1
|
Yang Q, Cai S, Dong S, Chen L, Chen J, Cai T. Biodegradation of 3-methyldiphenylether (MDE) by Hydrogenophaga atypical strain QY7-2 and cloning of the methy-oxidation gene mdeABCD. Sci Rep 2016; 6:39270. [PMID: 27995977 PMCID: PMC5172442 DOI: 10.1038/srep39270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022] Open
Abstract
3-Methyldiphenylether (MDE) is an important alkyl-substituted diphenyl ether compound that is widely used as an intermediate in the synthesis of pyrethroid insecticides. An efficient MDE-degrading strain QY7-2, identified as Hydrogenophaga atypical, was isolated from activated sludge for the first time. Strain QY7-2 can utilize MDE as the sole carbon and energy source and completely mineralize MDE. The degradation pathway of MDE was proposed in the strain through metabolites identification. A gene cluster involving in methy-oxidation of MDE was cloned from QY7-2 and expressed in Escherichia coli BL21 (DE3), and the products were purified by SDS-PAGE. The specific activities of the recombinant enzymes MdeAB, MdeC and MdeD were 113.8 ± 3.5, 274.5 ± 6.2 and 673.4 ± 8.7 nmol min−1 mg−1, respectively. These results provide the biochemical and genetic foundation of microbial degradation pathway of MDE and benefit the bioremediation of MDE-contaminated environments.
Collapse
Affiliation(s)
- Qian Yang
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shu Cai
- Jiangsu Academy of Agriculture Science, Nanjing 210014, People's Republic of China
| | - Shaowei Dong
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lulu Chen
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jifei Chen
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tianming Cai
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
2
|
Ma Y, Du Z, Xia F, Ma J, Gao J, Xu J. Mechanistic studies on the VO(acac)2-catalyzed oxidative cleavage of lignin model compounds in acetic acid. RSC Adv 2016. [DOI: 10.1039/c6ra23486k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Selective aerobic oxidation has provided a promising approach for breaking lignin into smaller aromatics. Here, the reaction pathway of VO(acac)2-catalyzed oxidation of lignin model 2-phenoxy-1-phenylethanol in acetic acid was studied.
Collapse
Affiliation(s)
- Yangyang Ma
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Zhongtian Du
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- P. R. China
| | - Fei Xia
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Jiping Ma
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Jin Gao
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Jie Xu
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| |
Collapse
|
3
|
Nakamiya K, Hashimoto S, Ito H, Edmonds JS, Morita M. Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus. Appl Environ Microbiol 2005; 71:1254-8. [PMID: 15746326 PMCID: PMC1065185 DOI: 10.1128/aem.71.3.1254-1258.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using 1,4-dioxane as the sole source of carbon, a 1,4-dioxane-degrading microorganism was isolated from soil. The fungus, termed strain A, was able to utilize 1,4-dioxane and many kinds of cyclic ethers as the sole source of carbon and was identified as Cordyceps sinensis from its 18S rRNA gene sequence. Ethylene glycol was identified as a degradation product of 1,4-dioxane by the use of deuterated 1,4-dioxane-d8 and gas chromatography-mass spectrometry analysis. A degradation pathway involving ethylene glycol, glycolic acid, and oxalic acid was proposed, followed by incorporation of the glycolic acid and/or oxalic acid via glyoxylic acid into the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Kunichika Nakamiya
- Endocrine Disrupters and Dioxins Research Project, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | |
Collapse
|
4
|
Rayne S, Ikonomou MG, Whale MD. Anaerobic microbial and photochemical degradation of 4,4'-dibromodiphenyl ether. WATER RESEARCH 2003; 37:551-560. [PMID: 12688689 DOI: 10.1016/s0043-1354(02)00311-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The anaerobic microbial and photochemical degradation pathways of 4,4'-dibromodiphenyl ether (BDE15) were examined. BDE15 was reductively debrominated within a fixed-film plug-flow biological reactor at hydraulic retention times of 3.4 and 6.8 h, leading to exclusive production of 4-bromodiphenyl ether (BDE3) and diphenyl ether (DE). A suite of potential BDE15 metabolites arising from reductive debromination, hydroxylation, and methoxylation of the aromatic C-Br and C-H bonds were not observed. Following initial debromination of BDE15, degradation of BDE3 to DE readily occurs, suggesting the rate-limiting step for anaerobic BDE15 degradation is conversion of BDE15 to BDE3. The photochemical degradation of BDE15 was also examined in organic (CH3CN and CH3OH) and aqueous (H2O:CH3CN; 1:1 v/v) solvent systems at 300 nm. Only photochemically induced reductive debromination was found to occur via homolytic C-Br bond cleavage, with no evidence of C-O bond cleavage or products arising from heterolytic bond cleavage.
Collapse
Affiliation(s)
- Sierra Rayne
- Department of Chemistry, P.O. Box 3065, University of Victoria, Victoria, BC, Canada V8W 3V6
| | | | | |
Collapse
|
5
|
Abstract
Triclosan is a polychlorinated hydroxy diphenylether that has been widely used as an antimicrobial compound. An enrichment using triclosan as a sole source of carbon and energy yielded a consortium of bacteria capable of growing on this compound. The dichloro ring was partially mineralized, resulting in the conversion of approximately 35% of the [(14)C]triclosan to [(14)C]CO(2). Use of molecular fingerprinting techniques and 16S rDNA cloning and sequencing aided in the identification and eventual isolation of an auxotrophic Sphingomonas-like organism, strain Rd1, which was able to partially mineralize triclosan when grown on complex media.
Collapse
|
6
|
Armengaud J, Timmis KN, Wittich RM. A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. J Bacteriol 1999; 181:3452-61. [PMID: 10348858 PMCID: PMC93813 DOI: 10.1128/jb.181.11.3452-3461.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Sphingomonas sp. strain RW1 is able to use dibenzo-p-dioxin, dibenzofuran, and several hydroxylated derivatives as sole sources of carbon and energy. We have determined and analyzed the nucleic acid sequence of a 9,997-bp HindIII fragment downstream of cistrons dxnA1A2, which encode the dioxygenase component of the initial dioxygenase system of the corresponding catabolic pathways. This fragment contains 10 colinear open reading frames (ORFs), apparently organized in one compact operon. The enzymatic activities of some proteins encoded by these genes were analyzed in the strain RW1 and, after hyperexpression, in Escherichia coli. The first three ORFs of the locus, designated dxnC, ORF2, and fdx3, specify a protein with a low homology to bacterial siderophore receptors, a polypeptide representing no significant homology to known proteins, and a putative ferredoxin, respectively. dxnD encodes a 69-kDa phenol monooxygenase-like protein with activity for the turnover of 4-hydroxysalicylate, and dxnE codes for a 37-kDa protein whose sequence and activity are similar to those of known maleylacetate reductases. The following gene, dxnF, encodes a 33-kDa intradiol dioxygenase which efficiently cleaves hydroxyquinol, yielding maleylacetate, the ketoform of 3-hydroxy-cis,cis-muconate. The heteromeric protein encoded by dxnGH is a 3-oxoadipate succinyl coenzyme A (succinyl-CoA) transferase, whereas dxnI specifies a protein exhibiting marked homology to acetyl-CoA acetyltransferases (thiolases). The last ORF of the sequenced fragment codes for a putative transposase. DxnD, DxnF, DxnE, DxnGH, and DxnI (the activities of most of them have also been detected in strain RW1) thus form a complete 4-hydroxysalicylate/hydroxyquinol degradative pathway. A route for the mineralization of the growth substrates 3-hydroxydibenzofuran and 2-hydroxydibenzo-p-dioxin in Sphingomonas sp. strain RW1 thus suggests itself.
Collapse
Affiliation(s)
- J Armengaud
- Division of Microbiology, GBF - National Research Centre for Biotechnology, D-38124 Braunschweig, Germany.
| | | | | |
Collapse
|
7
|
Tidswell EC, Russell NJ, White GF. Ether-bond scission in the biodegradation of alcohol ethoxylate nonionic surfactants by Pseudomonas sp. strain SC25A. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 5):1123-1131. [PMID: 8704954 DOI: 10.1099/13500872-142-5-1123] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pseudomonas sp. strain SC25A, previously isolated for its ability to grow on alcohol ethoxylates (PEG dodecyl ethers) as sole source of carbon and energy, was shown to be capable of growth on the dodecyl ethers of mono-, di, tri- and octaethylene glycols. Comparative growth yields for this series of alcohol ethoxylate nonionic surfactants indicated that, whereas all of the carbon of monoethylene glycol dodecyl ether (MEGDE) was assimilable, only the alkyl chains were assimilated from the higher ethoxamers. These results are interpreted in terms of a primary biodegradation mechanism in which the scission of the dodecyl-ether bond is the first step. In the case of MEGDE this step separates the dodecyl chain from a C2 fragment, both of which are readily assimilable; for the higher ethoxamers, the assimilable dodecyl chain is accompanied by an ether-containing PEG derivative which would require further rounds of either scission before assimilation. Whole cells and cell extracts converted [1-14C]MEGDE initially and very rapidly to radiolabelled dodecanol. Disappearance of [14C]dodecaol was accompanied by production of [14C]dodecanal. [14C]Dodecanoic acid was present at relatively low concentrations throughout the incubation periods. [14C]Dodecan-1, 12-dioic acid was produced in significant quantities (up to 25% radiolabel), and the onset of its production coincided with the peak concentration of dodecanal, the disappearance of which mirrored the appearance of the dioic acid. Under anaerobic conditions in the presence of cell extracts, dodecanol (55% of radiolabel) and dodecanal (22%) accumulated rapidly from MEGDE, but there was little subsequent conversion to mono- or dicarboxylic acids. These results are interpreted in terms of a pathway initiated by dodecyl-ether cleavage to produce dodecanol, which is subsequently oxidized to dodecanal and dodecanoic acid. The formation of dodecan-1, 12-dioic acid, probably from dodecanal, may represent a means of harbouring carbon under non-growing conditions.
Collapse
Affiliation(s)
- Edward C Tidswell
- School of Molecular and Medical Biosciences, University of Wales Cardiff, Museum Avenue, PO Box 911, Cardiff CF1 3US, UK
| | - Nicholas J Russell
- School of Molecular and Medical Biosciences, University of Wales Cardiff, Museum Avenue, PO Box 911, Cardiff CF1 3US, UK
| | - Graham F White
- School of Molecular and Medical Biosciences, University of Wales Cardiff, Museum Avenue, PO Box 911, Cardiff CF1 3US, UK
| |
Collapse
|
8
|
Harms H, Wilkes H, Wittich R, Fortnagel P. Metabolism of Hydroxydibenzofurans, Methoxydibenzofurans, Acetoxydibenzofurans, and Nitrodibenzofurans by Sphingomonas sp. Strain HH69. Appl Environ Microbiol 1995; 61:2499-505. [PMID: 16535067 PMCID: PMC1388485 DOI: 10.1128/aem.61.7.2499-2505.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolism of 11 substituted dibenzofurans by the dibenzofuran-degrading Sphingomonas sp. strain HH69 was investigated. Strain HH69 utilizes 2-, 3-, and 4-acetoxydibenzofuran as well as 2-, 3-, and 4-hydroxydibenzofuran as sole sources of carbon and energy. The degradation of acetoxydibenzofurans is initiated by hydrolysis of the ester bonds, yielding the corresponding hydroxydibenzofurans and acetate. Strain HH69 grew on 2-methoxydibenzofuran only after it was adapted to the utilization of 5-methoxysalicylic acid, whereas 3- and 4-methoxydibenzofuran as well as 2- and 3-nitrodibenzofuran were only cooxidized. During the breakdown of all eight hydroxy-, methoxy-, and nitrodibenzofurans studied here, the corresponding substituted salicylic acids accumulated in the culture broth. In the cases of 2- and 3-hydroxydibenzofuran as well as 2- and 3-nitrodibenzofuran, salicylic acid was also formed. Those four dibenzofurans which did not serve as carbon sources for strain HH69 were converted to a nonutilizable salicylic acid derivative. From turnover experiments with the mutant HH69/II, which is deficient in meta-cleavage, 2,2(prm1),3,4(prm1)-tetrahydroxybiphenyl, 2,2(prm1),3-trihydroxy-5(prm1)-methoxybiphenyl, 2,2(prm1),3-trihydroxy-5(prm1)-nitrobiphenyl, and 2,2(prm1),3-trihydroxy-4(prm1)-nitrobiphenyl were isolated as the main products formed from 3-hydroxydibenzofuran, 2-methoxydibenzofuran, and 2- and 3-nitrodibenzofuran, respectively. These results indicate significant regioselectivity for the dioxygenolytic cleavage of the ether bond of these monosubstituted dibenzofurans, with a preference for the nonsubstituted aromatic nucleus. Substituted trihydroxybiphenyls are converted further by meta-cleavage followed by the removal of the side chain of the resulting product. A stepwise degradation of this side chain was found to be involved in the metabolism of 2-hydroxydibenzofuran.
Collapse
|