1
|
Li R, Zhuang W, Feng X, Zhu X, Hu X. Morphology and molecular phylogeny of three Parasonderia species including a new species (Ciliophora, Plagiopylea). Eur J Protistol 2024; 94:126087. [PMID: 38761673 DOI: 10.1016/j.ejop.2024.126087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Ciliates of the class Plagiopylea play a vital role in various anaerobic environments as consumers of prokaryotes. Yet, the diversity and phylogeny of this group of ciliates, especially marine representatives, remain poorly known. In this study, three Parasonderia species, viz., Parasonderia elongata spec. nov., and the already known P. cyclostoma and P. vestita, discovered in anaerobic sediments from various intertidal zones in China, were investigated based on their living morphology, infraciliature, and small subunit ribosomal rRNA gene sequences. Parasonderia elongata can be recognized by its larger body size, elongated body shape, oval oral opening, number of oral kineties, and significantly shortened leftmost postbuccal polykineties on the cell surface. Improved diagnosis and redescription of P. cyclostoma is provided for the first time, including data on infraciliature and molecular sequence. Phylogenetic analyses revealed that the three species cluster together and with the sequence of a Chinese population of P. vestita already present in the GenBank database, forming a robust clade.
Collapse
Affiliation(s)
- Ran Li
- College of Fisheries, & Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wenbao Zhuang
- College of Fisheries, & Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaochen Feng
- College of Fisheries, & Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaoxuan Zhu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaozhong Hu
- College of Fisheries, & Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Yuan G, Chen Y, Wang Y, Zhang H, Wang H, Jiang M, Zhang X, Gong Y, Yuan S. Responses of Protozoan Communities to Multiple Environmental Stresses (Warming, Eutrophication, and Pesticide Pollution). Animals (Basel) 2024; 14:1293. [PMID: 38731297 PMCID: PMC11083714 DOI: 10.3390/ani14091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To explore the impacts of multiple environmental stressors on animal communities in aquatic ecosystems, we selected protozoa-a highly sensitive group of organisms-to assess the effect of environmental change. To conduct this simulation we conducted a three-factor, outdoor, mesocosm experiment from March to November 2021. Changes in the community structure and functional group composition of protozoan communities under the separate and combined effects of these three environmental stressors were investigated by warming and the addition of nitrogen, phosphorus, and pesticides. The results were as follows: (1) Both eutrophication and pesticides had a considerable promotional effect on the abundance and biomass of protozoa; the effect of warming was not considerable. When warming was combined with eutrophication and pesticides, there was a synergistic effect and antagonistic effect, respectively. (2) Eutrophication promoted α diversity of protozoa and affected their species richness and dominant species composition; the combination of warming and pesticides remarkably reduced the α diversity of protozoa. (3) Warming, eutrophication, and pesticides were important factors affecting the functional groups of protozoa. Interaction among different environmental factors could complicate changes in the aquatic ecological environment and its protozoan communities. Indeed, in the context of climate change, it might be more difficult to predict future trends in the protozoan community. Therefore, our results provide a scientific basis for the protection and restoration of shallow lake ecosystems; they also offer valuable insights in predicting changes in shallow lakes.
Collapse
Affiliation(s)
- Guoqing Yuan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China;
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Yue Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Yulu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Hanwen Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Hongxia Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Mixue Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Xiaonan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Yingchun Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.C.); (Y.W.); (H.Z.); (H.W.); (M.J.); (X.Z.)
| | - Saibo Yuan
- Ecological Environment Monitoring and Scientific Research Center, Ecology and Environment Supervision and Administration Bureau of Yangtze Valley, Ministry of Ecology and Environment of the People’s Republic of China, Wuhan 430014, China
| |
Collapse
|
3
|
Rotterová J, Edgcomb VP, Čepička I, Beinart R. Anaerobic Ciliates as a Model Group for Studying Symbioses in Oxygen-depleted Environments. J Eukaryot Microbiol 2022; 69:e12912. [PMID: 35325496 DOI: 10.1111/jeu.12912] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaerobiosis has independently evolved in multiple lineages of ciliates, allowing them to colonize a variety of anoxic and oxygen-depleted habitats. Anaerobic ciliates commonly form symbiotic relationships with various prokaryotes, including methanogenic archaea and members of several bacterial groups. The hypothesized functions of these ecto- and endosymbionts include the symbiont utilizing the ciliate's fermentative end-products to increase host's anaerobic metabolic efficiency, or the symbiont directly providing the host with energy by denitrification or photosynthesis. The host, in turn, may protect the symbiont from competition, the environment, and predation. Despite rapid advances in sampling, molecular, and microscopy methods, as well as the associated broadening of the known diversity of anaerobic ciliates, many aspects of these ciliate symbioses, including host-specificity and co-evolution, remain largely unexplored. Nevertheless, with the number of comparative genomic and transcriptomic analyses targeting anaerobic ciliates and their symbionts on the rise, insights into the nature of these symbioses and the evolution of the ciliate transition to obligate anaerobiosis continue to deepen. This review summarizes the current body of knowledge regarding the complex nature of symbioses in anaerobic ciliates, the diversity of these symbionts, their role in the evolution of ciliate anaerobiosis and their significance in ecosystem-level processes.
Collapse
Affiliation(s)
- Johana Rotterová
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Roxanne Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
4
|
Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MMM, Schubert CJ. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME JOURNAL 2015; 9:1991-2002. [PMID: 25679533 DOI: 10.1038/ismej.2015.12] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/14/2014] [Accepted: 12/19/2014] [Indexed: 11/09/2022]
Abstract
Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes.
Collapse
Affiliation(s)
- Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mathias Kirf
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
| | - Lu Lu
- 1] Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany [2] State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, China [3] University of Chinese Academy of Sciences, Beijing, China
| | - Andreas Krupke
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Phyllis Lam
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carsten J Schubert
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
| |
Collapse
|
5
|
Tonolla M, Peduzzi S, Hahn D, Peduzzi R. Spatio-temporal distribution of phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland). FEMS Microbiol Ecol 2012; 43:89-98. [PMID: 19719699 DOI: 10.1111/j.1574-6941.2003.tb01048.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Abstract In situ hybridization was used to study the spatio-temporal distribution of phototrophic sulfur bacteria in the permanent chemocline of meromictic Lake Cadagno, Switzerland. At all four sampling times during the year the numerically most important phototrophic sulfur bacteria in the chemocline were small-celled purple sulfur bacteria of two yet uncultured populations designated D and F. Other small-celled purple sulfur bacteria (Amoebobacter purpureus and Lamprocystis roseopersicina) were found in numbers about one order of magnitude lower. These numbers were similar to those of large-celled purple sulfur bacteria (Chromatium okenii) and green sulfur bacteria that almost entirely consisted of Chlorobium phaeobacteroides. In March and June when low light intensities reached the chemocline, cell densities of all populations, with the exception of L. roseopersicina, were about one order of magnitude lower than in August and October when light intensities were much higher. Most populations were evenly distributed throughout the whole chemocline during March and June, while in August and October a microstratification of populations was detected suggesting specific eco-physiological adaptations of different populations of phototrophic sulfur bacteria to the steep physico-chemical gradients in the chemocline of Lake Cadagno.
Collapse
Affiliation(s)
- Mauro Tonolla
- Cantonal Institute of Microbiology, Microbial Ecology (University of Geneva), Via Giuseppe Buffi 6, CH-6904 Lugano, Switzerland
| | | | | | | |
Collapse
|
6
|
Finlay BJ, Clarke KJ, Vicente E, Miracle MR. Anaerobic ciliates from a sulphide-rich solution lake in Spain. Eur J Protistol 2011. [PMID: 23194707 DOI: 10.1016/s0932-4739(11)80337-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have examined and quantified the anaerobic ciliates living in the hypolimnion of a 14 m deep sulphide-rich (up to 0.73 mM) solution lake in Spain. At least seven ciliate species were found, numbering up to 50 ml-1 in total and reaching maximum abundance close to the sediment. Caenomorpha medusula, Lacrymaria elegans, L. sapropelica and Lagynus sp. were the most abundant species. Their vertical distributions were not related to the sulphide profile. Most ciliates were dependent on the sedimentation of cryptomonads, photosynthetic bacteria (especially Chromatium and Oscillatoria) and other bacteria from their sites of production in closely-juxtaposed mid-water plates. All anaerobic ciliates contained at least one type of symbiotic bacterium which showed methanogen autofluorescence. C. medusula, Lagynus sp. and Lacrymaria sapropelica also contained a large, non-fluorescing rod-shaped bacterium. In C. medusula, the methanogens and the non-fluorescing rods were both attached to the hydrogenosomes. In this ciliate alone, a third bacterial type was attached to the external ventral surface of the ciliate. Digestion of sulphide-oxidising bacteria by ciliates which harbour methanogenic bacteria provides a short bridge between the anaerobic sulphur and carbon cycles. Theoretical considerations of the rate of ciliate consumption of microbial carbon in the anoxic hypolimnion indicate that it is significant and that it may amount to 4 × 10(-5) g cm(-2)d(-1).
Collapse
Affiliation(s)
- B J Finlay
- Institute of Freshwater Ecology, The Ferry House, Ambleside, Cumbria, U.K
| | | | | | | |
Collapse
|
7
|
Cyclidium porcatum n. sp.: a Free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur J Protistol 2011. [PMID: 23195550 DOI: 10.1016/s0932-4739(11)80281-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new ciliate species (Cyclidium porcatum) is the first freshwater anaerobic scuticociliate to be cultured and described. It contains a unique tripartite structure consisting of hydrogenosomes (confirmed by cytochemical staining for hydrogenase), interspersed with methanogens (confirmed by auto fluorescence and in situ hybridisation with an archaeobacterial 16S rRNA-specific probe) and unidentified eubacteria (confirmed with a eubacterial 16S rRNA-specific probe). This complex structure is stable and persistent, indicating that it is an anaerobic symbiotic consortium incorporating three functional partners.
Collapse
|
8
|
Schubert CJ, Vazquez F, Lösekann-Behrens T, Knittel K, Tonolla M, Boetius A. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol 2011; 76:26-38. [PMID: 21244447 DOI: 10.1111/j.1574-6941.2010.01036.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Anaerobic oxidation of methane (AOM) has been investigated in sediments of a high alpine sulfate-rich lake. Hot spots of AOM could be identified based on geochemical and isotopic evidence. Very high fractionation of methane (α=1.031) during oxidation was observed in the uppermost sediment layers, where methane is oxidized most likely with sulfate-containing bottom waters. However, we could not exclude that other electron acceptors such as iron, or manganese might also be involved. Light carbon isotope values (δ¹³C = -10‰ vs. Vienna Pee Dee Belemnite [VPDB]) of sedimentary carbonates at 16-20 cm sediment depth are indicative of a zone where methane was oxidized and the resulting bicarbonate ions were used for carbonate precipitation. 16S rRNA gene analysis revealed the presence of sequences belonging to the marine benthic groups B, C, and D and to the recently described clade of AOM-associated archaea (AAA). Catalyzed reporter deposition-FISH analysis revealed a high abundance of Deltaproteobacteria, especially of free-living sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus branch of Deltaproteobacteria in the AOM zone. Here, loose aggregations of AAA cells were found, suggesting that AAA might be responsible for oxidation of methane in Lake Cadagno sediments.
Collapse
Affiliation(s)
- Carsten J Schubert
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland.
| | | | | | | | | | | |
Collapse
|
9
|
Gregersen LH, Habicht KS, Peduzzi S, Tonolla M, Canfield DE, Miller M, Cox RP, Frigaard NU. Dominance of a clonal green sulfur bacterial population in a stratified lake. FEMS Microbiol Ecol 2009; 70:30-41. [PMID: 19656193 DOI: 10.1111/j.1574-6941.2009.00737.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
For many years, the chemocline of the meromictic Lake Cadagno, Switzerland, was dominated by purple sulfur bacteria. However, following a major community shift in recent years, green sulfur bacteria (GSB) have come to dominate. We investigated this community by performing microbial diversity surveys using FISH cell counting and population multilocus sequence typing [clone library sequence analysis of the small subunit (SSU) rRNA locus and two loci involved in photosynthesis in GSB: fmoA and csmCA]. All bacterial populations clearly stratified according to water column chemistry. The GSB population peaked in the chemocline (c. 8 x 10(6) GSB cells mL(-1)) and constituted about 50% of all cells in the anoxic zones of the water column. At least 99.5% of these GSB cells had SSU rRNA, fmoA, and csmCA sequences essentially identical to that of the previously isolated and genome-sequenced GSB Chlorobium clathratiforme strain BU-1 (DSM 5477). This ribotype was not detected in Lake Cadagno before the bloom of GSB. These observations suggest that the C. clathratiforme population that has stabilized in Lake Cadagno is clonal. We speculate that such a clonal bloom could be caused by environmental disturbance, mutational adaptation, or invasion.
Collapse
Affiliation(s)
- Lea H Gregersen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Halm H, Musat N, Lam P, Langlois R, Musat F, Peduzzi S, Lavik G, Schubert CJ, Sinha B, Singha B, LaRoche J, Kuypers MMM. Co-occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland). Environ Microbiol 2009; 11:1945-58. [PMID: 19397681 DOI: 10.1111/j.1462-2920.2009.01917.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nitrogen cycling of Lake Cadagno was investigated by using a combination of biogeochemical and molecular ecological techniques. In the upper oxic freshwater zone inorganic nitrogen concentrations were low (up to approximately 3.4 microM nitrate at the base of the oxic zone), while in the lower anoxic zone there were high concentrations of ammonium (up to 40 microM). Between these zones, a narrow zone was characterized by no measurable inorganic nitrogen, but high microbial biomass (up to 4 x 10(7) cells ml(-1)). Incubation experiments with (15)N-nitrite revealed nitrogen loss occurring in the chemocline through denitrification (approximately 3 nM N h(-1)). At the same depth, incubations experiments with (15)N(2)- and (13)C(DIC)-labelled bicarbonate, indicated substantial N(2) fixation (31.7-42.1 pM h(-1)) and inorganic carbon assimilation (40-85 nM h(-1)). Catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and sequencing of 16S rRNA genes showed that the microbial community at the chemocline was dominated by the phototrophic green sulfur bacterium Chlorobium clathratiforme. Phylogenetic analyses of the nifH genes expressed as mRNA revealed a high diversity of N(2) fixers, with the highest expression levels right at the chemocline. The majority of N(2) fixers were related to Chlorobium tepidum/C. phaeobacteroides. By using Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS), we could for the first time directly link Chlorobium to N(2) fixation in the environment. Moreover, our results show that N(2) fixation could partly compensate for the N loss and that both processes occur at the same locale at the same time as suggested for the ancient Ocean.
Collapse
Affiliation(s)
- Hannah Halm
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Baloch MI, Akunna JC, Kierans M, Collier PJ. Structural analysis of anaerobic granules in a phase separated reactor by electron microscopy. BIORESOURCE TECHNOLOGY 2008; 99:922-9. [PMID: 17531476 DOI: 10.1016/j.biortech.2007.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 03/11/2007] [Accepted: 03/11/2007] [Indexed: 05/15/2023]
Abstract
This paper discusses the microbial community structure of anaerobic granules and the effect of phase separation in anaerobic reactor on the characteristics of granules. Electron micrographs revealed that the core of anaerobic granular sludge consists predominantly of Methanosaeta-like cells, a key microorganism in granulation process. Granules in the methanogenic dominant zone of the reactor were stable and densely packed with smooth regular surface. On the other hand, granules subjected to acidogenic activities were less stable structures with broken parts and an irregular fissured surface. Anaerobic granules consisted of a vast diversity of species from the outer surface to the core of the granule and possessed a multi-layered structure. Viruses in the granules suggests the presence of bacteriophage in the granular biomass. These could be responsible for destroying cells and weakening the internal structure of granules, and thus possibly causing the breaking of granules. The observation of protozoa-like microorganism on the exterior zone of granular structure is believed to play an important role as bacterial predator and control the growth of bacterial cells. The images observed in this study shows that anaerobic granule harbour diverse number of microbial species, and act differently in acidogenic and methanogenic microbial zones.
Collapse
Affiliation(s)
- M I Baloch
- Wessex Water, Bristol Wastewater Treatment Works, Kings Weston Lane, Avonmouth, Bristol BS11 0YS, UK.
| | | | | | | |
Collapse
|
12
|
Schwarz JIK, Lueders T, Eckert W, Conrad R. Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA. Environ Microbiol 2007; 9:223-37. [PMID: 17227427 DOI: 10.1111/j.1462-2920.2006.01133.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetate is an important intermediate in the decomposition of organic matter in anoxic freshwater sediments. Here, we identified distinct microorganisms active in its oxidation and transformation to methane in the anoxic methanogenic layers of Lake Kinneret (Israel) profundal sediment by rRNA-based stable isotope probing (RNA-SIP). After 18 days of incubation with amended [U-(13)C]acetate we found that archaeal 16S rRNA was (13)C-labelled to a far greater extent than bacterial rRNA. We identified acetoclastic methanogens related to Methanosaeta concilii as being most active in the degradation and assimilation of acetate. Oxidation of the acetate-methyl group played only a minor role, but nevertheless 'heavy'(13)C-labelled bacterial rRNA templates were identified. 'Heavy' bacteria were mainly affiliated with the Betaproteobacteria (mostly Rhodocyclales and Nitrosomonadales), the Nitrospira phylum (related to 'Magnetobacterium bavaricum' and Thermodesulfovibrio yellowstonii), and also with the candidate phylum 'Endomicrobia'. However, the mode of energy gain that allowed for the assimilation of (13)C-acetate by these bacterial groups remains unknown. It may have involved syntrophic oxidation of acetate, reduction of chlorinated compounds, reduction of humic substances, fermentation of organic compounds, or even predation of (13)C-labelled Methanosaeta spp. In summary, this SIP experiment shows that acetate carbon was predominantly consumed by acetoclastic methanogens in profundal Lake Kinneret sediment, while it was also utilized by a small and heterogeneous community of bacteria.
Collapse
|
13
|
Tonolla M, Bottinelli M, Demarta A, Peduzzi R, Hahn D. Molecular identification of an uncultured bacterium ("morphotype R") in meromictic Lake Cadagno, Switzerland. FEMS Microbiol Ecol 2005; 53:235-44. [PMID: 16329943 DOI: 10.1016/j.femsec.2004.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 12/20/2004] [Accepted: 12/22/2004] [Indexed: 11/28/2022] Open
Abstract
Comparative sequence analysis of almost complete 16S rRNA genes of members of the Desulfobacteriaceae retrieved from two gene clone libraries of uncultured bacteria of the chemocline of Lake Cadagno, Switzerland, resulted in the molecular identification of nine sequences, with a tight cluster of five sequences that represented at least three different populations of bacteria with homology values of 95% and 93% to their closest cultured relatives Desulfomonile tiedjei and Desulfomonile limimaris, respectively. In situ hybridization with probes DsmA455 targeting two subpopulations and DsmB455 targeting one subpopulation, detected bacteria with a peculiar morphology previously described as "morphotype R". The individual probes detected about the same number of cells in all samples and together added up to represent all cells of "morphotype R" suggesting that the basic ecophysiological requirements of the subpopulations might be similar. In the monimolimnion, "morphotype R" cells accounted for up to 29% of all Bacteria and entirely represented the Desulfobacteriaceae, the most prominent sulfate-reducing bacteria. In the sediment, "morphotype R" was similarly prominent in the upper cm only where it represented all Desulfobacteriaceae and up to 50% of all Bacteria. Numbers and importance within the Desulfobacteriaceae and Bacteria declined significantly with depth in sediments suggesting potential effects of changing environmental conditions on the fate of "morphotype R".
Collapse
Affiliation(s)
- Mauro Tonolla
- Cantonal Institute of Microbiology, Bellinzona, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Schwarz MVJ, Frenzel P. Methanogenic symbionts of anaerobic ciliates and their contribution to methanogenesis in an anoxic rice field soil. FEMS Microbiol Ecol 2005; 52:93-9. [PMID: 16329896 DOI: 10.1016/j.femsec.2004.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 10/24/2004] [Accepted: 10/25/2004] [Indexed: 11/29/2022] Open
Abstract
Methanogenesis in rice field soils starts soon after flooding while potentially competing processes like reduction of sulphate and iron take place. Early methanogenesis is mainly driven by hydrogen, while later in the season acetate tends to become more important. Anaerobic ciliates are abundant during this period, and their endosymbionts use hydrogen produced by the ciliates to reduce carbon dioxide to methane. These endosymbiotic methanogens are protected from the competition for substrates with other bacteria that may control methanogenesis outside the protozoan cells. Thus, we focussed on early methanogenesis and on the potential contribution from ciliates and their endosymbionts. Only ciliates of the genus Metopus were found to harbour methanogens, as identified by the F(420)-fluorescence of the endosymbionts. We followed the population dynamics of the ciliates with time, and calculated the ratio of symbiotic methane production to overall methanogenesis. Symbiotic methane production was calculated from the species-specific numbers of methanogenic endosymbionts times the cell-specific methane production of the symbionts. According to this calculation, the symbionts' contribution to overall methane production was only 6.4% at the beginning and decreased with time. In a second experiment, colchicine and cycloheximide were used to inhibit all eukaryotes, comparing the remaining methane production rate to a control without inhibitors. In the inhibition experiment, the contribution from symbionts decreased from 40% to 6% during the first days after flooding, and dropped to near zero within 2 weeks. However, nearly all methane produced from H(2)/CO(2) could be attributed to the ciliates' symbionts between days 5 and 10 after flooding. Both experiments showed that the contribution of methanogenic symbionts to overall methane production is a transient phenomenon, restricted to the first 2 weeks.
Collapse
Affiliation(s)
- M V Julian Schwarz
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., D-35043 Marburg, Germany
| | | |
Collapse
|
15
|
Schweikert M, Meyer B. Characterization of intracellular bacteria in the freshwater dinoflagellate Peridinium cinctum. PROTOPLASMA 2001; 217:177-184. [PMID: 11732309 DOI: 10.1007/bf01283398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Intracellular bacteria belonging to two phylogenetically different groups of eubacteria were found in cultures of the freshwater dinoflagellate Peridinium cinctum (O.F. Müller) Ehrenberg isolated from the eutrophic lake Plusssee (Federal Republic of Germany). The phylogenetic relationships of the bacteria were studied with fluorochrome-conjugated oligonucleotides specific for archaebacteria, eubacteria, alpha-, beta- and gamma-proteobacteria, complementary to 16S rRNA and 23S rRNA sequences, respectively. The bacteria are members of the eubacterial alpha- and gamma-subgroups of proteobacteria.
Collapse
Affiliation(s)
- M Schweikert
- Department of Zoology, Biological Institute, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Federal Republic of Germany
| | | |
Collapse
|
16
|
Tonolla M, Demarta A, Peduzzi S, Hahn D, Peduzzi R. In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 2000; 66:820-4. [PMID: 10653757 PMCID: PMC91902 DOI: 10.1128/aem.66.2.820-824.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) retrieved two clusters of sequences resembling sulfate-reducing bacteria within the family Desulfovibrionaceae. In situ hybridization showed that, similar to sulfate-reducing bacteria of the family Desulfobacteriaceae, bacteria of one cluster with similarity values to the closest cultured relatives of between 92.6 and 93.1% resembled free cells or cells loosely attached to other cells or debris. Bacteria of the second cluster closely related to Desulfocapsa thiozymogenes DSM7269 with similarity values between 97. 9 and 98.4% were generally associated with aggregates of different small-celled phototrophic sulfur bacteria, suggesting a potential interaction between the two groups of bacteria.
Collapse
Affiliation(s)
- M Tonolla
- Cantonal Institute of Bacteriology, Microbial Ecology, University of Geneva, CH-6904 Lugano, Switzerland.
| | | | | | | | | |
Collapse
|
17
|
Tonolla M, Demarta A, Peduzzi R, Hahn D. In situ analysis of phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 1999; 65:1325-30. [PMID: 10049902 PMCID: PMC91183 DOI: 10.1128/aem.65.3.1325-1330.1999] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) revealed the presence of a diverse number of phototrophic sulfur bacteria. Sequences resembled those of rRNA of type strains Chromatium okenii DSM169 and Amoebobacter purpureus DSM4197, as well as those of four bacteria forming a tight cluster with A. purpureus DSM4197 and Lamprocystis roseopersicina DSM229. In situ hybridization with fluorescent (Cy3 labeled) oligonucleotide probes indicated that all large-celled phototrophic sulfur bacteria in the chemocline of Lake Cadagno were represented by C. okenii DSM169, while small-celled phototrophic sulfur bacteria consisted of four major populations with different distribution profiles in the chemocline indicating different ecophysiological adaptations.
Collapse
Affiliation(s)
- M Tonolla
- Cantonal Institute of Bacteriology, Microbial Ecology (University of Geneva), CH-6904 Lugano, Switzerland.
| | | | | | | |
Collapse
|
18
|
Massana R, Pedrós-Alió C. Role of Anaerobic Ciliates in Planktonic Food Webs: Abundance, Feeding, and Impact on Bacteria in the Field. Appl Environ Microbiol 1994; 60:1325-34. [PMID: 16349239 PMCID: PMC201477 DOI: 10.1128/aem.60.4.1325-1334.1994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the dynamics of two populations of anaerobic ciliates,
Plagiopyla
sp. and
Metopus
sp., and of their potential prey, heterotrophic and phototrophic purple bacteria, in Lake Cisó throughout a 1-year cycle. The abundance of both ciliates was very low (less than 2 individuals per ml). During mixing,
Plagiopyla
ciliates exhibited high clearance rates (about 100 nl ciliate
-1
h
-1
), its integrated abundance increased with a net doubling time of 47 days, and its potential doubling times, as calculated from the number of bacteria consumed, ranged between 5 and 8 days. During stratification, the activity of
Plagiopyla
ciliates was reduced and the population decreased; this was related to the higher amounts of sulfide present. The impact of predation by the
Plagiopyla
population on bacterioplankton was found to be insignificant, less than 0.1% of bacterial biomass consumed per day. Thus, anaerobic ciliates cannot control the bacterioplankton in Lake Cisó because of both the low abundance over the period studied and the low feeding rates during certain periods. A review of available field studies suggests that this conclusion can be extrapolated to most other anoxic systems.
Collapse
Affiliation(s)
- R Massana
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Passeig Joan de Borbó s/n, E-08039 Barcelona, Spain
| | | |
Collapse
|
19
|
Holler S, Pfennig N, Neunlist S, Rohmer M. Effect of a non-methanogenic symbiont and exogenous stigmasterol on the viability and tetrahymanol content of the anaerobic ciliate Trimyema compressum. Eur J Protistol 1993. [DOI: 10.1016/s0932-4739(11)80296-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol 1992. [DOI: 10.1007/bf00276765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
|