
Affiliation(s)
- Renata Damásio de Souza
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milene Tavares Batista
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Wilson Barros Luiz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Jaime Henrique Amorim
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raíza Sales Pereira Bizerra
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Gimenes Martins
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Gut adhesive Bacillus subtilis spores as a platform for mucosal delivery of antigens. Infect Immun 2014; 82:1414-23. [PMID: 24421038 DOI: 10.1128/iai.01255-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis spores have been used as safe and heat-resistant antigen delivery vectors. Nonetheless, the oral administration of spores typically induces weak immune responses to the passenger antigens, which may be attributed to the fast transit through the gastrointestinal tract. To overcome this limitation, we have developed B. subtilis spores capable of binding to the gut epithelium by means of expressing bacterial adhesins on the spore surface. The resulting spores bound to in vitro intestinal cells, showed a longer transit through the mouse intestinal tract, and interacted with Peyer's patch cells. The adhesive spores increased the systemic and secreted antibody responses to the Streptococcus mutans P1 protein, used as a model antigen, following oral, intranasal, and sublingual administration. Additionally, P1-specific antibodies efficiently inhibited the adhesion of the oral pathogen Streptococcus mutans to abiotic surfaces. These results support the use of gut-colonizing B. subtilis spores as a new platform for the mucosal delivery of vaccine antigens.
Collapse
|
8
|
Amuguni H, Lee S, Kerstein K, Brown D, Belitsky B, Herrmann J, Keusch G, Sonenshein A, Tzipori S. Sublingual immunization with an engineered Bacillus subtilis strain expressing tetanus toxin fragment C induces systemic and mucosal immune responses in piglets. Microbes Infect 2011; 14:447-56. [PMID: 22198093 DOI: 10.1016/j.micinf.2011.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/04/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022]
Abstract
UNLABELLED Sublingual (SL) and intranasal (IN) administration of a Bacillus subtilis-based tetanus vaccine was tested in piglets, which more closely mimic the human immune system than mice. Piglets were immunized by the SL, IN or oral routes with vaccine expressing tetanus toxin fragment C, or commercial tetanus vaccine given by intramuscular injection as a control. Tetanus toxoid specific ELISA and passive neutralization tests were used to measure IgG and IgA levels in serum and mucosal secretions, and assess protective serum antibodies, respectively. The nature of the immune response was explored by MHC Class II, TGF-β1 expression, and ELISA assays for multiple cytokines. SL or IN immunization of piglets induced neutralizing tetanus toxoid specific serum antibody and local salivary and vaginal IgA responses. Standard tetanus vaccine resulted in systemic antibodies, whereas oral administration of the Bacillus-based vaccine was ineffective. Further analyses indicated a balanced Th1/Th2 response to SL or IN immunization. CONCLUSION This study demonstrates for the first time that SL or IN administration is effective for inducing both systemic and mucosal responses in a piglet model, indicating that SL or IN delivery of a B. subtilis-based tetanus vaccine can be a simple, non-invasive, low cost strategy to induce immunity to tetanus.
Collapse
Affiliation(s)
- Hellen Amuguni
- Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|