Noble JM, Lubieniecki J, Savitzky BH, Plitzko J, Engelhardt H, Baumeister W, Kourkoutis LF. Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria.
Mol Microbiol 2018;
109:812-825. [PMID:
29995992 DOI:
10.1111/mmi.14077]
[Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 01/20/2023]
Abstract
The size of whole Rhodobacter sphaeroides prevents 3D visualization of centermost chromatophores in their native environment. This study combines cryo-focused ion beam milling with cryo-electron tomography to probe vesicle architecture both in situ and in 3D. Developing chromatophores are membrane-bound buds that remain in topological continuity with the cytoplasmic membrane and detach into vesicles when mature. Mature chromatophores closest to the cell wall are typically isolated vesicles, whereas centermost chromatophores are either linked to neighboring chromatophores or contain smaller, budding structures. Isolated chromatophores comprised a minority of centermost chromatophores. Connections between vesicles in growing bacteria are through ~10 nm-long, ~5 nm-wide linkers, and are thus physical rather than functional in terms of converting photons to ATP. In cells in the stationary phase, chromatophores fuse with neighboring vesicles, lose their spherical structure, and greatly increase in volume. The fusion and morphological changes seen in older bacteria are likely a consequence of the aging process, and are not representative of connectivity in healthy R. sphaeroides. Our results suggest that chromatophores can adopt either isolated or connected morphologies within a single bacterium. Revealing the organization of chromatophore vesicles throughout the cell is an important step in understanding the photosynthetic mechanisms in R. sphaeroides.
Collapse