1
|
Hristova PM, Alexandrova AS, Lucanov M, Hitkova HY, Borisov BK. Catheter-Related Bloodstream Infection in Hemodialysis Patient due to Atlantibacter hermannii. Case Rep Nephrol Dial 2023; 13:142-147. [PMID: 37900930 PMCID: PMC10601877 DOI: 10.1159/000533581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/31/2023] [Indexed: 10/31/2023] Open
Abstract
Atlantibacter hermannii, previously known as Escherichia hermannii, is a rare causative agent of human infections. Several reports testify that the most frequently infected patients are immunosuppressed, especially those undergoing hemodialysis. A 34-year-old man with an end-stage renal disease complained of chills, fever, and general fatigue at the end of a regular hemodialysis session. The echocardiographic examination showed vegetation located on the dialysis catheter in the right atrium. Empirical therapy was initiated with intravenous gentamicin, and after the isolation of the agent, the treatment was continued with intravenous imipenem/cilastatin. The blood cultures and the tip of the replaced catheter were positive for A. hermannii, identified by Vitek 2 Compact. Verification of the automated identification was performed using 16S sequencing. The 16S sequence product was used to query the NCBI bacterial database and revealed 99.75% identity to that of A. hermannii strain CIP 103176 16S ribosomal RNA in the NCBI GenBank database. The antimicrobial susceptibility results revealed resistance to aminopenicillins and susceptibility to all other tested antimicrobials. To our knowledge, this is the first report of catheter-related vegetation with echocardiographic confirmation and the successful eradication of A. hermannii infection in a patient undergoing hemodialysis with imipenem/cilastatin.
Collapse
Affiliation(s)
- Preslava M. Hristova
- Department of Microbiology and Virology, Medical University – Pleven, Pleven, Bulgaria
| | | | - Martin Lucanov
- Department of Cardiology, Medical University – Pleven, Pleven, Bulgaria
| | - Hristina Y. Hitkova
- Department of Microbiology and Virology, Medical University – Pleven, Pleven, Bulgaria
| | - Biser Kirilov Borisov
- Department of Nephrology and Dialysis, Medical University – Pleven, Pleven, Bulgaria
| |
Collapse
|
2
|
Wu F, Fang B, Wuri G, Zhao L, Liu F, Zhang M. Metagenomic Analysis Reveals a Mitigating Role for Lactobacillus paracasei and Bifidobacterium animalis in Experimental Periodontitis. Nutrients 2022; 14:2125. [PMID: 35631266 PMCID: PMC9146436 DOI: 10.3390/nu14102125 10.3390/nu14102125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Probiotics have aroused increasing concern as an intervention strategy for periodontitis (PD), but their underlying mechanism of action remains poorly characterized. Regarding the significance of oral microbiota dysbiosis related to PD, we predicted that the preventive activity of probiotics may be influenced by suppressing the bacterial pathogenicity. Herein, we investigated the effects of Lactobacillus paracasei L9 (L9) and Bifidobacterium animalis A6 (A6) on PD using a rat model, and demonstrated a regulatory effect of probiotics on oral flora from a metagenomics perspective. Oral administration of A6 or L9 effectively relieved gingival bleeding, periodontal inflammatory infiltration, and alveolar bone resorption. In addition, A6 or L9 treatment reduced the inflammatory response and increased the expression of anti-inflammatory cytokines, which we expected to ameliorate alveolar bone resorption as mediated by the receptor activator of the nuclear factor-κB ligand/OPG signaling pathway. More importantly, using metagenomic sequencing, we showed that probiotics significantly altered the taxonomic composition of the subgingival microbiome, and reduced the relative proportions of pathogenic bacterial genera such as Streptococcus, Fusobacterium, Veillonella, and Escherichia. Both probiotics significantly inhibited levels of bacterial virulence factors related to adherence, invasion, exoenzyme, and complement protease functions that are strongly correlated with the pathogenesis of PD. Our overall results suggest that A6 and L9 may constitute promising prophylactic agents for PD, and should thus be further explored in the future.
Collapse
Affiliation(s)
- Fang Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China;
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
- Correspondence:
| |
Collapse
|
3
|
Wu F, Fang B, Wuri G, Zhao L, Liu F, Zhang M. Metagenomic Analysis Reveals a Mitigating Role for Lactobacillus paracasei and Bifidobacterium animalis in Experimental Periodontitis. Nutrients 2022; 14:2125. [PMID: 35631266 PMCID: PMC9146436 DOI: 10.3390/nu14102125+10.3390/nu14102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Probiotics have aroused increasing concern as an intervention strategy for periodontitis (PD), but their underlying mechanism of action remains poorly characterized. Regarding the significance of oral microbiota dysbiosis related to PD, we predicted that the preventive activity of probiotics may be influenced by suppressing the bacterial pathogenicity. Herein, we investigated the effects of Lactobacillus paracasei L9 (L9) and Bifidobacterium animalis A6 (A6) on PD using a rat model, and demonstrated a regulatory effect of probiotics on oral flora from a metagenomics perspective. Oral administration of A6 or L9 effectively relieved gingival bleeding, periodontal inflammatory infiltration, and alveolar bone resorption. In addition, A6 or L9 treatment reduced the inflammatory response and increased the expression of anti-inflammatory cytokines, which we expected to ameliorate alveolar bone resorption as mediated by the receptor activator of the nuclear factor-κB ligand/OPG signaling pathway. More importantly, using metagenomic sequencing, we showed that probiotics significantly altered the taxonomic composition of the subgingival microbiome, and reduced the relative proportions of pathogenic bacterial genera such as Streptococcus, Fusobacterium, Veillonella, and Escherichia. Both probiotics significantly inhibited levels of bacterial virulence factors related to adherence, invasion, exoenzyme, and complement protease functions that are strongly correlated with the pathogenesis of PD. Our overall results suggest that A6 and L9 may constitute promising prophylactic agents for PD, and should thus be further explored in the future.
Collapse
Affiliation(s)
- Fang Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China;
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
- Correspondence:
| |
Collapse
|
4
|
Metagenomic Analysis Reveals a Mitigating Role for Lactobacillus paracasei and Bifidobacterium animalis in Experimental Periodontitis. Nutrients 2022; 14:nu14102125. [PMID: 35631266 PMCID: PMC9146436 DOI: 10.3390/nu14102125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Probiotics have aroused increasing concern as an intervention strategy for periodontitis (PD), but their underlying mechanism of action remains poorly characterized. Regarding the significance of oral microbiota dysbiosis related to PD, we predicted that the preventive activity of probiotics may be influenced by suppressing the bacterial pathogenicity. Herein, we investigated the effects of Lactobacillus paracasei L9 (L9) and Bifidobacterium animalis A6 (A6) on PD using a rat model, and demonstrated a regulatory effect of probiotics on oral flora from a metagenomics perspective. Oral administration of A6 or L9 effectively relieved gingival bleeding, periodontal inflammatory infiltration, and alveolar bone resorption. In addition, A6 or L9 treatment reduced the inflammatory response and increased the expression of anti-inflammatory cytokines, which we expected to ameliorate alveolar bone resorption as mediated by the receptor activator of the nuclear factor-κB ligand/OPG signaling pathway. More importantly, using metagenomic sequencing, we showed that probiotics significantly altered the taxonomic composition of the subgingival microbiome, and reduced the relative proportions of pathogenic bacterial genera such as Streptococcus, Fusobacterium, Veillonella, and Escherichia. Both probiotics significantly inhibited levels of bacterial virulence factors related to adherence, invasion, exoenzyme, and complement protease functions that are strongly correlated with the pathogenesis of PD. Our overall results suggest that A6 and L9 may constitute promising prophylactic agents for PD, and should thus be further explored in the future.
Collapse
|
5
|
Wang S, Zhang J, Wei F, Li W, Wen L. Facile Synthesis of Sugar Nucleotides from Common Sugars by the Cascade Conversion Strategy. J Am Chem Soc 2022; 144:9980-9989. [PMID: 35583341 DOI: 10.1021/jacs.2c03138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sugar nucleotides are essential glycosylation donors in the carbohydrate metabolism. Naturally, most sugar nucleotides are derived from a limited number of common sugar nucleotides by de novo biosynthetic pathways, undergoing single or multiple reactions such as dehydration, epimerization, isomerization, oxidation, reduction, amination, and acetylation reactions. However, it is widely believed that such complex bioconversions are not practical for synthetic use due to the high preparation cost and great difficulties in product isolation. Therefore, most of the discovered sugar nucleotides are not readily available. Here, based on de novo biosynthesis mainly, 13 difficult-to-access sugar nucleotides were successfully prepared from two common sugars D-Man and sucrose in high yields, at a multigram scale, and without the need for tedious purification manipulations. This work demonstrated that de novo biosynthesis, although undergoing complex reactions, is also practical and cost-effective for synthetic use by employing a cascade conversion strategy.
Collapse
Affiliation(s)
- Shasha Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiang Su 210023, China
| | - Jiabin Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Fangyu Wei
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjin Li
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiang Su 210023, China
| |
Collapse
|
6
|
Witty M. Examples of potato epidermis endophytes and rhizosphere microbes that may be human pathogens contributing to potato peel colic. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2021.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Potato tubers defend themselves against herbivores with endogenous secondary compounds such as solanine and scopolamine. They also recruit endophytes and members of the tuberosphere to repel herbivores. Many of these endophyte defence features are overcome by cooking, with some notable exceptions that have been identified by rDNA analysis of potato peel samples and may account for some previously unrecognised features of potato peel colic. This is relevant regarding the rather modern way of cooking, where the potato peel is left intact in food and consumed.
Collapse
Affiliation(s)
- M. Witty
- Math and Science Department, School of Pure and Applied Sciences, Florida SouthWestern State College, 8099 College Parkway, Fort Myers, Florida 33919, USA
| |
Collapse
|
7
|
Kumar KV, Pal A, Bai P, Kour A, E S, P R, Kausar A, Chatterjee M, Prasad G, Balayan S, Dutta P, Wijesekera K. Co-aggregation of bacterial flora isolated from the human skin surface. Microb Pathog 2019; 135:103630. [DOI: 10.1016/j.micpath.2019.103630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/27/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
|
8
|
PICC-associated infection with Escherichia hermannii: A case report and review of the literature. IDCases 2018; 13:4. [PMID: 30181953 PMCID: PMC6117949 DOI: 10.1016/j.idcr.2018.e00444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/04/2022] Open
Abstract
Since its identification as a unique species in 1982, Escherichia hermannii has been implicated as a pathogenic organism in very few cases of human disease. Our report discusses a case of bacteremia with Escherichia hermannii identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and RapID™ ONE analysis in a patient getting TPN through a peripherally-inserted CVC (PICC). The PICC was removed. The bloodstream infection was successfully treated with empiric piperacillin-tazobactam, which was then narrowed to trimethoprim-sulfamethoxazole based on sensitivity data for a 14 day course of antimicrobial therapy. E. hermannii’s association with bloodstream infection in patients with central venous catheters supports data implicating biofilm formation as a key pathogenic feature of E. hermannii. Of the 9 previous cases of E. hermannii infection reviewed in the literature, 4 cases occurred in immunocompromised hosts, 2 were associated with trauma or injection, 2 were associated with central lines, and only one case had no identifiable risk factor. E. hermannii appears to act as an opportunistic pathogen, causing disease in an immunocompromised host or through a central access catheter, injection, or trauma. E. hermannii likely causes catheter-related bloodstream infections in these hosts through biofilm formation, demonstrating the importance of catheter removal in addition to antimicrobial therapy in the treatment of these infections.
Collapse
|
9
|
Rank CU, Lommer Kristensen P, Schrøder Hansen D, Brandi L. Catheter Related Escherichia hermannii Sepsis in a Haemodialysis Patient. Open Microbiol J 2016; 10:1-3. [PMID: 27006723 PMCID: PMC4780465 DOI: 10.2174/1874285801610010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 11/22/2022] Open
Abstract
Escherichia hermannii is an extremely rare etiological agent of
invasive infection, and thus, the bacterium was initially considered
non-pathogenic. However, in five previously reported case reports E.
hermannii has been implicated as the sole pathogen. Our case report
describes blood stream infection with E.hermannii in a
haemodialysis patient with persisting symptoms, high fever and inflammatory
markers despite appropriate antibiotic treatment until replacement of the
dialysis catheter. We suspect biofilm formation to be a crucial pathogenic
feature for E. hermannii in the maintenance of an infection, which
stresses the necessity of antibiotic treatment along with catheter replacement
in bloodstream- and catheter-related infection with E. hermannii.
Collapse
Affiliation(s)
- Cecilie Utke Rank
- Department of Cardiology, Nephrology, and Endocrinology, Nordsjællands Hospital, Hillerød, Denmark
| | - Peter Lommer Kristensen
- Department of Cardiology, Nephrology, and Endocrinology, Nordsjællands Hospital, Hillerød, Denmark
| | - Dennis Schrøder Hansen
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University Hospital of Copenhagen, Denmark
| | - Lisbet Brandi
- Department of Cardiology, Nephrology, and Endocrinology, Nordsjællands Hospital, Hillerød, Denmark
| |
Collapse
|
10
|
Yamane K, Nambu T, Yamanaka T, Ishihara K, Tatami T, Mashimo C, Walker CB, Leung KP, Fukushima H. Pathogenicity of exopolysaccharide-producing Actinomyces oris isolated from an apical abscess lesion. Int Endod J 2012; 46:145-54. [PMID: 22900599 PMCID: PMC3557718 DOI: 10.1111/j.1365-2591.2012.02099.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/25/2012] [Indexed: 01/13/2023]
Abstract
Aim To demonstrate a capacity for producing exopolysaccharides (EPSs) and an ability to form biofilm on abiotic materials of Actinomyces oris strain K20. Methodology The productivity of EPSs and the ability to form biofilm of strain K20 were evaluated by measuring viscosity of spent culture media and by scanning electron microscopy (SEM) and the biofilm assay on microtitre plates, respectively. High-performance liquid chromatography was used to determine the chemical composition of the viscous materials. To examine the role of the viscous materials attributable to the pathogenicity in this organism, the ability of strain K20 to induce abscess formation was compared in mice to that of ATCC 27044. Results The viscosity of the spent culture media of K20 was significantly higher than that of ATCC 27044. Strain K20 showed dense meshwork structures around the cells and formed biofilms on microtitre plates, whereas ATCC 27044 did not. Chemical analysis of the viscous materials revealed that they were mainly composed of neutral sugars with mannose constituting 77.5% of the polysaccharides. Strain K20 induced persistent abscesses in mice lasting at least 5 days at a concentration of 108 cells mL−1, whereas abscesses induced by ATCC 27044 healed and disappeared or decreased in size at day 5. Conclusions Strain K20 produced EPSs, mainly consisting of mannose, and formed biofilms. This phenotype might play an important role for A. oris to express virulence through the progression of apical periodontitis.
Collapse
Affiliation(s)
- K Yamane
- Department of Bacteriology, Osaka Dental University, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yamanaka T, Yamane K, Furukawa T, Matsumoto-Mashimo C, Sugimori C, Nambu T, Obata N, Walker CB, Leung KP, Fukushima H. Comparison of the virulence of exopolysaccharide-producing Prevotella intermedia to exopolysaccharide non-producing periodontopathic organisms. BMC Infect Dis 2011; 11:228. [PMID: 21864411 PMCID: PMC3182146 DOI: 10.1186/1471-2334-11-228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/25/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Evidence in the literature suggests that exopolysaccharides (EPS) produced by bacterial cells are essential for the expression of virulence in these organisms. Secreted EPSs form the framework in which microbial biofilms are built. METHODS This study evaluates the role of EPS in Prevotella intermedia for the expression of virulence. This evaluation was accomplished by comparing EPS-producing P. intermedia strains 17 and OD1-16 with non-producing P. intermedia ATCC 25611 and Porphyromonas gingivalis strains ATCC 33277, 381 and W83 for their ability to induce abscess formation in mice and evade phagocytosis. RESULTS EPS-producing P. intermedia strains 17 and OD1-16 induced highly noticeable abscess lesions in mice at 107 colony-forming units (CFU). In comparison, P. intermedia ATCC 25611 and P. gingivalis ATCC 33277, 381 and W83, which all lacked the ability to produce viscous materials, required 100-fold more bacteria (109 CFU) in order to induce detectable abscess lesions in mice. Regarding antiphagocytic activity, P. intermedia strains 17 and OD1-16 were rarely internalized by human polymorphonuclear leukocytes, but other strains were readily engulfed and detected in the phagosomes of these phagocytes. CONCLUSIONS These results demonstrate that the production of EPS by P. intermedia strains 17 and OD1-16 could contribute to the pathogenicity of this organism by conferring their ability to evade the host's innate defence response.
Collapse
Affiliation(s)
- Takeshi Yamanaka
- Department of Bacteriology, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, 573-1121 Japan
| | - Kazuyoshi Yamane
- Department of Bacteriology, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, 573-1121 Japan
| | - Tomoyo Furukawa
- Department of Bacteriology, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, 573-1121 Japan
| | - Chiho Matsumoto-Mashimo
- Department of Bacteriology, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, 573-1121 Japan
| | - Chieko Sugimori
- Department of Bacteriology, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, 573-1121 Japan
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, 573-1121 Japan
| | - Noboru Obata
- Department of Bacteriology, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, 573-1121 Japan
| | - Clay B Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Box 100424 UF Health Science Center, Gainesville, FL 32610-0424, USA
| | - Kai-Poon Leung
- US Army Dental and Trauma Research Detachment, Institute of Surgical Research, 3650 Chambers Pass, Fort Sam Houston, TX 78234-6315, USA
| | - Hisanori Fukushima
- Department of Bacteriology, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, 573-1121 Japan
| |
Collapse
|
12
|
Complete Genome Sequence of Rothia mucilaginosa DY-18: A Clinical Isolate with Dense Meshwork-Like Structures from a Persistent Apical Periodontitis Lesion. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/457236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rothia mucilaginosa is an opportunistic pathogen in the human oral cavity and pharynx. We found that R. mucilaginosa DY-18, a clinical isolate from a persistent apical periodontitis lesion, had biofilm-like structures. Similar structures were also observed on R. mucilaginosa ATCC25296. To further study these structures, we determined the complete genome sequence of DY-18 and found it a 2.26-Mb chromosome. Regarding stress responsive systems known to affect biofilm formation in many bacteria, DY-18 genome possessed only two sigma factor genes. One of these encoded an additional sigma factor whose promoter-binding activity may be regulated in response to environmental stimuli. Additionally, several genes assigned to two-component signal transduction systems were presented in this genome. To the best of our knowledge, this is the first complete genome of R. mucilaginosa species and our data raise the possibility that this organism regulates the biofilm phenotype through these stress responsive systems.
Collapse
|