García P, García JL, García E, Sánchez-Puelles JM, López R. Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages.
Gene X 1990;
86:81-8. [PMID:
2311937 DOI:
10.1016/0378-1119(90)90116-9]
[Citation(s) in RCA: 148] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nucleotide sequences of genes cpl7 and cpl9 of the Streptococcus pneumoniae bacteriophages Cp-7 and Cp-9, encoding the muramidases CPL-7 and CPL-9, respectively, have been determined. The N-terminal domains of CPL-7 and CPL-9 were virtually identical to that previously reported for the CPL-1 muramidase. The C-terminal domain of the CPL-7 muramidase, however, was different from those of the host amidase and the phage Cp-1 and Cp-9 lysozymes. Whereas all enzymes studied are characterized by repeated sequences at their C termini, the repeat-unit lengths are 20 amino acids (aa) in CPL-1, CPL-9 and in the host amidase, but 48 aa in CPL-7. Six repeated sequences represent the C-terminal domains of CPL-1, CPL-9 and the host amidase, and 2.8 perfect tandem repetitions that of CPL-7. The peculiar characteristics of the structure of CPL-7 muramidase correlate with its biochemical and biological properties. Whereas CPL-1, CPL-9 and the pneumococcal amidase strictly depend on the presence of choline-containing cell walls for activity, CPL-7 is able to degrade cell walls containing either choline or ethanolamine. These results support the previously postulated role for the C-terminal domain of these lytic enzymes in substrate recognition and provide further experimental evidence supporting the notion that the proteins have evolved by an exchange of modular units.
Collapse