1
|
Karekar S, Stefanini R, Ahring B. Homo-Acetogens: Their Metabolism and Competitive Relationship with Hydrogenotrophic Methanogens. Microorganisms 2022; 10:microorganisms10020397. [PMID: 35208852 PMCID: PMC8875654 DOI: 10.3390/microorganisms10020397] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Homo-acetogens are microbes that have the ability to grow on gaseous substrates such as H2/CO2/CO and produce acetic acid as the main product of their metabolism through a metabolic process called reductive acetogenesis. These acetogens are dispersed in nature and are found to grow in various biotopes on land, water and sediments. They are also commonly found in the gastro-intestinal track of herbivores that rely on a symbiotic relationship with microbes in order to breakdown lignocellulosic biomass to provide the animal with nutrients and energy. For this motive, the fermentation scheme that occurs in the rumen has been described equivalent to a consolidated bioprocessing fermentation for the production of bioproducts derived from livestock. This paper reviews current knowledge of homo-acetogenesis and its potential to improve efficiency in the rumen for production of bioproducts by replacing methanogens, the principal H2-scavengers in the rumen, thus serving as a form of carbon sink by deviating the formation of methane into bioproducts. In this review, we discuss the main strategies employed by the livestock industry to achieve methanogenesis inhibition, and also explore homo-acetogenic microorganisms and evaluate the members for potential traits and characteristics that may favor competitive advantage over methanogenesis, making them prospective candidates for competing with methanogens in ruminant animals.
Collapse
Affiliation(s)
- Supriya Karekar
- Bioproducts Science and Engineering Laboratory, Washington State University Tri-Cities, 2720 Crimson Way, Richland, WA 99354, USA; (S.K.); (R.S.)
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99163, USA
| | - Renan Stefanini
- Bioproducts Science and Engineering Laboratory, Washington State University Tri-Cities, 2720 Crimson Way, Richland, WA 99354, USA; (S.K.); (R.S.)
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99163, USA
| | - Birgitte Ahring
- Bioproducts Science and Engineering Laboratory, Washington State University Tri-Cities, 2720 Crimson Way, Richland, WA 99354, USA; (S.K.); (R.S.)
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99163, USA
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
- Correspondence:
| |
Collapse
|
2
|
Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation. ISME JOURNAL 2018; 13:632-650. [PMID: 30323265 PMCID: PMC6461797 DOI: 10.1038/s41396-018-0296-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/24/2022]
Abstract
Despite the significance of biogenic methane generation in coal beds, there has never been a systematic long-term evaluation of the ecological response to biostimulation for enhanced methanogenesis in situ. Biostimulation tests in a gas-free coal seam were analysed over 1.5 years encompassing methane production, cell abundance, planktonic and surface associated community composition and chemical parameters of the coal formation water. Evidence is presented that sulfate reducing bacteria are energy limited whilst methanogenic archaea are nutrient limited. Methane production was highest in a nutrient amended well after an oxic preincubation phase to enhance coal biofragmentation (calcium peroxide amendment). Compound-specific isotope analyses indicated the predominance of acetoclastic methanogenesis. Acetoclastic methanogenic archaea of the Methanosaeta and Methanosarcina genera increased with methane concentration. Acetate was the main precursor for methanogenesis, however more acetate was consumed than methane produced in an acetate amended well. DNA stable isotope probing showed incorporation of 13C-labelled acetate into methanogenic archaea, Geobacter species and sulfate reducing bacteria. Community characterisation of coal surfaces confirmed that methanogenic archaea make up a substantial proportion of coal associated biofilm communities. Ultimately, methane production from a gas-free subbituminous coal seam was stimulated despite high concentrations of sulfate and sulfate-reducing bacteria in the coal formation water. These findings provide a new conceptual framework for understanding the coal reservoir biosphere.
Collapse
|
3
|
Liu P, Conrad R. Syntrophobacteraceae-affiliated species are major propionate-degrading sulfate reducers in paddy soil. Environ Microbiol 2017; 19:1669-1686. [DOI: 10.1111/1462-2920.13698] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/09/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Pengfei Liu
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Ralf Conrad
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| |
Collapse
|
4
|
|
5
|
Garcia JL, Patel BK, Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 2007; 6:205-26. [PMID: 16887666 DOI: 10.1006/anae.2000.0345] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J L Garcia
- Laboratoire de Microbiologie IRD, Université de Provence, ESIL case 925, 163 Avenue de Luminy, 13288, Marseille cedex 9, France
| | | | | |
Collapse
|
6
|
Bagi Z, Acs N, Bálint B, Horváth L, Dobó K, Perei KR, Rákhely G, Kovács KL. Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 2007; 76:473-82. [PMID: 17503035 DOI: 10.1007/s00253-007-1009-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 11/28/2022]
Abstract
The importance of syntrophic relationships among microorganisms participating in biogas formation has been emphasized, and the regulatory role of in situ hydrogen production has been recognized. It was assumed that the availability of hydrogen may be a limiting factor for hydrogenotrophic methanogens. This hypothesis was tested under laboratory and field conditions by adding a mesophilic (Enterobacter cloacae) or thermophilic hydrogen-producing (Caldicellulosyruptor saccharolyticus) strain to natural biogas-producing consortia. The substrates were waste water sludge, dried plant biomass from Jerusalem artichoke, and pig manure. In all cases, a significant intensification of biogas production was observed. The composition of the generated biogas did not noticeably change. In addition to being a good hydrogen producer, C. saccharolyticus has cellulolytic activity; hence, it is particularly suitable when cellulose-containing biomass is fermented. The process was tested in a 5-m(3) thermophilic biogas digester using pig manure slurry as a substrate. Biogas formation increased at least 160-170% upon addition of the hydrogen-producing bacteria as compared to the biogas production of the spontaneously formed microbial consortium. Using the hydrogenase-minus control strain provided evidence that the observed enhancement was due to interspecies hydrogen transfer. The on-going presence of C. saccharolyticus was demonstrated after several months of semicontinuous operation.
Collapse
Affiliation(s)
- Zoltán Bagi
- Department of Biotechnology, University of Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Hoehler TM, Alperin MJ, Albert DB, Martens CS. Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00879.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Kumaraswamy S, Ramakrishnan B, Sethunathan N. Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species. JOURNAL OF ENVIRONMENTAL QUALITY 2001; 30:2195-2201. [PMID: 11790032 DOI: 10.2134/jeq2001.2195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of addition of inorganic redox substances (species of NO3-, Mn4+, Fe3+, and SO4(2-)) on methane production and oxidation in anoxic rice (Oryza sativa L.) soil samples were examined. Sulfate was the most inhibitory for methane production followed by Fe3+, NO3-, and Mn4+, in that order. Addition of rice straw at a rate of 1% (w/w) as a carbon source to increase the electron donor to the electron acceptor ratio did not completely alleviate the inhibitory effects of redox species on methane production. Interestingly, laboratory incubation studies showed that addition of MnO2 and K2SO4 enhanced aerobic methane oxidation in soil samples held at 60% water holding capacity. The suspensions of pretreated soil samples with different redox species, when tested for their ability to oxidize methane in soil solution equivalent medium supplemented with respective redox species under aerobic and anaerobic conditions showed differential effects of redox species. Nitrate and Fe3+ stimulated methane oxidation under anaerobic conditions and retarded it under aerobic conditions. Manganese(IV) ion retarded methane oxidation under anaerobic conditions, but enhanced it under aerobic conditions. However, SO4(2-) stimulated methane oxidation in soil solution equivalent medium under both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- S Kumaraswamy
- Division of Soil Science and Microbiology, Central Rice Research Institute, Cuttack, India
| | | | | |
Collapse
|
10
|
Scholten JC, Conrad R, Stams AJ. Effect of 2-bromo-ethane sulfonate, molybdate and chloroform on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment. FEMS Microbiol Ecol 2000; 32:35-42. [PMID: 10779617 DOI: 10.1111/j.1574-6941.2000.tb00696.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The relative importance of methanogenesis and sulfate reduction in freshwater sediment supplemented with acetate was investigated. Addition of acetate stimulated both methane formation and sulfate reduction, indicating that an active aceticlastic population of methanogens and sulfate reducers was present in the sediment. Sulfate reducers were most important in the consumption of acetate. However, when sulfate reducers were inhibited, acetate was metabolised at a similar rate by methanogens. Acetate, propionate and valerate accumulated only when both processes were inhibited by the combined addition of 2-bromo-ethane sulfonate and molybdate. The relative amounts of acetate, propionate and valerate were 93, 6 and 1 mol%, respectively. These results demonstrate the role of acetate as a key intermediate in the terminal step of organic matter mineralisation in the sediment. Addition of chloroform inhibited both methanogenesis and sulfate reduction. We studied the inhibitory effect of CHCl(3) on homoacetogenic bacteria, sulfate-reducing bacteria and methanogens. The results showed that inhibition by CHCl(3) correlates with microorganisms, which operate the acetyl-CoA cleavage pathway. We propose that chloroform can be used to elucidate the role of different metabolic types of sulfate reducers to sulfate reduction in natural environments.
Collapse
Affiliation(s)
- JC Scholten
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str., D-35043, Marburg, Germany
| | | | | |
Collapse
|
11
|
Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00575.x] [Citation(s) in RCA: 552] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Krylova NI, Conrad R. Thermodynamics of propionate degradation in methanogenic paddy soil. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00512.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
|
14
|
Thiele JH, Wu WM, Jain MK, Zeikus JG. Ecoengineering high rate anaerobic digestion systems: Analysis of improved syntrophic biomethanation catalysts. Biotechnol Bioeng 1990; 35:990-9. [DOI: 10.1002/bit.260351006] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
|
16
|
Conrad R, Bak F, Seitz H, Thebrath B, Mayer H, Schütz H. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03382.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Conrad R, Mayer HP, Wüst M. Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial associations in anoxic paddy soil. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03701.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
18
|
Conrad R, Babbel M. Effect of dilution on methanogenesis, hydrogen turnover and interspecies hydrogen transfer in anoxic paddy soil. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03654.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Conrad R, Schütz H, Babbel M. Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02378.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
20
|
Conrad R, Goodwin S, Zeikus J. Hydrogen metabolism in a mildly acidic lake sediment (Knaack Lake). FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02362.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|