1
|
Xu J, Wang H, Xu R, Li Q, Li L, Su Y, Liu J, Zhu W. Daily fluctuation of Lactobacillus species and their antibiotic resistome in the colon of growing pigs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170821. [PMID: 38336077 DOI: 10.1016/j.scitotenv.2024.170821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
There are various types of bacteria inhabiting the intestine that help maintain the balance of the intestinal microbiota. Lactobacillus is one of the important beneficial bacteria and is widely used as a food starter and probiotic. In this study, we investigated the daily fluctuation of the colonic Lactobacillus species and their distribution of antibiotic resistance genes (ARGs) as well as antibiotic susceptibility in pigs. Metagenomic analysis revealed that genus Lactobacillus was one of the most dominant genera in the colon of growing pigs. Rhythmicity analysis revealed that 84 out of 285 Lactobacillus species exhibited rhythmic patterns. Lactobacillus johnsonii and Lactobacillus reuteri were the two most abundant lactobacilli with circadian oscillation, which increased during the day and decreased at night. The profile of the antibiotic resistome was modified over time within 24-h period. Elfamycin resistance genes were the most enriched class found in Lactobacillus. Furthermore, the seven strains of Lactobacillus isolated from the pig intestine mainly exhibited resistance to gentamicin, erythromycin, and lincomycin. The whole genome annotation of four Lactobacillus strains indicated the presence of multiple ARGs, including elfamycin resistance genes, however, the most abundant ARG was optrA in genome of four strains. These results indicate the presence of various Lactobacillus species harboring a large number of ARGs in the swine intestine. This implies that when using animal-derived lactobacilli, it is essential to assess antibiotic resistance to prevent further transmission between animals and the environment.
Collapse
Affiliation(s)
- Jianjian Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuke Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinxin Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Olsthoorn-Tieleman LN, Palstra RJTS, van Wezel GP, Bibb MJ, Pleij CWA. Elongation factor Tu3 (EF-Tu3) from the kirromycin producer Streptomyces ramocissimus Is resistant to three classes of EF-Tu-specific inhibitors. J Bacteriol 2007; 189:3581-90. [PMID: 17337575 PMCID: PMC1855904 DOI: 10.1128/jb.01810-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 02/21/2007] [Indexed: 11/20/2022] Open
Abstract
The antibiotic kirromycin inhibits prokaryotic protein synthesis by immobilizing elongation factor Tu (EF-Tu) on the elongating ribosome. Streptomyces ramocissimus, the producer of kirromycin, contains three tuf genes. While tuf1 and tuf2 encode kirromycin-sensitive EF-Tu species, the function of tuf3 is unknown. Here we demonstrate that EF-Tu3, in contrast to EF-Tu1 and EF-Tu2, is resistant to three classes of EF-Tu-targeted antibiotics: kirromycin, pulvomycin, and GE2270A. A mixture of EF-Tu1 and EF-Tu3 was sensitive to kirromycin and resistant to GE2270A, in agreement with the described modes of action of these antibiotics. Transcription of tuf3 was observed during exponential growth and ceased upon entry into stationary phase and therefore did not correlate with the appearance of kirromycin in stationary phase; thus, it is unlikely that EF-Tu3 functions as a resistant alternative for EF-Tu1. EF-Tu3 from Streptomyces coelicolor A3(2) was also resistant to kirromycin and GE2270A, suggesting that multiple antibiotic resistance is an intrinsic feature of EF-Tu3 species. The GE2270A-resistant character of EF-Tu3 demonstrated that this divergent elongation factor is capable of substituting for EF-Tu1 in vivo.
Collapse
|
3
|
Tiboni O, Cella R, Pasquale G, Sanangelantoni AM, Cammarano P. Immunological heterogeneity of archaebacterial protein synthesis elongation factors Tu (EF-Tu). FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1988.tb02983.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
4
|
Krásný L, Mesters JR, Tieleman LN, Kraal B, Fucík V, Hilgenfeld R, Jonák J. Structure and expression of elongation factor Tu from Bacillus stearothermophilus. J Mol Biol 1998; 283:371-81. [PMID: 9769211 DOI: 10.1006/jmbi.1998.2102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tuf gene coding for elongation factor Tu (EF-Tu) of Bacillus stearothermophilus was cloned and sequenced. This gene maps in the same context as the tufA gene of Escherichia coli str operon. Northern-blot analysis and primer extension experiments revealed that the transcription of the tuf gene is driven from two promoter regions. One of these is responsible for producing a 4.9-kb transcript containing all the genes of B. stearothermophilus str operon and the other, identified adjacent to the stop codon of the fus gene and designated tufp, for producing a 1.3-kb transcript of the tuf gene only. In contrast to the situation in E. coli, the ratio between the transcription products was found to be about 10:1 in favour of the tuf gene transcript. This high transcription activity from the tufp promoter might be accounted for by the presence of an extremely A+T-rich block consisting of 29 nucleotides which immediately precedes the consensus -35 region of the promoter. A very similar tuf gene transcription strategy and the same tufp promoter organization with the identical A/T block were found in Bacillus subtilis. The tuf gene specifies a protein of 395 amino acid residues with a molecular mass of 43,290 Da, including the N-terminal methionine. A computer-generated three-dimensional homology model shows that all the structural elements essential for binding guanine nucleotides and aminoacyl-tRNA are conserved. The presence of serine at position 376 and a low affinity for kirromycin determined by zone-interference gel electrophoresis (Kd approximately 8 microM) and by polyacrylamide gel electrophoresis under non-denaturing conditions are in agreement with the reported resistance of this EF-Tu to the antibiotic. The replacement of the highly conserved Leu211 by Met was identified as a possible cause of pulvomycin resistance.
Collapse
Affiliation(s)
- L Krásný
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo n.2, Praha 6, 166 37, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
6
|
Tiboni O, Sanangelantoni A, Di Pasquale G, Cammarano P. Immunochemical Cross-Reactivities of Protein Synthesis Elongation Factors (EF-Tu and EF-1α Proteins) Support the Phylogenetic Coherence of Archaebacteria. Syst Appl Microbiol 1989. [DOI: 10.1016/s0723-2020(89)80068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Londei P, Altamura S, Huber R, Stetter KO, Cammarano P. Ribosomes of the extremely thermophilic eubacterium Thermotoga maritima are uniquely insensitive to the miscoding-inducing action of aminoglycoside antibiotics. J Bacteriol 1988; 170:4353-60. [PMID: 3410830 PMCID: PMC211449 DOI: 10.1128/jb.170.9.4353-4360.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Poly(U)- and poly(UG)-programmed cell-free systems were developed from the extreme thermophilic, anaerobic eubacterium Thermotoga maritima, and their susceptibility to aminoglycoside and other antibiotics was assayed at a temperature (75 degrees C) close to the physiological optimum (80 degrees C) for cell growth and in vitro polypeptide synthesis, using a Bacillus stearothermophilus system as the reference. The synthetic capacity of the Thermotoga assay mixture was abolished by the eubacterium-targeted drugs chloramphenicol, thiostrepton, and kirromycin. However, streptomycin, the disubstituted 2-deoxystreptamines (kanamycin, gentamicin, neomycin, and paromomycin), and the monosubstituted 2-deoxystreptamine (hygromycin) all failed to promote translational misreading of poly(U) on Thermotoga ribosomes; they also failed to block polyphenylalanine synthesis at a low (less than 10(-4) M) concentration and did not inhibit Thermotoga cell growth at a high (10 micrograms/ml) concentration even though Thermotoga ribosomes possess the 16S rRNA sequences required for aminoglycoside action. In contrast to the other eubacteria, Thermotoga elongation factor G was also refractory to the steroid inhibitor of peptidyl-tRNA translocation fusidic acid.
Collapse
Affiliation(s)
- P Londei
- Dipartimento di Biopatologia Umana, Universitá di Roma I, Policlinico Umberto I, Italy
| | | | | | | | | |
Collapse
|
9
|
Londei P, Sanz JL, Altamura S, Hummel H, Cammarano P, Amils R, Böck A, Wolf H. Unique antibiotic sensitivity of archaebacterial polypeptide elongation factors. J Bacteriol 1986; 167:265-71. [PMID: 3087957 PMCID: PMC212870 DOI: 10.1128/jb.167.1.265-271.1986] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The antibiotic sensitivity of the archaebacterial factors catalyzing the binding of aminoacyl-tRNA to ribosomes (elongation factor Tu [EF-Tu] for eubacteria and elongation factor 1 [EF1] for eucaryotes) and the translocation of peptidyl-tRNA (elongation factor G [EF-G] for eubacteria and elongation factor 2 [EF2] for eucaryotes) was investigated by using two EF-Tu and EF1 [EF-Tu(EF1)]-targeted drugs, kirromycin and pulvomycin, and the EF-G and EF2 [EF-G(EF2)]-targeted drug fusidic acid. The interaction of the inhibitors with the target factors was monitored by using polyphenylalanine-synthesizing cell-free systems. A survey of methanogenic, halophilic, and sulfur-dependent archaebacteria showed that elongation factors of organisms belonging to the methanogenic-halophilic and sulfur-dependent branches of the "third kingdom" exhibit different antibiotic sensitivity spectra. Namely, the methanobacterial-halobacterial EF-Tu(EF1)-equivalent protein was found to be sensitive to pulvomycin but insensitive to kirromycin, whereas the methanobacterial-halobacterial EF-G(EF2)-equivalent protein was found to be sensitive to fusidic acid. By contrast, sulfur-dependent thermophiles were unaffected by all three antibiotics, with two exceptions; Thermococcus celer, whose EF-Tu(EF1)-equivalent factor was blocked by pulvomycin, and Thermoproteus tenax, whose EF-G(EF2)-equivalent factor was sensitive to fusidic acid. On the whole, the results revealed a remarkable intralineage heterogeneity of elongation factors not encountered within each of the two reference (eubacterial and eucaryotic) kingdoms.
Collapse
|