1
|
Zheng X, Zheng T, Liao Y, Luo L. Identification of Potential Inhibitors of MurD Enzyme of Staphylococcus aureus from a Marine Natural Product Library. Molecules 2021; 26:molecules26216426. [PMID: 34770835 PMCID: PMC8587310 DOI: 10.3390/molecules26216426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that can cause fatal bacterial infections. MurD catalyzes the formation of peptide bond between UDP-N-acetylehyl-l-alanine and d-glutamic acid, which plays an important role in the synthesis of peptidoglycan and the formation of cell wall by S. aureus. Because S. aureus is resistant to most existing antibiotics, it is necessary to develop new inhibitors. In this study, Schrodinger 11.5 Prime homology modeling was selected to prepare the protein model of MurD enzyme, and its structure was optimized. We used a virtual screening program and similarity screening to screen 47163 compounds from three marine natural product libraries to explore new inhibitors of S. aureus. ADME provides analysis of the physicochemical properties of the best performing compounds during the screening process. To determine the stability of the docking effect, a 100 ns molecular dynamics was performed to verify how tightly the compound was bound to the protein. By docking analysis and molecular dynamics analysis, both 46604 and 46608 have strong interaction with the docking pocket, have good pharmacological properties, and maintain stable conformation with the target protein, so they have a chance to become drugs for S. aureus. Through virtual screening, similarity screening, ADME study and molecular dynamics simulation, 46604 and 46608 were selected as potential drug candidates for S. aureus.
Collapse
Affiliation(s)
- Xiaoqi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (X.Z.); (T.Z.); (Y.L.)
| | - Tongyu Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (X.Z.); (T.Z.); (Y.L.)
| | - Yinglin Liao
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (X.Z.); (T.Z.); (Y.L.)
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Correspondence:
| |
Collapse
|
2
|
Design, synthesis and molecular modelling of phenoxyacetohydrazide derivatives as Staphylococcus aureus MurD inhibitors. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Jupudi S, Azam MA, Wadhwani A. Synthesis, molecular docking, binding free energy calculation and molecular dynamics simulation studies of benzothiazol-2-ylcarbamodithioates as Staphylococcus aureus MurD inhibitors. J Recept Signal Transduct Res 2020; 39:283-293. [PMID: 31538846 DOI: 10.1080/10799893.2019.1663538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new series of benzothiazol-2-ylcarbamodithioate functional compounds 5a-f has been designed, synthesized and characterized by spectral data. These compounds were screened for their in vitro antibacterial activity against strains of Staphylococcus aureus (NCIM 5021, NCIM 5022 and methicillin-resistant isolate 43300), Bacillus subtilis (NCIM 2545), Escherichia coli (NCIM 2567), Klebsiella pneumoniae (NCIM 2706) and Psudomonas aeruginosa (NCIM 2036). Compounds 5a and 5d exhibited significant activity against all the tested bacterial strains. Specifically, compounds 5a and 5d showed potent activity against K. pneumoniae (NCIM 2706), while compound 5a also displayed potent activity against S. aureus (NCIM 5021). Compound 5d showed minimum IC50 value of 13.37 μM against S. aureus MurD enzyme. Further, the binding interactions of compounds 5a-f in the catalytic pocket have been investigated using the extra-precision molecular docking and binding free energy calculation by MM-GBSA approach. A 30 ns molecular dynamics simulation of 5d/modeled S. aureus MurD enzyme was performed to determine the stability of the predicted binding conformation.
Collapse
Affiliation(s)
- Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , India
| | - Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , India
| | - Ashish Wadhwani
- Department of Biotechnology, JSS College of Pharmacy , Ooty , India
| |
Collapse
|
4
|
Azam MA, Jupudi S, Saha N, Paul RK. Combining molecular docking and molecular dynamics studies for modelling Staphylococcus aureus MurD inhibitory activity. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:1-20. [PMID: 30406684 DOI: 10.1080/1062936x.2018.1539034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 06/08/2023]
Abstract
The ATP-dependent bacterial MurD enzyme catalyses the formation of the peptide bond between cytoplasmic intermediate UDP-N-acetylmuramoyl-L-alanine and D-glutamic acid. This is essential for bacterial cell wall peptidoglycan synthesis in both Gram-positive and Gram-negative bacteria. MurD is recognized as an important target for the development of new antibacterial agents. In the present study we prepared the 3D-stucture of the catalytic pocket of the Staphylococcus aureus MurD enzyme by homology modelling. Extra-precision docking, binding free energy calculation by the MM-GBSA approach and a 40 ns molecular dynamics (MD) simulation of 2-thioxothiazolidin-4-one based inhibitor $1 was carried out to elucidate its inhibition potential for the S. aureus MurD enzyme. Molecular docking results showed that Lys19, Gly147, Tyr148, Lys328, Thr330 and Phe431 residues are responsible for the inhibitor-protein complex stabilization. Binding free energy calculation revealed electrostatic solvation and van der Waals energy components as major contributors for the inhibitor binding. The inhibitor-modelled S. aureus protein complex had a stable conformation in response to the atomic flexibility and interaction, when subjected to MD simulation at 40 ns in aqueous solution. We designed some molecules as potent inhibitors of S. aureus MurD, and to validate the stability of the designed molecule D1-modelled protein complex we performed a 20 ns MD simulation. Results obtained from this study can be utilized for the design of potent S. aureus MurD inhibitors.
Collapse
Affiliation(s)
- M A Azam
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| | - S Jupudi
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| | - N Saha
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| | - R K Paul
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| |
Collapse
|
5
|
Simčič M, Sosič I, Hodošček M, Barreteau H, Blanot D, Gobec S, Grdadolnik SG. The binding mode of second-generation sulfonamide inhibitors of MurD: clues for rational design of potent MurD inhibitors. PLoS One 2012; 7:e52817. [PMID: 23285193 PMCID: PMC3527612 DOI: 10.1371/journal.pone.0052817] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/23/2012] [Indexed: 11/19/2022] Open
Abstract
A series of optimized sulfonamide derivatives was recently reported as novel inhibitors of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). These are based on naphthalene-N-sulfonyl-D-glutamic acid and have the D-glutamic acid replaced with rigidified mimetics. Here we have defined the binding site of these novel ligands to MurD using (1)H/(13)C heteronuclear single quantum correlation. The MurD protein was selectively (13)C-labeled on the methyl groups of Ile (δ1 only), Leu and Val, and was isolated and purified. Crucial Ile, Leu and Val methyl groups in the vicinity of the ligand binding site were identified by comparison of chemical shift perturbation patterns among the ligands with various structural elements and known binding modes. The conformational and dynamic properties of the bound ligands and their binding interactions were examined using the transferred nuclear Overhauser effect and saturation transfer difference. In addition, the binding mode of these novel inhibitors was thoroughly examined using unrestrained molecular dynamics simulations. Our results reveal the complex dynamic behavior of ligand-MurD complexes and its influence on ligand-enzyme contacts. We further present important findings for the rational design of potent Mur ligase inhibitors.
Collapse
Affiliation(s)
- Mihael Simčič
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
- Laboratory of Biomolecular Structure, National Institute of Chemistry, Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Milan Hodošček
- Laboratory of Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hélène Barreteau
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Université Paris-Sud, Orsay, France
| | - Didier Blanot
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique, Orsay, France
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Simona Golič Grdadolnik
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
- Laboratory of Biomolecular Structure, National Institute of Chemistry, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
6
|
Perdih A, Bren U, Solmajer T. Binding free energy calculations of N-sulphonyl-glutamic acid inhibitors of MurD ligase. J Mol Model 2009; 15:983-96. [PMID: 19198900 DOI: 10.1007/s00894-009-0455-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
The increasing incidence of bacterial resistance to most available antibiotics has underlined the urgent need for the discovery of novel efficacious antibacterial agents. The biosynthesis of bacterial peptidoglycan, where the MurD enzyme is involved in the intracellular phase of UDP-MurNAc-pentapeptide formation, represents a collection of highly selective targets for novel antibacterial drug design. Structural studies of N-sulfonyl-glutamic acid inhibitors of MurD have made possible the examination of binding modes of this class of compounds, providing valuable information for the lead optimization phase of the drug discovery cycle. Binding free energies were calculated for a series of MurD N-sulphonyl-Glu inhibitors using the linear interaction energy (LIE) method. Analysis of interaction energy during the 20-ns MD trajectories revealed non-polar van der Waals interactions as the main driving force for the binding of these inhibitors, and excellent agreement with the experimental free energies was obtained. Calculations of binding free energies for selected moieties of compounds in this structural class substantiated even deeper insight into the source of inhibitory activity. These results constitute new valuable information to further assist the lead optimization process.
Collapse
Affiliation(s)
- Andrej Perdih
- Laboratory for Molecular Modeling and NMR Spectroscopy, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | | | | |
Collapse
|
7
|
Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:168-207. [PMID: 18266853 DOI: 10.1111/j.1574-6976.2008.00104.x] [Citation(s) in RCA: 482] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented. Moreover, special attention is given to (1) the chemical and enzymatic synthesis of the nucleotide precursor substrates that are not commercially available and (2) the search for specific inhibitors that could act as antibacterial compounds.
Collapse
Affiliation(s)
- Hélène Barreteau
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Univ Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
8
|
El Zoeiby A, Sanschagrin F, Levesque RC. Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 2003; 47:1-12. [PMID: 12492849 DOI: 10.1046/j.1365-2958.2003.03289.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the biggest challenges for recent medical research is the continuous development of new antibiotics interacting with bacterial essential mechanisms. The machinery for peptidoglycan biosynthesis is a rich source of crucial targets for antibacterial chemotherapy. The cytoplasmic steps of the biosynthesis of peptidoglycan precursor, catalysed by a series of Mur enzymes, are excellent candidates for drug development. There has been growing interest in these bacterial enzymes over the last decade. Many studies attempted to understand the detailed mechanisms and structural features of the key enzymes MurA to MurF. Only MurA is inhibited by a known antibiotic, fosfomycin. Several attempts made to develop novel inhibitors of this pathway are discussed in this review. Three novel inhibitors of MurA were identified recently. 4-Thiazolidinone compounds were designed as MurB inhibitors. Many phosphinic acid derivatives and substrate analogues were identified as inhibitors of the MurC to MurF amino acid ligases.
Collapse
Affiliation(s)
- Ahmed El Zoeiby
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Faculté de Médecine, Pavillon Charles-Eugène Marchand, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4
| | | | | |
Collapse
|
9
|
Gubler M, Appoldt Y, Keck W. Overexpression, purification, and characterization of UDP-N-acetylmuramyl:L-alanine ligase from Escherichia coli. J Bacteriol 1996; 178:906-10. [PMID: 8550531 PMCID: PMC177743 DOI: 10.1128/jb.178.3.906-910.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UDP-N-acetylmuramyl:L-alanine ligase from Escherichia coli was overexpressed more than 600-fold and purified to near homogeneity. The purified enzyme was found to ligate L-alanine, L-serine, and glycine, as well as the nonnatural amino acid beta-chloro-L-alanine, to UDP-N-acetylmuramic acid. On the basis of (i) the specificity constants of the enzyme determined for L-alanine, L-serine, and glycine and (ii) the levels of these amino acids in the intracellular pool, it was calculated that the rates of incorporation of L-serine and glycine into peptidoglycan precursor metabolites could maximally amount to 0.1 and 0.5%, respectively, of the rate of L-alanine incorporation.
Collapse
Affiliation(s)
- M Gubler
- Department of Infectious Diseases, F. Hoffman-La Roche AG, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|