1
|
Rosenberg J, Müller P, Lentes S, Thiele MJ, Zeigler DR, Tödter D, Paulus H, Brantl S, Stülke J, Commichau FM. ThrR, a DNA‐binding transcription factor involved in controlling threonine biosynthesis in
Bacillus subtilis. Mol Microbiol 2016; 101:879-93. [DOI: 10.1111/mmi.13429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan Rosenberg
- Department of General MicrobiologyGeorg August University GöttingenGrisebachstr. 8Göttingen37077 Germany
| | - Peter Müller
- Department of GeneticsBacterial Genetics, Friedrich Schiller University JenaJena Germany
| | - Sabine Lentes
- Department of General MicrobiologyGeorg August University GöttingenGrisebachstr. 8Göttingen37077 Germany
| | - Martin J. Thiele
- Department of General MicrobiologyGeorg August University GöttingenGrisebachstr. 8Göttingen37077 Germany
| | | | - Dominik Tödter
- Department of General MicrobiologyGeorg August University GöttingenGrisebachstr. 8Göttingen37077 Germany
| | - Henry Paulus
- Boston Biomedical Research InstituteBoston MA USA
| | - Sabine Brantl
- Department of GeneticsBacterial Genetics, Friedrich Schiller University JenaJena Germany
| | - Jörg Stülke
- Department of General MicrobiologyGeorg August University GöttingenGrisebachstr. 8Göttingen37077 Germany
| | - Fabian M. Commichau
- Department of General MicrobiologyGeorg August University GöttingenGrisebachstr. 8Göttingen37077 Germany
| |
Collapse
|
2
|
De Novo Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection In Vivo. J Bacteriol 2016; 198:2001-2015. [PMID: 27161118 DOI: 10.1128/jb.00051-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/05/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED De novo guanine biosynthesis is an evolutionarily conserved pathway that creates sufficient nucleotides to support DNA replication, transcription, and translation. Bacteria can also salvage nutrients from the environment to supplement the de novo pathway, but the relative importance of either pathway during Staphylococcus aureus infection is not known. In S. aureus, genes important for both de novo and salvage pathways are regulated by a guanine riboswitch. Bacterial riboswitches have attracted attention as a novel class of antibacterial drug targets because they have high affinity for small molecules, are absent in humans, and regulate the expression of multiple genes, including those essential for cell viability. Genetic and biophysical methods confirm the existence of a bona fide guanine riboswitch upstream of an operon encoding xanthine phosphoribosyltransferase (xpt), xanthine permease (pbuX), inosine-5'-monophosphate dehydrogenase (guaB), and GMP synthetase (guaA) that represses the expression of these genes in response to guanine. We found that S. aureus guaB and guaA are also transcribed independently of riboswitch control by alternative promoter elements. Deletion of xpt-pbuX-guaB-guaA genes resulted in guanine auxotrophy, failure to grow in human serum, profound abnormalities in cell morphology, and avirulence in mouse infection models, whereas deletion of the purine salvage genes xpt-pbuX had none of these effects. Disruption of guaB or guaA recapitulates the xpt-pbuX-guaB-guaA deletion in vivo In total, the data demonstrate that targeting the guanine riboswitch alone is insufficient to treat S. aureus infections but that inhibition of guaA or guaB could have therapeutic utility. IMPORTANCE De novo guanine biosynthesis and purine salvage genes were reported to be regulated by a guanine riboswitch in Staphylococcus aureus We demonstrate here that this is not true, because alternative promoter elements that uncouple the de novo pathway from riboswitch regulation were identified. We found that in animal models of infection, the purine salvage pathway is insufficient for S. aureus survival in the absence of de novo guanine biosynthesis. These data suggest targeting the de novo guanine biosynthesis pathway may have therapeutic utility in the treatment of S. aureus infections.
Collapse
|
3
|
Fiegland LR, Garst AD, Batey RT, Nesbitt DJ. Single-molecule studies of the lysine riboswitch reveal effector-dependent conformational dynamics of the aptamer domain. Biochemistry 2012; 51:9223-33. [PMID: 23067368 DOI: 10.1021/bi3007753] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lysine riboswitch is a cis-acting RNA genetic regulatory element found in the leader sequence of bacterial mRNAs coding for proteins related to biosynthesis or transport of lysine. Structural analysis of the lysine-binding aptamer domain of this RNA has revealed that it completely encapsulates the ligand and therefore must undergo a structural opening/closing upon interaction with lysine. In this work, single-molecule fluorescence resonance energy transfer (FRET) methods are used to monitor these ligand-induced structural transitions that are central to lysine riboswitch function. Specifically, a model FRET system has been developed for characterizing the lysine dissociation constant as well as the opening/closing rate constants for the Bacillus subtilis lysC aptamer domain. These techniques permit measurement of the dissociation constant (K(D)) for lysine binding of 1.7(5) mM and opening/closing rate constants of 1.4(3) s(-1) and 0.203(7) s(-1), respectively. These rates predict an apparent dissociation constant for lysine binding (K(D,apparent)) of 0.25(9) mM at near physiological ionic strength, which differs markedly from previous reports.
Collapse
Affiliation(s)
- Larry R Fiegland
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | | | | | | |
Collapse
|
4
|
Blouin S, Chinnappan R, Lafontaine DA. Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation. Nucleic Acids Res 2010; 39:3373-87. [PMID: 21169337 PMCID: PMC3082890 DOI: 10.1093/nar/gkq1247] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Bacillus subtilis lysC lysine riboswitch modulates its own gene expression upon lysine binding through a transcription attenuation mechanism. The riboswitch aptamer is organized around a single five-way junction that provides the scaffold for two long-range tertiary interactions (loop L2–loop L3 and helix P2–loop L4)—all of this for the creation of a specific lysine binding site. We have determined that the interaction P2–L4 is particularly important for the organization of the ligand-binding site and for the riboswitch transcription attenuation control. Moreover, we have observed that a folding synergy between L2–L3 and P2–L4 allows both interactions to fold at lower magnesium ion concentrations. The P2–L4 interaction is also critical for the close juxtaposition involving stems P1 and P5. This is facilitated by the presence of lysine, suggesting an active role of the ligand in the folding transition. We also show that a previously uncharacterized stem–loop located in the expression platform is highly important for the riboswitch activity. Thus, folding elements located in the aptamer and the expression platform both influence the lysine riboswitch gene regulation.
Collapse
Affiliation(s)
- Simon Blouin
- Groupe ARN/RNA Group, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
5
|
Abstract
A number of RNAs ranging from small helices to large megadalton ribonucleoprotein complexes have been solved to atomic resolution using X-ray crystallography. As with proteins, RNA crystallography involves a number of screening trials in which the concentration of macromolecule, precipitant, salt, and temperature are varied, an approach known as searching "condition space." In contrast to proteins, the nature of base pairing in nucleic acids creates predictable secondary structure that facilitates the rational design of RNA variants, allowing "sequence space" to be screened in parallel. This chapter reviews RNA-specific techniques and considerations for RNA crystallography and presents a complete workflow used by our laboratory for solving RNA structures starting with initial library construction, methods to investigate and improve RNA crystal quality, and finally phase determination and structure solution.
Collapse
Affiliation(s)
- Francis E Reyes
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | | | | |
Collapse
|
6
|
Serganov A, Patel DJ. Amino acid recognition and gene regulation by riboswitches. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:592-611. [PMID: 19619684 PMCID: PMC3744886 DOI: 10.1016/j.bbagrm.2009.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 01/06/2023]
Abstract
Riboswitches specifically control expression of genes predominantly involved in biosynthesis, catabolism and transport of various cellular metabolites in organisms from all three kingdoms of life. Among many classes of identified riboswitches, two riboswitches respond to amino acids lysine and glycine to date. Though these riboswitches recognize small compounds, they both belong to the largest riboswitches and have unique structural and functional characteristics. In this review, we attempt to characterize molecular recognition principles employed by amino acid-responsive riboswitches to selectively bind their cognate ligands and to effectively perform a gene regulation function. We summarize up-to-date biochemical and genetic data available for the lysine and glycine riboswitches and correlate these results with recent high-resolution structural information obtained for the lysine riboswitch. We also discuss the contribution of lysine riboswitches to antibiotic resistance and outline potential applications of riboswitches in biotechnology and medicine.
Collapse
Affiliation(s)
- Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
7
|
Transcriptional analysis of the lysine-responsive and riboswitch-regulated lysC gene of Bacillus subtilis. Curr Microbiol 2009; 59:463-8. [PMID: 19636616 DOI: 10.1007/s00284-009-9461-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
About 2% of the Bacillus subtilis genes are subject to regulation by riboswitch-controlled mechanisms. One of them is the L-lysine-dependent lysC gene which is turned on when the L-lysine concentration within the cytoplasm is low. In the presence of a high L-lysine concentration, only a 0.27-kb transcript is synthesized representing the riboswitch due to transcription termination. When the L-lysine concentration is low, the full-length 1.6-kb transcript is produced due to transcription anti-termination. Here, we show for the first time that even under conditions of transcription anti-termination the truncated form of the RNA is still predominant. This 0.27-kb transcript is neither the result of enhanced stability nor does it result from processing of the full-length transcript. When the region coding for the transcription terminator was removed, the riboswitch RNA failed to be produced. These data were confirmed by analysis of a transcriptional fusion between the promoter-riboswitch region of lysC with and without a functional transcriptional terminator and the lacZ reporter gene. The putative function(s) of the riboswitch under conditions of low L-lysine concentration is discussed.
Collapse
|
8
|
Garst AD, Batey RT. A switch in time: detailing the life of a riboswitch. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:584-91. [PMID: 19595806 DOI: 10.1016/j.bbagrm.2009.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/29/2022]
Abstract
Riboswitches are non-protein coding RNA elements typically found in the 5' untranslated region (5'-UTR) of mRNAs that utilize metabolite binding to control expression of their own transcript. The RNA-ligand interaction causes conformational changes in the RNA that direct the cotranscriptional folding of a downstream secondary structural switch that interfaces with the expression machinery. This review describes the structural themes common to the different RNA-metabolite complexes studied to date and conclusions that can be made regarding how these RNAs efficiently couple metabolite binding to gene regulation. Emphasis is placed on the temporal aspects of riboswitch regulation that are central to the function of these RNAs and the need to augment the wealth of data on metabolite receptor domains with further studies on the full regulatory element, particularly in the context of transcription.
Collapse
Affiliation(s)
- Andrew D Garst
- Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, Boulder, CO 80309, USA
| | | |
Collapse
|
9
|
Blouin S, Mulhbacher J, Penedo JC, Lafontaine DA. Riboswitches: ancient and promising genetic regulators. Chembiochem 2009; 10:400-16. [PMID: 19101979 DOI: 10.1002/cbic.200800593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BAIT AND SWITCH: Metabolite-sensing riboswitches make use of RNA structural modulation to regulate gene expression, as illustrated in the scheme, in response to subtle changes in metabolite concentrations. This review describes the current knowledge about naturally occurring riboswitches and their growing potential as antibacterial cellular targets and as molecular biosensors. Newly discovered metabolite-sensing riboswitches have revealed that cellular processes extensively make use of RNA structural modulation to regulate gene expression in response to subtle changes in metabolite concentrations. Riboswitches are involved at various regulation levels of gene expression, such as transcription attenuation, translation initiation, mRNA splicing and mRNA processing. Riboswitches are found in the three kingdoms of life, and in various cases, are involved in the regulation of essential genes, which makes their regulation an essential part of cell survival. Because riboswitches operate without the assistance of accessory proteins, they are believed to be remnants of an ancient time, when gene regulation was strictly based on RNA, from which are left numerous "living molecular fossils", as exemplified by ribozymes, and more spectacularly, by the ribosome. Due to their nature, riboswitches hold high expectations for the manipulation of gene expression and the detection of small metabolites, and also offer an unprecedented potential for the discovery of novel classes of antimicrobial agents.
Collapse
Affiliation(s)
- Simon Blouin
- Département de biologie, Université de Sherbrooke, Sherbrooke, Canada
| | | | | | | |
Collapse
|
10
|
Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 2008; 455:1263-7. [PMID: 18784651 DOI: 10.1038/nature07326] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 08/06/2008] [Indexed: 01/10/2023]
Abstract
In bacteria, the intracellular concentration of several amino acids is controlled by riboswitches. One of the important regulatory circuits involves lysine-specific riboswitches, which direct the biosynthesis and transport of lysine and precursors common for lysine and other amino acids. To understand the molecular basis of amino acid recognition by riboswitches, here we present the crystal structure of the 174-nucleotide sensing domain of the Thermotoga maritima lysine riboswitch in the lysine-bound (1.9 ångström (A)) and free (3.1 A) states. The riboswitch features an unusual and intricate architecture, involving three-helical and two-helical bundles connected by a compact five-helical junction and stabilized by various long-range tertiary interactions. Lysine interacts with the junctional core of the riboswitch and is specifically recognized through shape-complementarity within the elongated binding pocket and through several direct and K(+)-mediated hydrogen bonds to its charged ends. Our structural and biochemical studies indicate preformation of the riboswitch scaffold and identify conformational changes associated with the formation of a stable lysine-bound state, which prevents alternative folding of the riboswitch and facilitates formation of downstream regulatory elements. We have also determined several structures of the riboswitch bound to different lysine analogues, including antibiotics, in an effort to understand the ligand-binding capabilities of the lysine riboswitch and understand the nature of antibiotic resistance. Our results provide insights into a mechanism of lysine-riboswitch-dependent gene control at the molecular level, thereby contributing to continuing efforts at exploration of the pharmaceutical and biotechnological potential of riboswitches.
Collapse
|
11
|
Garst AD, Héroux A, Rambo RP, Batey RT. Crystal structure of the lysine riboswitch regulatory mRNA element. J Biol Chem 2008; 283:22347-51. [PMID: 18593706 PMCID: PMC2504901 DOI: 10.1074/jbc.c800120200] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Indexed: 12/25/2022] Open
Abstract
Riboswitches are metabolite-sensitive elements found in mRNAs that control gene expression through a regulatory secondary structural switch. Along with regulation of lysine biosynthetic genes, mutations within the lysine-responsive riboswitch (L-box) play a role in the acquisition of resistance to antimicrobial lysine analogs. To understand the structural basis for lysine binding, we have determined the 2.8 angstroms resolution crystal structure of lysine bound to the Thermotoga maritima asd lysine riboswitch ligand-binding domain. The structure reveals a complex architecture scaffolding a binding pocket completely enveloping lysine. Mutations conferring antimicrobial resistance cluster around this site as well as highly conserved long range interactions, indicating that they disrupt lysine binding or proper folding of the RNA. Comparison of the free and bound forms by x-ray crystallography, small angle x-ray scattering, and chemical probing reveals almost identical structures, indicating that lysine induces only limited and local conformational changes upon binding.
Collapse
Affiliation(s)
- Andrew D Garst
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
12
|
Blouin S, Lafontaine DA. A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. RNA (NEW YORK, N.Y.) 2007; 13:1256-67. [PMID: 17585050 PMCID: PMC1924893 DOI: 10.1261/rna.560307] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The lysine riboswitch is associated to the lysC gene in Bacillus subtilis, and the binding of lysine modulates the RNA structure to allow the formation of an intrinsic terminator presumably involved in transcription attenuation. The complex secondary structure of the lysine riboswitch aptamer is organized around a five-way junction that undergoes structural changes upon ligand binding. Using single-round transcription assays, we show that a loop-loop interaction is important for lysine-induced termination of transcription. Moreover, upon close inspection of the secondary structure, we find that an unconventional kink-turn motif is present in one of the stems participating in the loop-loop interaction. We show that the K-turn adopts a pronounced kink and that it binds the K-turn-binding protein L7Ae of Archaeoglobus fulgidus in the low nanomolar range. The functional importance of this K-turn motif is revealed from single-round transcription assays, which show its importance for efficient transcription termination. This motif is essential for the loop-loop interaction, and consequently, for lysine binding. Taken together, our results depict for the first time the importance of a K-turn-dependent loop-loop interaction for the transcription regulation of a lysine riboswitch.
Collapse
Affiliation(s)
- Simon Blouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|
13
|
Abstract
New validated cellular targets are needed to reinvigorate antibacterial drug discovery. This need could potentially be filled by riboswitches-messenger RNA (mRNA) structures that regulate gene expression in bacteria. Riboswitches are unique among RNAs that serve as drug targets in that they have evolved to form structured and highly selective receptors for small drug-like metabolites. In most cases, metabolite binding to the receptor represses the expression of the gene(s) encoded by the mRNA. If a new metabolite analog were designed that binds to the receptor, the gene(s) regulated by that riboswitch could be repressed, with a potentially lethal effect to the bacteria. Recent work suggests that certain antibacterial compounds discovered decades ago function at least in part by targeting riboswitches. Herein we will summarize the experiments validating riboswitches as drug targets, describe the existing technology for riboswitch drug discovery and discuss the challenges that may face riboswitch drug discoverers.
Collapse
Affiliation(s)
- Kenneth F Blount
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
14
|
|
15
|
Grundy FJ, Lehman SC, Henkin TM. The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A 2003; 100:12057-62. [PMID: 14523230 PMCID: PMC218712 DOI: 10.1073/pnas.2133705100] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Indexed: 11/18/2022] Open
Abstract
Expression of amino acid biosynthesis genes in bacteria is often repressed when abundant supplies of the cognate amino acid are available. Repression of the Bacillus subtilis lysC gene by lysine was previously shown to occur at the level of premature termination of transcription. In this study we show that lysine directly promotes transcription termination during in vitro transcription with B. subtilis RNA polymerase and causes a structural shift in the lysC leader RNA. We find that B. subtilis lysC is a member of a large family of bacterial lysine biosynthesis genes that contain similar leader RNA elements. By analogy with related regulatory systems, we designate this leader RNA pattern the "L box." Genes in the L box family from Gram-negative bacteria appear to be regulated at the level of translation initiation rather than transcription termination. Mutations of B. subtilis lysC that disrupt conserved leader features result in loss of lysine repression in vivo and loss of lysine-dependent transcription termination in vitro. The identification of the L box pattern also provides an explanation for previously described mutations in both B. subtilis and Escherichia coli lysC that result in lysC overexpression and resistance to the lysine analog aminoethylcysteine. The L box regulatory system represents an example of gene regulation using an RNA element that directly senses the intracellular concentration of a small molecule.
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
16
|
Patte JC, Akrim M, Méjean V. The leader sequence of the Escherichia coli lysC gene is involved in the regulation of LysC synthesis. FEMS Microbiol Lett 1998; 169:165-70. [PMID: 9851048 DOI: 10.1111/j.1574-6968.1998.tb13313.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In Escherichia coli and Bacillus subtilis, long leader sequences are found upstream of the lysC coding sequences which encode lysine-sensitive aspartokinase. Highly conserved regions exist between these sequences. Mutations leading to constitutive expression of the E. coli lysC gene have been localised within these conserved regions, indicating that they participate in the lysine-mediated repression mechanism of lysC expression.
Collapse
Affiliation(s)
- J C Patte
- Laboratoire de Chimie Bactérienne, C.N.R.S. 31, Marseille, France.
| | | | | |
Collapse
|
17
|
Nishiyama M, Kukimoto M, Beppu T, Horinouchi S. An operon encoding aspartokinase and purine phosphoribosyltransferase in Thermus flavus. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 5):1211-1219. [PMID: 7773416 DOI: 10.1099/13500872-141-5-1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleotide sequence of a 1.1 kb XhoI-HindIII fragment downstream of the malate dehydrogenase (mdh) gene of Thermus flavus revealed the presence of an ORF and an incomplete ORF lacking its NH2-terminal portion, in the opposite orientation to that of the mdh gene. These two genes overlapped with each other, sharing two base pairs, suggesting that these genes are co-transcribed in a single mRNA. One ORF (termed gpt) encoded a protein of 154 amino acids showing significant amino acid sequence similarity to purine phosphoribosyltransferases, such as xanthine-guanine phosphoribosyltransferase of Escherichia coli and human hypoxanthine phosphoribosyltransferase. Cloning and sequencing of the upstream region of the gpt gene, together with sequence comparison of the gene product encoded by the region upstream of gpt, suggested that the upstream ORF encoded two in-frame overlapping aspartokinase genes, askA, encoding the alpha-subunit of 405 amino acids, and askB, encoding the beta-subunit of 161 amino acids, which was part of the 3' portion of askA. Consistent with the sequence data, the askAB and the gpt genes conferred the heat-stable enzyme activities of aspartokinase and phosphoribosyltransferase, respectively, on E. coli. Preliminary characterization of these enzymes produced in E. coli is described.
Collapse
Affiliation(s)
- Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan
| | - Mutsuko Kukimoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan
| | - Teruhiko Beppu
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan
| | - Sueharu Horinouchi
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan
| |
Collapse
|