1
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
2
|
Dobrut A, Brzychczy-Włoch M. Immunogenic Proteins of Group B Streptococcus-Potential Antigens in Immunodiagnostic Assay for GBS Detection. Pathogens 2021; 11:43. [PMID: 35055991 PMCID: PMC8778278 DOI: 10.3390/pathogens11010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen, which asymptomatically colonizes the gastrointestinal and genitourinary tract of up to one third of healthy adults. Nevertheless, GBS carriage in pregnant women may lead to several health issues in newborns causing life threatening infection, such as sepsis, pneumonia or meningitis. Recommended GBS screening in pregnant women significantly reduced morbidity and mortality in infants. Nevertheless, intrapartum antibiotic prophylaxis, recommended following the detection of carriage or in case of lack of a carriage test result for pregnant women who demonstrate certain risk factors, led to the expansion of the adverse phenomenon of bacterial resistance to antibiotics. In our paper, we reviewed some immunogenic GBS proteins, i.e., Alp family proteins, β protein, Lmb, Sip, BibA, FsbA, ScpB, enolase, elongation factor Tu, IMPDH, and GroEL, which possess features characteristic of good candidates for immunodiagnostic assays for GBS carriage detection, such as immunoreactivity and specificity. We assume that they can be used as an alternative diagnostic method to the presently recommended bacteriological cultivation and MALDI.
Collapse
Affiliation(s)
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Medical College, Jagiellonian University, 31-121 Krakow, Poland;
| |
Collapse
|
3
|
Belstrøm D, Constancias F, Markvart M, Sikora M, Sørensen CE, Givskov M. Transcriptional Activity of Predominant Streptococcus Species at Multiple Oral Sites Associate With Periodontal Status. Front Cell Infect Microbiol 2021; 11:752664. [PMID: 34621696 PMCID: PMC8490622 DOI: 10.3389/fcimb.2021.752664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background Streptococcus species are predominant members of the oral microbiota in both health and diseased conditions. The purpose of the present study was to explore if different ecological characteristics, such as oxygen availability and presence of periodontitis, associates with transcriptional activity of predominant members of genus Streptococcus. We tested the hypothesis that genetically closely related Streptococcus species express different transcriptional activities in samples collected from environments with critically different ecological conditions determined by site and inflammatory status. Methods Metagenomic and metatranscriptomic data was retrieved from 66 oral samples, subgingival plaque (n=22), tongue scrapings (n=22) and stimulated saliva (n=22) collected from patients with periodontitis (n=11) and orally healthy individuals (n=11). Species-specific transcriptional activity was computed as Log2(RNA/DNA), and transcriptional activity of predominant Streptococcus species was compared between multiple samples collected from different sites in the same individual, and between individuals with different oral health status. Results The predominant Streptococcus species were identified with a site-specific colonization pattern of the tongue and the subgingival plaque. A total of 11, 4 and 2 pathways expressed by S. parasanguinis, S. infantis and S. salivarius, respectively, were recorded with significantly higher transcriptional activity in saliva than in tongue biofilm in healthy individuals. In addition, 18 pathways, including pathways involved in synthesis of peptidoglycan, amino acid biosynthesis, glycolysis and purine nucleotide biosynthesis expressed by S. parasanguinis and 3 pathways expressed by S. salivarius were identified with significantly less transcriptional activity in patients with periodontitis. Conclusion Data from the present study significantly demonstrates the association of site-specific ecological conditions and presence of periodontitis with transcriptional activity of the predominant Streptococcus species of the oral microbiota. In particular, pathways expressed by S. parasanguinis being involved in peptidoglycan, amino acid biosynthesis, glycolysis, and purine nucleotide biosynthesis were identified to be significantly associated with oral site and/or inflammation status.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Florentin Constancias
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Singapore, Singapore
| | - Merete Markvart
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christiane Elisabeth Sørensen
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Singapore, Singapore.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021; 19:1335-1360. [PMID: 33777334 PMCID: PMC7960681 DOI: 10.1016/j.csbj.2021.02.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The oralome is the summary of the dynamic interactions orchestrated between the ecological community of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorganisms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this review, we discuss the composition of the oralome and inter-species and host-microbial interactions that take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to disease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and caries and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer's disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, probiotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) disruption, and host response modulators.
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne L. Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
5
|
Abstract
Mucus in the gastrointestinal (GI) tract is the primary point-of-interaction between humans and their gut microbiota. This intimates that mucus not only ensures protection against endogenous and exogenous opportunists but also provisions for the human microbiota to reside and flourish. With the emergence of living therapeutics, engineered microbes can deliver and produce increasingly complex medicine, and controlling the mucoadhesive properties of different microbial chassis can dictate dose-response in a patient. Here we present a redesigned, in vitro, plate-based assay to measure the mucus adhesion of various probiotics. Cell-mucus interactions were isolated by immobilizing mucus to the plate surface. Binding parameters were derived for each probiotic strain by measuring cell adhesion over a wide range of cell concentrations, providing dose-dependent adhesion metrics. Surface proteins and cell components known to influence mucoadhesion were then heterologously expressed or altered in Lactococcus lactis MG1363 and Escherichia coli Nissle 1917 to control mucus-binding capacity, avidity, and cooperativity.
Collapse
Affiliation(s)
- Zachary J. S. Mays
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Todd C. Chappell
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Nikhil U. Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
6
|
Kriebel K, Hieke C, Müller-Hilke B, Nakata M, Kreikemeyer B. Oral Biofilms from Symbiotic to Pathogenic Interactions and Associated Disease -Connection of Periodontitis and Rheumatic Arthritis by Peptidylarginine Deiminase. Front Microbiol 2018; 9:53. [PMID: 29441048 PMCID: PMC5797574 DOI: 10.3389/fmicb.2018.00053] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
A wide range of bacterial species are harbored in the oral cavity, with the resulting complex network of interactions between the microbiome and host contributing to physiological as well as pathological conditions at both local and systemic levels. Bacterial communities inhabit the oral cavity as primary niches in a symbiotic manner and form dental biofilm in a stepwise process. However, excessive formation of biofilm in combination with a corresponding deregulated immune response leads to intra-oral diseases, such as dental caries, gingivitis, and periodontitis. Moreover, oral commensal bacteria, which are classified as so-called “pathobionts” according to a now widely accepted terminology, were recently shown to be present in extra-oral lesions with distinct bacterial species found to be involved in the onset of various pathophysiological conditions, including cancer, atherosclerosis, chronic infective endocarditis, and rheumatoid arthritis. The present review focuses on oral pathobionts as commensal and healthy members of oral biofilms that can turn into initiators of disease. We will shed light on the processes involved in dental biofilm formation and also provide an overview of the interactions of P. gingivalis, as one of the most prominent oral pathobionts, with host cells, including epithelial cells, phagocytes, and dental stem cells present in dental tissues. Notably, a previously unknown interaction of P. gingivalis bacteria with human stem cells that has impact on human immune response is discussed. In addition to this very specific interaction, the present review summarizes current knowledge regarding the immunomodulatory effect of P. gingivalis and other oral pathobionts, members of the oral microbiome, that pave the way for systemic and chronic diseases, thereby showing a link between periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Katja Kriebel
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | | | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Kim AR, Ahn KB, Kim HY, Seo HS, Yun CH, Han SH. Serine-rich Repeat Adhesin Gordonii Surface Protein B is Important for Streptococcus gordonii Biofilm Formation. J Endod 2016; 42:1767-1772. [PMID: 27769678 DOI: 10.1016/j.joen.2016.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Streptococcus gordonii is a predominant member of the oral microflora and has been isolated from root canals of teeth with refractory apical periodontitis. Biofilm formation is important for various dental diseases, and S. gordonii is involved in dental biofilm formation as an early colonizer. Although serine-rich repeat (SRR) adhesins of S. gordonii such as gordonii surface protein B (GspB) are associated with bacterial colonization, the role of GspB in biofilm formation is not clearly understood. In the present study, we investigated the effect of S. gordonii GspB on biofilm formation using wild-type and GspB-deficient mutant S. gordonii strains. METHODS Confocal microscopy and crystal violet assay were used to determine biofilm formation. Bacterial growth was examined by measuring optical density with spectrometry. Bacterial adherence and biofilm on the culture plate and human dentin slices were visualized with a scanning electron microscope. RESULTS The GspB-deficient S. gordonii mutant strain was less potent than the wild-type strain in biofilm formation. Of note, there was no difference in the bacterial growth rate between the mutant and wild-type strains. Differences in biofilm-forming ability between the wild-type and mutant strains were more distinct in the sucrose-supplemented media. Furthermore, the GspB-deficient mutant exhibited attenuated formation of aggregates on the surface of the culture plate and human dentin slices. CONCLUSIONS These results suggest that GspB is important for S. gordonii biofilm formation, which may contribute to the development of dental biofilm-associated diseases.
Collapse
Affiliation(s)
- A Reum Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ki Bum Ahn
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ho Seong Seo
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Jonaidi-Jafari N, Izadi M, Javidi P. The effects of silver nanoparticles on antimicrobial activity of ProRoot mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM). J Clin Exp Dent 2016; 8:e22-6. [PMID: 26855701 PMCID: PMC4739363 DOI: 10.4317/jced.52568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/17/2015] [Indexed: 11/08/2022] Open
Abstract
Background Although, mineral trioxide aggregate (MTA) and new experimental cement (CEM) are good root filling cements, but had no or low antimicrobial activities. The aim of this study was to evaluate the effects of addition of silver nanoparticles (SNP) to these two cements on antimicrobial effects against five most dental infection related microorganisms. Material and Methods Two suspensions of 100 and 200 ppm of SNP were prepared and 180 μl of microbial suspension with 1.5 × 108 CFU/ml of each respected microorganisms were re-suspended in deionized water or each of SNP suspensions. After that, 60 μg of MTA and CEM were added to each tube. In one tube, the mixture of all above mentioned microorganisms were added as a source of microorganism. Colonies were counted after 0, 24, 48, 72 and 96 hours intervals of incubation at 35°C on blood agar for evaluation of antimicrobial efficacy. Results MTA and CEM had antibacterial activities on all microorganisms’ strains except for Enterococcus faecalis and mixture group. MTA had better antibacterial activity than CEM but the difference was not significant (p<0.05). The combination of SNP with two cements resulted in significantly higher antimicrobial activities (p<0.05). Also, there was no statistically significant difference between two SNP concentrations (p>0.05). Conclusions Mixture of MTA and CEM with different concentrations of SNP significantly increased the antibacterial activity. Key words:Mineral trioxide aggregate, calcium-enriched mixture, silver nanoparticle, antimicrobial activity.
Collapse
Affiliation(s)
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Pedram Javidi
- Department of Orthodontics, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| |
Collapse
|
9
|
Song L, Sjollema J, Norde W, Busscher HJ, van der Mei HC. Contribution of Adsorbed Protein Films to Nanoscopic Vibrations Exhibited by Bacteria Adhering through Ligand-Receptor Bonds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10443-10450. [PMID: 26352623 DOI: 10.1021/acs.langmuir.5b02937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacteria adhering to surfaces exhibit nanoscopic vibrations that depend on the viscoelasticity of the bond. The quantification of the nanoscopic vibrations of bacteria adhering to surfaces provides new opportunities to better understand the properties of the bond through which bacteria adhere and the mechanisms by which they resist detachment. Often, however, bacteria do not adhere to bare surfaces but to adsorbed protein films, on which adhesion involves highly specific ligand-receptor binding next to nonspecific DLVO interaction forces. Here we determine the contribution of adsorbed salivary protein and fibronectin films to vibrations exhibited by adhering streptococci and staphylococci, respectively. The streptococcal strain used has the ability to adhere to adsorbed salivary proteins films through antigen I/II ligand-receptor binding, while the staphylococcal strain used adheres to adsorbed fibronectin films through a proteinaceous ligand-receptor bond. In the absence of ligand-receptor binding, electrostatic interactions had a large impact on vibration amplitudes of adhering bacteria on glass. On an adsorbed salivary protein film, vibration amplitudes of adhering streptococci depended on the film softness as determined by QCM-D and were reduced after film fixation using glutaraldehyde. On a relatively stiff fibronectin film, cross-linking the film in glutaraldehyde hardly reduced its softness, and accordingly fibronectin film softness did not contribute to vibration amplitudes of adhering staphylococci. However, fixation of the staphylococcus-fibronectin bond further decreased vibration amplitudes, while fixation of the streptococcus bond hardly impacted vibration amplitudes. Summarizing, this study shows that both the softness of adsorbed protein films and the properties of the bond between an adhering bacterium and an adsorbed protein film play an important role in bacterial vibration amplitudes. These nanoscopic vibrations reflect the viscoelasticity of the bacterial bond with a substratum and play important roles in bacterial adhesion, detachment and susceptibility to antimicrobials.
Collapse
Affiliation(s)
- Lei Song
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Willem Norde
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
10
|
Zou J, Wang X, Tian M, Cao S, Hou W, Wang S, Han X, Ding C, Yu S. The M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of Riemerella anatipestifer. Vet Microbiol 2015; 177:193-200. [PMID: 25804836 DOI: 10.1016/j.vetmic.2015.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/16/2022]
Abstract
Riemerella anatipestifer is one of the most economically important pathogens of farm ducks worldwide. However, the molecular mechanisms regarding its antigenicity and pathogenicity are poorly understood. We previously constructed a library of random Tn4351 transposon mutants using R. anatipestifer strain CH3. In this study, M949_1556 gene inactivated mutant strain CH3ΔM949_1556 was identified by screening of the library using monoclonal antibody against R. anatipestifer serotype 1 lipopolysaccharide (LPS) (anti-LPS MAb) followed by sequence analysis. The mutant strain presented no reactivity to the anti-LPS MAb in an indirect ELISA. Animal studies showed that the median lethal dose (LD50) of CH3ΔM949_1556 was >10(10) colony forming units (CFU), which was attenuated more than 50 times, compared with that of wild-type strain CH3 (LD50=2×10(8) CFU). The bacterial loads in the blood of CH3ΔM949_1556 infected ducks were significantly decreased, compared with those of CH3-infected ducks. In addition, CH3ΔM949_1556 presented significant, higher susceptibility to complement-dependent killing than CH3 did in vitro. Furthermore, CH3ΔM949_1556 showed increased bacterial adhesion and invasion capacities to Vero cells. Immunization with CH3ΔM949_1556-inactived vaccine was effective in protecting the ducks from challenge with R. anatipestifer serotype 1 strain WJ4, serotype 2 strain Yb2 and serotype 10 strain HXb2, suggesting that the mutant strain CH3ΔM949_1556 could provide a broad cross-protection among R. anatipestifer serotypes 1, 2 and 10 strains. Our results demonstrated that the M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of R. anatipestifer.
Collapse
Affiliation(s)
- Jiechi Zou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shoulin Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wanwan Hou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
11
|
Manganese uptake and streptococcal virulence. Biometals 2015; 28:491-508. [PMID: 25652937 DOI: 10.1007/s10534-015-9826-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
Abstract
Streptococcal solute-binding proteins (SBPs) associated with ATP-binding cassette transporters gained widespread attention first as ostensible adhesins, next as virulence determinants, and finally as metal ion transporters. In this mini-review, we will examine our current understanding of the cellular roles of these proteins, their contribution to metal ion homeostasis, and their crucial involvement in mediating streptococcal virulence. There are now more than 35 studies that have collected structural, biochemical and/or physiological data on the functions of SBPs across a broad range of bacteria. This offers a wealth of data to clarify the formerly puzzling and contentious findings regarding the metal specificity amongst this group of essential bacterial transporters. In particular we will focus on recent findings related to biological roles for manganese in streptococci. These advances will inform efforts aimed at exploiting the importance of manganese and manganese acquisition for the design of new approaches to combat serious streptococcal diseases.
Collapse
|
12
|
Kunii M, Arimoto T, Hasegawa T, Kuwata H, Igarashi T. Role of protease maturation lipoprotein in osmoadaptation of Streptococcus mutans. FEMS Microbiol Lett 2014; 356:45-52. [PMID: 24863612 DOI: 10.1111/1574-6968.12477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022] Open
Abstract
Osmoadaptation may be an important trait for the pathogenicity of Streptococcus mutans. However, how this organism adapts to changes in osmolality in the oral cavity remains unclear. In this study, we showed that S. mutans utilizes K(+) for osmoadaptation, in which protease maturation lipoprotein (PrtM) plays an important role. Although growth of the wild-type strain was impaired in a hyperosmotic medium [brain heart infusion (BHI) containing 0.3 M NaCl] compared with that in an unmodified BHI, the prtM mutant grew much more poorly in 0.3 M NaCl BHI. Comparison of growth behavior in the hyperosmotic medium supplemented with different osmoprotectants revealed that only the addition of K(+) allowed the bacteria to overcome the impairment of growth caused by the high osmolality. These results suggest that K(+) is an important compatible solute for S. mutans. Moreover, K(+) -associated recovery of growth was not observed for the prtM mutant, indicating that PrtM plays a critical role in the utilization of K(+) . Quantitative reverse-transcriptase polymerase chain reaction analysis showed that prtM was induced by osmotic stress, implying that prtM is an osmoresponsive gene. These findings suggest that K(+) is an important compatible solute for S. mutans, and that the osmoresponsive lipoprotein PrtM is involved in K(+) utilization, contributing to osmoadaptation of S. mutans.
Collapse
Affiliation(s)
- Maiko Kunii
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Tokyo, Japan; Division of Comprehensive Dentistry, Department of Conservative Dentistry, Showa University School of Dentistry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
13
|
Crump KE, Bainbridge B, Brusko S, Turner LS, Ge X, Stone V, Xu P, Kitten T. The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis. Mol Microbiol 2014; 92:1243-59. [PMID: 24750294 DOI: 10.1111/mmi.12625] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2014] [Indexed: 01/16/2023]
Abstract
Streptococcus sanguinis colonizes teeth and is an important cause of infective endocarditis. Our prior work showed that the lipoprotein SsaB is critical for S. sanguinis virulence for endocarditis and belongs to the LraI family of conserved metal transporters. In this study, we demonstrated that an ssaB mutant accumulates less manganese and iron than its parent. A mutant lacking the manganese-dependent superoxide dismutase, SodA, was significantly less virulent than wild-type in a rabbit model of endocarditis, but significantly more virulent than the ssaB mutant. Neither the ssaB nor the sodA mutation affected sensitivity to phagocytic killing or efficiency of heart valve colonization. Animal virulence results for all strains could be reproduced by growing bacteria in serum under physiological levels of O(2). SodA activity was reduced, but not eliminated in the ssaB mutant in serum and in rabbits. Growth of the ssaB mutant in serum was restored upon addition of Mn(2+) or removal of O(2). Antioxidant supplementation experiments suggested that superoxide and hydroxyl radicals were together responsible for the ssaB mutant's growth defect. We conclude that manganese accumulation mediated by the SsaB transport system imparts virulence by enabling cell growth in oxygen through SodA-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Katie E Crump
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Cho K, Arimoto T, Igarashi T, Yamamoto M. Involvement of lipoprotein PpiA ofStreptococcus gordoniiin evasion of phagocytosis by macrophages. Mol Oral Microbiol 2013; 28:379-91. [DOI: 10.1111/omi.12031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2013] [Indexed: 11/29/2022]
Affiliation(s)
| | - T. Arimoto
- Department of Oral Microbiology and Immunology; Showa University School of Dentistry; Tokyo; Japan
| | - T. Igarashi
- Department of Oral Microbiology and Immunology; Showa University School of Dentistry; Tokyo; Japan
| | - M. Yamamoto
- Department of Periodontology; Showa University School of Dentistry; Tokyo; Japan
| |
Collapse
|
15
|
Lewis VG, Ween MP, McDevitt CA. The role of ATP-binding cassette transporters in bacterial pathogenicity. PROTOPLASMA 2012; 249:919-942. [PMID: 22246051 DOI: 10.1007/s00709-011-0360-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.
Collapse
Affiliation(s)
- Victoria G Lewis
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | |
Collapse
|
16
|
Kojic M, Jovcic B, Strahinic I, Begovic J, Lozo J, Veljovic K, Topisirovic L. Cloning and expression of a novel lactococcal aggregation factor from Lactococcus lactis subsp. lactis BGKP1. BMC Microbiol 2011; 11:265. [PMID: 22182285 PMCID: PMC3282668 DOI: 10.1186/1471-2180-11-265] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/19/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aggregation may play a main role in the adhesion of bacteria to the gastrointestinal epithelium and their colonization ability, as well as in probiotic effects through co-aggregation with intestinal pathogens and their subsequent removal. The aggregation phenomenon in lactococci is directly associated with the sex factor and lactose plasmid co-integration event or duplication of the cell wall spanning (CWS) domain of PrtP proteinase. RESULTS Lactococcus lactis subsp. lactis BGKP1 was isolated from artisanal semi-hard homemade cheese and selected due to its strong auto-aggregation phenotype. Subsequently, non-aggregating derivative (Agg-) of BGKP1, designated as BGKP1-20, was isolated, too. Comparative analysis of cell surface proteins of BGKP1 and derivative BGKP1-20 revealed a protein of approximately 200 kDa only in the parental strain BGKP1. The gene involved in aggregation (aggL) was mapped on plasmid pKP1 (16.2 kb), cloned and expressed in homologous and heterologous lactococci and enterococci. This novel lactococcal aggregation protein was shown to be sufficient for cell aggregation in all tested hosts. In addition to the aggL gene, six more ORFs involved in replication (repB and repX), restriction and modification (hsdS), transposition (tnp) and possible interaction with mucin (mbpL) were also located on plasmid pKP1. CONCLUSION AggL is a new protein belonging to the collagen-binding superfamily of proteins and is sufficient for cell aggregation in lactococci.
Collapse
Affiliation(s)
- Milan Kojic
- Laboratory for Molecular Genetics of Industrial Microorganisms, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, Belgrade 11010, Serbia
| | - Branko Jovcic
- Laboratory for Molecular Genetics of Industrial Microorganisms, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, Belgrade 11010, Serbia
| | - Ivana Strahinic
- Laboratory for Molecular Genetics of Industrial Microorganisms, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, Belgrade 11010, Serbia
| | - Jelena Begovic
- Laboratory for Molecular Genetics of Industrial Microorganisms, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, Belgrade 11010, Serbia
| | - Jelena Lozo
- Laboratory for Molecular Genetics of Industrial Microorganisms, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, Belgrade 11010, Serbia
| | - Katarina Veljovic
- Laboratory for Molecular Genetics of Industrial Microorganisms, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, Belgrade 11010, Serbia
| | - Ljubisa Topisirovic
- Laboratory for Molecular Genetics of Industrial Microorganisms, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, P.O. Box 23, Belgrade 11010, Serbia
| |
Collapse
|
17
|
Surface lipoprotein PpiA of Streptococcus mutans suppresses scavenger receptor MARCO-dependent phagocytosis by macrophages. Infect Immun 2011; 79:4933-40. [PMID: 21986627 DOI: 10.1128/iai.05693-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus mutans is associated with the initiation and progression of human dental caries and is occasionally isolated from the blood of patients with bacteremia and infective endocarditis. For the pathogen to survive in the infected host, surface lipoproteins of S. mutans are likely to play important roles in interactions with the innate immune system. To clarify the role that a putative lipoprotein, peptidyl-prolyl cis/trans-isomerase (PpiA), of S. mutans plays in the macrophage response, we investigated the response of THP-1-derived macrophages to S. mutans challenge. The deletion of the gene encoding Lgt eliminated PpiA on the cell surface of S. mutans, which implies that PpiA is a lipoprotein that is lipid anchored in the cell membrane by Lgt. Human and murine peritoneal macrophages both showed higher phagocytic activities for the ppiA and lgt mutants than the wild type, which indicates that the presence of PpiA reduces S. mutans phagocytosis. In addition, infection with S. mutans markedly induced mRNAs of macrophage receptor with collagenous structure (MARCO) and scavenger receptor A (SR-A) in human macrophages. In particular, transcriptional and translational levels of MARCO in human macrophages infected with the ppiA mutant were higher than those in macrophages infected with the wild type. Phagocytosis of S. mutans by human macrophages markedly decreased after treatment with anti-MARCO IgG. These results demonstrate that the S. mutans lipoprotein PpiA contributes to suppression of MARCO-mediated phagocytosis of this bacterium by macrophages.
Collapse
|
18
|
Abstract
The oral cavity of the hospitalized or bedridden elderly is often a reservoir for opportunistic pathogens associated with respiratory diseases. Commensal flora and the host interact in a balanced fashion and oral infections are considered to appear following an imbalance in the oral resident microbiota, leading to the emergence of potentially pathogenic bacteria. The definition of the process involved in colonization by opportunistic respiratory pathogens needs to elucidate the factors responsible for the transition of the microbiota from commensal to pathogenic flora. The regulatory factors influencing the oral ecosystem can be divided into three major categories: the host defense system, commensal bacteria, and external pathogens. In this article, we review the profile of these categories including the intricate cellular interaction between immune factors and commensal bacteria and the disturbance in homeostasis in the oral cavity of hospitalized or bedridden elderly, which facilitates oral colonization by opportunistic respiratory pathogens.
Collapse
Affiliation(s)
- Akio Tada
- Department of Oral Health, National Institute of Public Health, Wako, Saitama, Japan.
| | | |
Collapse
|
19
|
Abstract
Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases.
Collapse
|
20
|
Rioux S, Neyt C, Di Paolo E, Turpin L, Charland N, Labbé S, Mortier MC, Mitchell TJ, Feron C, Martin D, Poolman JT. Transcriptional regulation, occurrence and putative role of the Pht family of Streptococcus pneumoniae. MICROBIOLOGY-SGM 2010; 157:336-348. [PMID: 20966093 DOI: 10.1099/mic.0.042184-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Restricted to the genus Streptococcus, the Pht protein family comprises four members: PhtA, PhtB, PhtD and PhtE. This family has the potential to provide a protein candidate for incorporation in pneumococcal vaccines. Based on sequence analysis and on RT-PCR experiments, we show here that the pht genes are organized in tandem but that their expression, except that of phtD, is monocistronic. PhtD, PhtE, PhtB and PhtA are present in 100, 97, 81 and 62 % of the strains, respectively, and, by analysing its sequence conservation across 107 pneumococcal strains, we showed that PhtD displays very little variability. To analyse the physiological function of these proteins, several mutants were constructed. The quadruple Pht-deficient mutant was not able to grow in a poor culture medium, but the addition of Zn(2+) or Mn(2+) restored its growth capacity. Moreover, the phtD mRNA expression level increased when the culture medium was depleted in zinc. Therefore, we suggest that these proteins are zinc and manganese scavengers, and are able to store these metals and to release them when the bacterium faces an ion-restricted environment. The data also showed that this protein family, and more particularly PhtD, is a promising candidate to be incorporated into pneumococcal vaccines.
Collapse
|
21
|
Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun 2010; 78:4644-52. [PMID: 20805332 DOI: 10.1128/iai.00685-10] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Candida albicans colonizes human mucosa and prosthetic surfaces associated with artificial joints, catheters, and dentures. In the oral cavity, C. albicans coexists with numerous bacterial species, and evidence suggests that bacteria may modulate fungal growth and biofilm formation. Streptococcus gordonii is found on most oral cavity surfaces and interacts with C. albicans to promote hyphal and biofilm formation. In this study, we investigated the role of the hyphal-wall protein Als3p in interactions of C. albicans with S. gordonii. Utilizing an ALS3 deletion mutant strain, it was shown that cells were not affected in initial adherence to the salivary pellicle or in hyphal formation in the planktonic phase. However, the Als3(-) mutant was unable to form biofilms on the salivary pellicle or deposited S. gordonii DL1 wild-type cells, and after initial adherence, als3Δ/als3Δ (ΔALS3) cells became detached concomitant with hyphal formation. In coaggregation assays, S. gordonii cells attached to, and accumulated around, hyphae formed by C. albicans wild-type cells. However, streptococci failed to attach to hyphae produced by the ΔALS3 mutant. Saccharomyces cerevisiae S150-2B cells expressing Als3p, but not control cells, supported binding of S. gordonii DL1. However, S. gordonii Δ(sspA sspB) cells deficient in production of the surface protein adhesins SspA and SspB showed >50% reduced levels of binding to S. cerevisiae expressing Als3p. Lactococcus lactis cells expressing SspB bound avidly to S. cerevisiae expressing Als3p, but not to S150-2B wild-type cells. These results show that recognition of C. albicans by S. gordonii involves Als3 protein-SspB protein interaction, defining a novel mechanism in fungal-bacterial communication.
Collapse
|
22
|
Vollmer T, Hinse D, Kleesiek K, Dreier J. Interactions between endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates and human endothelial cells. BMC Microbiol 2010; 10:78. [PMID: 20233397 PMCID: PMC2846920 DOI: 10.1186/1471-2180-10-78] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 03/16/2010] [Indexed: 01/15/2023] Open
Abstract
Background Streptococcus gallolyticus subsp. gallolyticus is an important causative agent of infective endocarditis (IE) but the knowledge on virulence factors is limited and the pathogenesis of the infection is poorly understood. In the present study, we established an experimental in vitro IE cell culture model using EA.hy926 and HUVEC cells to investigate the adhesion and invasion characteristics of 23 Streptococcus gallolyticus subsp. gallolyticus strains from different origins (human IE-derived isolates, other human clinical isolates, animal isolates). Adhesion to eight components of the extracellular matrix (ECM) and the ability to form biofilms in vitro was examined in order to reveal features of S. gallolyticus subsp. gallolyticus endothelial infection. In addition, the strains were analyzed for the presence of the three virulence factors gtf, pilB, and fimB by PCR. Results The adherence to and invasion characteristics of the examined S. gallolyticus subsp. gallolyticus strains to the endothelial cell line EA.hy926 differ significantly among themselves. In contrast, the usage of three different in vitro models (EA.hy926 cells, primary endothelial cells (HUVECs), mechanical stretched cells) revealed no differences regarding the adherence to and invasion characteristics of different strains. Adherence to the ECM proteins collagen I, II and IV revealed the highest values, followed by fibrinogen, tenascin and laminin. Moreover, a strong correlation was observed in binding to these proteins by the analyzed strains. All strains show the capability to adhere to polystyrole surfaces and form biofilms. We further confirmed the presence of the genes of two known virulence factors (fimB: all strains, gtf: 19 of 23 strains) and demonstrated the presence of the gene of one new putative virulence factor (pilB: 9 of 23 strains) by PCR. Conclusion Our study provides the first description of S. gallolyticus subsp. gallolyticus adhesion and invasion of human endothelial cells, revealing important initial information of strain variability, behaviour and characteristics of this as yet barely analyzed pathogen.
Collapse
Affiliation(s)
- Tanja Vollmer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany
| | | | | | | |
Collapse
|
23
|
Gene cloning and characterization of Streptococcus intermedius fimbriae involved in saliva-mediated aggregation. Res Microbiol 2009; 160:809-16. [PMID: 19819330 DOI: 10.1016/j.resmic.2009.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/22/2009] [Accepted: 09/22/2009] [Indexed: 11/23/2022]
Abstract
Streptococcus intermedius, an oral commensal and a cause of systemic pyogenic disease, expresses fimbriae. To identify the gene(s) encoding these fimbriae, we used a serum raised against purified fimbriae to screen libaries of recombinant lambda phages. The cloned gene cluster encoding S. intermedius fimbriae, (saliva-mediated aggregation and adherence-associated fimbriae), contained 4 ORFs, i.e. a putative ribonulease (Saf1), a putative adhesin (Saf2), the main pilus subunit (Saf3) and a sortase C (SrtC). Escherichia coli strains harboring recombinant phages and plasmids carrying the saf3 gene produced a 55kDa protein recognized by the antifimbriae serum. Saf3 contains an N-terminal signal sequence and a C-terminal cell-wall-anchoring motif LPXTG. Among strains of the Streptococcus anginosus group, only serotype g and untypable strains were found to contain the saf3 gene, to possess the fimbrial antigen and to exhibit saliva-mediated aggregation. Knockout mutants made by insertion of an erythromycin resistance gene into saf3 did not produce fimbrial structures or fimbrial antigens and did not participate in saliva-mediated aggregation. The adherent activity of mutants toward plastic wells coated with salivary agglutinin was about 65% that of the parental strain, and the reaction depended on calcium. There was no significant difference in adherence to hydroxyapatite beads pretreated with salivary agglutinin between the parental and mutant strains. These results demonstrated that Saf3 is associated with aggregation, and suggested that other molecule(s) are associated with adherence of S. intermedius.
Collapse
|
24
|
Kreth J, Merritt J, Qi F. Bacterial and host interactions of oral streptococci. DNA Cell Biol 2009; 28:397-403. [PMID: 19435424 DOI: 10.1089/dna.2009.0868] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The oral microbial flora comprises one of the most diverse human-associated biofilms. Its development is heavily influenced by oral streptococci, which are considered the main group of early colonizers. Their initial attachment determines the composition of later colonizers in the oral biofilm and impacts the health or disease status of the host. Thus, the role of streptococci in the development of oral diseases is best described in the context of bacterial ecology, which itself is further influenced by interactions with host epithelial cells, the immune system, and salivary components. The tractability of the oral biofilm makes it an excellent model system for studies of complex, biofilm-associated polymicrobial diseases. Using this system, numerous cooperative and antagonistic bacterial interactions have been demonstrated to occur within the community and with the host. In this review, several recent identified interactions are presented.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| | | | | |
Collapse
|
25
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
26
|
The laminin-binding protein Lbp from Streptococcus pyogenes is a zinc receptor. J Bacteriol 2009; 191:5814-23. [PMID: 19617361 DOI: 10.1128/jb.00485-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The common pathogen Streptococcus pyogenes colonizes the human skin and tonsils and can invade underlying tissues. This requires the adhesion of S. pyogenes to host surface receptors mediated through adhesins. The laminin-binding protein Lbp has been suggested as an adhesin, specific for the human extracellular matrix protein laminin. Sequence alignments, however, indicate a relationship between Lbp and a family of bacterial metal-binding receptors. To further analyze the role of Lbp in S. pyogenes and its potential role in pathogenicity, Lbp has been crystallized, and its structure has been solved at a resolution of 2.45 A (R = 0.186; R(free) = 0.251). Lbp has the typical metal-binding receptor fold, comprising two globular (beta/alpha)(4) domains connected by a helical backbone. The two domains enclose the metal-binding site, which contains a zinc ion. The interaction of Lbp with laminin was further investigated and shown to be specific in vitro. Localization studies with antibodies specific for Lbp show that the protein is attached to the membrane. The data suggest that Lbp is primarily a zinc-binding protein, and we suggest that its interaction with laminin in vivo may be mediated via zinc bound to laminin.
Collapse
|
27
|
Ragunathan P, Spellerberg B, Ponnuraj K. Expression, purification, crystallization and preliminary crystallographic analysis of laminin-binding protein (Lmb) from Streptococcus agalactiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:492-4. [PMID: 19407385 PMCID: PMC2675593 DOI: 10.1107/s1744309109012743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/03/2009] [Indexed: 11/10/2022]
Abstract
Laminin-binding protein (Lmb), a surface-exposed lipoprotein from Streptococcus agalactiae (group B streptococcus), mediates attachment to human laminin and plays a crucial role in the adhesion/invasion of eukaryotic host cells. However, the structural basis of laminin binding still remains unclear. In the context of detailed structural analysis, the lmb gene has been cloned, expressed in Escherichia coli, purified and crystallized. The crystals diffracted to a resolution of 2.5 A and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 56.63, b = 70.60, c = 75.37 A, beta = 96.77 degrees .
Collapse
Affiliation(s)
- Preethi Ragunathan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India.
| | | | | |
Collapse
|
28
|
Contribution of lipoproteins and lipoprotein processing to endocarditis virulence in Streptococcus sanguinis. J Bacteriol 2009; 191:4166-79. [PMID: 19395487 DOI: 10.1128/jb.01739-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by >1,000-fold. [(3)H]palmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence.
Collapse
|
29
|
Rajam G, Anderton JM, Carlone GM, Sampson JS, Ades EW. Pneumococcal Surface Adhesin A (PsaA): A Review. Crit Rev Microbiol 2008; 34:131-42. [DOI: 10.1080/10408410802275352] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Arimoto T, Igarashi T. Role of prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein-specific signal peptidase II (LspA) in localization and physiological function of lipoprotein MsmE inStreptococcus mutans. ACTA ACUST UNITED AC 2008; 23:515-9. [DOI: 10.1111/j.1399-302x.2008.00455.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron. Antonie van Leeuwenhoek 2008; 95:101-9. [DOI: 10.1007/s10482-008-9291-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
|
32
|
Brenot A, Weston BF, Caparon MG. A PerR-regulated metal transporter (PmtA) is an interface between oxidative stress and metal homeostasis in Streptococcus pyogenes. Mol Microbiol 2007; 63:1185-96. [PMID: 17238923 DOI: 10.1111/j.1365-2958.2006.05577.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In Streptococcus pyogenes, mutation of the peroxide sensor PerR results in avirulence despite producing hyper-resistance to peroxide stress. To understand the basis of this effect, global transcription profiling was conducted revealing one highly downregulated gene (czcD), and five highly upregulated genes in the mutant. Of the latter, only pmtA contained a binding site for PerR, while phtY, phtD, lsp and rpsN2 harboured an AdcR motif and were regulated by AdcR, a repressor of an ABC-type metal transporter. Furthermore, only the PerR-regulated pmtA (PerR-regulated metal transporter A), a putative metal transporter, contributed to resistance against peroxide stress, while AdcR and the other AdcR-regulated genes did not. However, overexpression of pmtA resulted in upregulation of several AdcR-regulated genes, suggesting that the AdcR regulon is sensitive to PerR regulation of metal homeostasis. Finally, examination of S. pyogenes following murine subcutaneous infection revealed that while pmtA was not upregulated in a late infection, the AdcR-regulated genes were. Taken together, these data suggest that PerR has a greater impact on the transcriptome than can be predicted by its binding sites and that pmtA functions to link metal homeostasis and oxidative stress responses.
Collapse
Affiliation(s)
- Audrey Brenot
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
33
|
Gerardo SH, Garcia MM, Wexler HM, Finegold SM. Adherence of Bilophila wadsworthia to cultured human embryonic intestinal cells. Anaerobe 2007; 4:19-27. [PMID: 16887620 DOI: 10.1006/anae.1997.0134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/1997] [Accepted: 11/09/1997] [Indexed: 11/22/2022]
Abstract
Adherence of Bilophila wadsworthia to the cultured human embryonic intestinal cell line, Intestine 407 (Int 407), varied among the strains tested from strongly adherent (76-100% cells positive for one or more adherent bacteria) to non- or weakly adherent (0-25% positive cells). Although negative staining revealed that infrequent cells of an adherent strain, WAL 9077, the adherent type-strain, WAL 7959, and a non-adherent strain, WAL 8448, expressed loosely associated fimbrial structures, a role for these structures in adhesion could not be confirmed with either scanning or thin-section electron micrography. Ruthenium red staining of thin-section preparations and subsequent electron microscopy failed to reveal an extensive extracellular polysaccharide layer. SDS-PAGE analysis of crude outer membrane fractions of WAL 9077 and WAL 8448 demonstrated clear differences in their major and minor outer membrane protein components. Thus, we postulate that the adherence of B. wadsworthia to Int 407 cells is mediated by an outer membrane or cell wall component.
Collapse
Affiliation(s)
- S H Gerardo
- Research Service, VA Wadsworth Medical Center, Los Angeles, CA 90073, USA
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Mary E Davey
- Department of Molecular Genetics, The Forsyth Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
35
|
Baumgärtner M, Kärst U, Gerstel B, Loessner M, Wehland J, Jänsch L. Inactivation of Lgt allows systematic characterization of lipoproteins from Listeria monocytogenes. J Bacteriol 2006; 189:313-24. [PMID: 17041050 PMCID: PMC1797373 DOI: 10.1128/jb.00976-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein anchoring in bacteria is mediated by the prolipoprotein diacylglyceryl transferase (Lgt), which catalyzes the transfer of a diacylglyceryl moiety to the prospective N-terminal cysteine of the mature lipoprotein. Deletion of the lgt gene in the gram-positive pathogen Listeria monocytogenes (i) impairs intracellular growth of the bacterium in different eukaryotic cell lines and (ii) leads to increased release of lipoproteins into the culture supernatant. Comparative extracellular proteome analyses of the EGDe wild-type strain and the Delta lgt mutant provided systematic insight into the relative expression of lipoproteins. Twenty-six of the 68 predicted lipoproteins were specifically released into the extracellular proteome of the Delta lgt strain, and this proved that deletion of lgt is an excellent approach for experimental verification of listerial lipoproteins. Consequently, we generated Delta lgt Delta prfA double mutants to detect lipoproteins belonging to the main virulence regulon that is controlled by PrfA. Overall, we identified three lipoproteins whose extracellular levels are regulated and one lipoprotein that is posttranslationally modified depending on PrfA. It is noteworthy that in contrast to previous studies of Escherichia coli, we unambiguously demonstrated that lipidation by Lgt is not a prerequisite for activity of the lipoprotein-specific signal peptidase II (Lsp) in Listeria.
Collapse
Affiliation(s)
- Maja Baumgärtner
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), D-38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Vorobieva EI, Meringova LF, Leontieva GF, Grabovskaya KB, Suvorov AN. Analysis of recombinant group B streptococcal protein ScaAB and evaluation of its immunogenicity. Folia Microbiol (Praha) 2005; 50:172-6. [PMID: 16110924 DOI: 10.1007/bf02931468] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group B streptococcal (GBS) gene encoding the putative lipoprotein and adherence factor ScaAB was cloned and expressed in E. coli. Recombinant ScaAB protein was isolated. Signal sequence of ScaAB was found to be cleaved in the E. coli host. ScaAB recombinant protein was immunogenic in mice and antibodies against this protein were discovered in mice sera after GBS infection. The perspectives of the use of ScaAB protein in GBS vaccine are discussed.
Collapse
Affiliation(s)
- E I Vorobieva
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, 197 376 St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
37
|
Båth K, Roos S, Wall T, Jonsson H. The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett 2005; 253:75-82. [PMID: 16242863 DOI: 10.1016/j.femsle.2005.09.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/12/2005] [Accepted: 09/14/2005] [Indexed: 02/08/2023] Open
Abstract
Bioinformatical analyses of a draft genome sequence of the commensal bacterium Lactobacillus reuteri ATCC 55730 revealed 126 genes encoding putative extracellular proteins. The function, localization and distribution in bacterial species were predicted. Interestingly, few proteins possessed LPXTG motifs or C-terminal transmembrane anchors. Instead eight proteins were putatively anchored by GW repeats and several secreted proteins were likely to be re-associated to the surface. The majority of the extracellular proteins were widely distributed, i.e., found universally or in gram-positive bacteria, but 24 were only detected in L. reuteri. Further, the number of transporters was lower, while the number of enzyme was higher than in related species.
Collapse
Affiliation(s)
- Klara Båth
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| | | | | | | |
Collapse
|
38
|
Gat O, Mendelson I, Chitlaru T, Ariel N, Altboum Z, Levy H, Weiss S, Grosfeld H, Cohen S, Shafferman A. The solute-binding component of a putative Mn(II) ABC transporter (MntA) is a novelBacillus anthracisvirulence determinant. Mol Microbiol 2005; 58:533-51. [PMID: 16194238 DOI: 10.1111/j.1365-2958.2005.04848.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we describe the characterization of a lipoprotein previously proposed as a potential Bacillus anthracis virulence determinant and vaccine candidate. This protein, designated MntA, is the solute-binding component of a manganese ion ATP-binding cassette transporter. Coupled proteomic-serological screen of a fully virulent wild-type B. anthracis Vollum strain, confirmed that MntA is expressed both in vitro and during infection. Expression of MntA is shown to be independent of the virulence plasmids pXO1 and pXO2. An mntA deletion, generated by allelic replacement, results in complete loss of MntA expression and its phenotypic analysis revealed: (i) impaired growth in rich media, alleviated by manganese supplementation; (ii) increased sensitivity to oxidative stress; and (iii) delayed release from cultured macrophages. The DeltamntA mutant expresses the anthrax-associated classical virulence factors, lethal toxin and capsule, in vitro as well as in vivo, and yet the mutation resulted in severe attenuation; a 10(4)-fold drop in LD(50) in a guinea pig model. MntA expressed in trans allowed to restore, almost completely, the virulence of the DeltamntA B. anthracis strain. We propose that MntA is a novel B. anthracis virulence determinant essential for the development of anthrax disease, and that B. anthracisDeltamntA strains have the potential to serve as platform for future live attenuated vaccines.
Collapse
Affiliation(s)
- Orit Gat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, PO Box 19, Ness Ziona, 74100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Y, Lei Y, Nobbs A, Khammanivong A, Herzberg MC. Inactivation of Streptococcus gordonii SspAB alters expression of multiple adhesin genes. Infect Immun 2005; 73:3351-7. [PMID: 15908361 PMCID: PMC1111841 DOI: 10.1128/iai.73.6.3351-3357.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SspA and SspB (antigen I/II family proteins) can bind Streptococcus gordonii to other oral bacteria and also to salivary agglutinin glycoprotein, a constituent of the salivary film or pellicle that coats the tooth. To learn if SspA and SspB are essential for adhesion and initial biofilm formation on teeth, S. gordonii DL1 was incubated with saliva-coated hydroxyapatite (sHA) for 2 h in Todd-Hewitt broth with 20% saliva to develop initial biofilms. Sessile cells attached to sHA, surrounding planktonic cells, and free-growing cells were recovered separately. Free-growing cells expressed more sspA-specific mRNA and sspB-specific mRNA than sessile cells. Free-growing cells expressed the same levels of sspA and sspB as planktonic cells. Surprisingly, an SspA(-) SspB(-) mutant strain showed 2.2-fold greater biofilm formation on sHA than wild-type S. gordonii DL1. To explain this observation, we tested the hypothesis that inactivation of sspA and sspB genes altered the expression of other adhesin genes during initial biofilm formation in vitro. When compared to wild-type cells, expression of scaA and abpB was significantly up-regulated in the SspA(-) SspB(-) strain in sessile, planktonic, and free-growing cells. Consistent with this finding, ScaA antigen was also overexpressed in planktonic and free-growing SspA(-) SspB(-) cells compared to the wild type. SspA/B adhesins, therefore, were strongly suggested to be involved in the regulation of multiple adhesin genes.
Collapse
Affiliation(s)
- Yongshu Zhang
- Department of Oral Sciences and Mucosal and Vaccine Research Center, University of Minnesota, 17-164 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
40
|
Lindahl G, Stålhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 2005; 18:102-27. [PMID: 15653821 PMCID: PMC544178 DOI: 10.1128/cmr.18.1.102-127.2005] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received increasing attention as potential virulence factors and vaccine components. Here, we summarize current knowledge about S. agalactiae surface proteins, with emphasis on proteins that have been characterized immunochemically and/or elicit protective immunity in animal models. These surface proteins have been implicated in interactions with human epithelial cells, binding to extracellular matrix components, and/or evasion of host immunity. Of note, several S. agalactiae surface proteins are related to surface proteins identified in other bacterial pathogens, emphasizing the general interest of the S. agalactiae proteins. Because some S. agalactiae surface proteins elicit protective immunity, they hold promise as components in a vaccine based only on proteins or as carriers in polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Gunnar Lindahl
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden.
| | | | | |
Collapse
|
41
|
Johnston JW, Myers LE, Ochs MM, Benjamin WH, Briles DE, Hollingshead SK. Lipoprotein PsaA in virulence of Streptococcus pneumoniae: surface accessibility and role in protection from superoxide. Infect Immun 2004; 72:5858-67. [PMID: 15385487 PMCID: PMC517531 DOI: 10.1128/iai.72.10.5858-5867.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PsaA of Streptococcus pneumoniae, originally believed to be an adhesin, is the lipoprotein component of an Mn2+ transporter. Mutations in psaA cause deficiencies in growth, virulence, adherence, and the oxidative stress response. Immunofluorescence microscopy shows that PsaA is hidden beneath the cell wall and the polysaccharide capsule and only exposed to antibodies upon cell wall removal. A psaBC deletion mutant, expressing PsaA normally, was as deficient in adherence to Detroit 562 cells as were strains lacking PsaA. Thus, PsaA does not appear to act directly as an adhesin, but rather, psaA mutations indirectly affect this process through the disruption of Mn2+ transport. The deficiency in Mn2+ transport also causes hypersensitivity to oxidative stress from H2O2 and superoxide. In a chemically defined medium, growth of the wild-type strain was possible in the absence of Fe2+ and Mn2+ cations after a lag of about 15 h. Addition of Mn2+ alone or together with Fe2+ allowed prompt and rapid growth. In the absence of Mn2+, the addition of Fe2+ alone extended the 15-h lag phase to 25 h. Thus, while Fe2+ adversely affects the transition from lag phase to log phase, perhaps through increasing oxidative stress, this effect is relieved by the presence of Mn2+. A scavenger specific for superoxides but not those specific for hydroxyl radicals or H2O2 was able to eliminate the inhibition of growth caused by iron supplementation in the absence of Mn2+. This implies that superoxides are a key player in oxidative stress generated in the presence of iron.
Collapse
Affiliation(s)
- Jason W Johnston
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bröker G, Spellerberg B. Surface proteins of Streptococcus agalactiae and horizontal gene transfer. Int J Med Microbiol 2004; 294:169-75. [PMID: 15493827 DOI: 10.1016/j.ijmm.2004.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Streptococcus agalactiae is responsible for serious infectious diseases in neonates, immuno-compromised adult patients and causes bovine mastitis in animal hosts. Genome sequencing projects revealed strong indications for horizontal gene transfer events leading to virulence acquisition and genetic diversity in this species. Bacterial surface proteins establish the first contact with host tissues and represent interesting targets for the exchange of virulence properties among different streptococci. This review will focus on horizontal gene transfer events in characterized S. agalactiae surface proteins, mobile genetic elements adjacent to the corresponding genes and will discuss potential mechanisms of transfer.
Collapse
Affiliation(s)
- Gerd Bröker
- Department of Medical Microbiology and Hygiene, University of Ulm, Robert Koch Str 8, D-89081 Ulm, Germany
| | | |
Collapse
|
43
|
Stentz R, Jury K, Eaton T, Parker M, Narbad A, Gasson M, Shearman C. Controlled expression of CluA in Lactococcus lactis and its role in conjugation. Microbiology (Reading) 2004; 150:2503-2512. [PMID: 15289547 DOI: 10.1099/mic.0.27149-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CluA is a 136 kDa surface-bound protein encoded by the chromosomally located sex factor of Lactococcus lactis MG1363 and is associated with cell aggregation linked to high-frequency transfer of the sex factor. To further investigate the involvement of CluA in these phenomena, the cluA gene was cloned on a plasmid, downstream from the lactococcal nisA promoter. In a sex-factor-negative MG1363 derivative, nisin-controlled CluA expression resulted in aggregation, despite the absence of the other genes of the sex factor. Therefore, CluA is the only sex factor component responsible for aggregation. The direct involvement of CluA in the establishment of cell-to-cell contact for aggregate formation was observed by electron microscopy using immunogold-labelled CluA antibodies. Inactivation of cluA in an MG1363 background led to a dramatic decrease in sex factor conjugation frequency compared to the parental strain. Increasing levels of CluA expressed in trans in the cluA-inactivated donor strain facilitated a gradual restoration of conjugation frequency, reaching that of the parental strain. In conclusion, CluA is essential for efficient sex factor transfer in conjugation of L. lactis.
Collapse
Affiliation(s)
- Régis Stentz
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Karen Jury
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Tracy Eaton
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Mary Parker
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Arjan Narbad
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Mike Gasson
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Claire Shearman
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| |
Collapse
|
44
|
Lévesque C, Vadeboncoeur C, Frenette M. The csp operon of Streptococcus salivarius encodes two predicted cell-surface proteins, one of which, CspB, is associated with the fimbriae. MICROBIOLOGY-SGM 2004; 150:189-198. [PMID: 14702412 DOI: 10.1099/mic.0.26592-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A Tn917 mutant library was generated to identify genes involved in the biogenesis of Streptococcus salivarius fimbriae. A fimbria-deficient mutant was isolated by negative selection using an immunomagnetic separation technique with specific anti-fimbriae polyclonal antibodies (pAbs). The transposon was inserted in an ORF, called orf176, which encoded a protein of unknown function. The transposon prevented the transcription of orf176 as well as two genes located downstream, which are designated cspA and cspB and which form the csp operon. Sequence analyses of CspA and CspB revealed that both proteins possessed the classic cell-wall-anchoring motif (LPXTG) of Gram-positive bacterial surface proteins. Recombinant CspA (rCspA) and CspB (rCspB) proteins were generated in Escherichia coli and used to produce pAbs. Immunolocalization experiments showed that anti-rCspB, but not anti-rCspA antibodies specifically recognized S. salivarius fimbriae. Our results suggested that the csp operon encoded predicted cell-surface proteins, one of which, CspB, was associated with the fimbriae.
Collapse
Affiliation(s)
- Céline Lévesque
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire and Département de Biochimie et de Microbiologie, Université Laval, Québec, Canada G1K 7P4
| | - Christian Vadeboncoeur
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire and Département de Biochimie et de Microbiologie, Université Laval, Québec, Canada G1K 7P4
| | - Michel Frenette
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire and Département de Biochimie et de Microbiologie, Université Laval, Québec, Canada G1K 7P4
| |
Collapse
|
45
|
Lei B, Liu M, Voyich JM, Prater CI, Kala SV, DeLeo FR, Musser JM. Identification and characterization of HtsA, a second heme-binding protein made by Streptococcus pyogenes. Infect Immun 2003; 71:5962-9. [PMID: 14500516 PMCID: PMC201091 DOI: 10.1128/iai.71.10.5962-5969.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A streptococci (GAS) can use heme and hemoproteins as sources of iron. However, the machinery for heme acquisition in GAS has not been firmly revealed. Recently, we identified a novel heme-associated cell surface protein (Shp) made by GAS. The shp gene is cotranscribed with eight downstream genes, including spy1795, spy1794, and spy1793 encoding a putative ABC transporter (designated HtsABC). In this study, spy1795 (designated htsA) was cloned from a serotype M1 strain, and recombinant HtsA was overexpressed in Escherichia coli and purified to homogeneity. HtsA binds 1 heme molecule per molecule of protein. HtsA was produced in vitro and localized to the bacterial cell surface. GAS up-regulated transcription of htsA in human blood compared with that in Todd-Hewitt broth supplemented with 0.2% yeast extract. The level of the htsA transcript dramatically increased under metal cation-restricted conditions compared with that under metal cation-replete conditions. The cation content, cell surface location, and gene transcription of HtsA were also compared with those of MtsA and Spy0385, the lipoprotein components of two other putative iron acquisition ABC transporters of GAS. Our results suggest that HtsABC is an ABC transporter that may participate in heme acquisition in GAS.
Collapse
Affiliation(s)
- Benfang Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Paik S, Brown A, Munro CL, Cornelissen CN, Kitten T. The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol 2003; 185:5967-75. [PMID: 14526007 PMCID: PMC225050 DOI: 10.1128/jb.185.20.5967-5975.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 07/29/2003] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans belongs to the viridans group of oral streptococci, which is the leading cause of endocarditis in humans. The LraI family of lipoproteins in viridans group streptococci and other bacteria have been shown to function as virulence factors, adhesins, or ABC-type metal transporters. We previously reported the identification of the S. mutans LraI operon, sloABCR, which encodes components of a putative metal uptake system composed of SloA, an ATP-binding protein, SloB, an integral membrane protein, and SloC, a solute-binding lipoprotein, as well as a metal-dependent regulator, SloR. We report here the functional analysis of this operon. By Western blotting, addition of Mn to the growth medium repressed SloC expression in a wild-type strain but not in a sloR mutant. Other metals tested had little effect. Cells were also tested for aerobic growth in media stripped of metals then reconstituted with Mg and either Mn or Fe. Fe at 10 micro M supported growth of the wild-type strain but not of a sloA or sloC mutant. Mn at 0.1 micro M supported growth of the wild-type strain and sloR mutant but not of sloA or sloC mutants. The combined results suggest that the SloABC proteins transport both metals, although the SloR protein represses this system only in response to Mn. These conclusions are supported by (55)Fe uptake studies with Mn as a competitor. Finally, a sloA mutant demonstrated loss of virulence in a rat model of endocarditis, suggesting that metal transport is required for endocarditis pathogenesis.
Collapse
Affiliation(s)
- Sehmi Paik
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
47
|
Smith AJ, Ward PN, Field TR, Jones CL, Lincoln RA, Leigh JA. MtuA, a lipoprotein receptor antigen from Streptococcus uberis, is responsible for acquisition of manganese during growth in milk and is essential for infection of the lactating bovine mammary gland. Infect Immun 2003; 71:4842-9. [PMID: 12933824 PMCID: PMC187302 DOI: 10.1128/iai.71.9.4842-4849.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutant strain of Streptococcus uberis (AJS001) that was unable to grow in bovine milk was isolated following random insertional mutagenesis. The level of growth in milk was restored to that of the parental strain (strain 0140J) following addition of MnSO(4) but not following addition of other metal ions. The mutant contained a single insertion within mtuA, a homologue of mtsA and psaA, which encode metal-binding proteins in Streptococcus pyogenes and Streptococcus pneumoniae, respectively. Strain AJS001 was unable to infect any of eight quarters on four dairy cows following intramammary challenge with 10(5) CFU. Bacteria were never recovered directly from milk of these animals but were detected following enrichment in Todd-Hewitt broth in three of eight milk samples obtained within 24 h of challenge. The animals showed no inflammatory response and no signs of mastitis. Three mammary quarters on two different animals simultaneously challenged with 600 CFU of the parental strain, strain 0140J, became colonized, shed high numbers of S. uberis organisms in milk, displayed a marked inflammatory response to infection, and showed overt signs of mastitis. These data indicate that mtuA was required for efficient uptake of Mn(2+) during growth in bovine milk and infection of the lactating bovine mammary gland.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Base Sequence
- Cattle
- DNA, Bacterial/genetics
- Female
- Genes, Bacterial
- Lactation
- Mammary Glands, Animal/microbiology
- Manganese/metabolism
- Mastitis, Bovine/etiology
- Mastitis, Bovine/microbiology
- Milk/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Receptors, Lipoprotein/genetics
- Receptors, Lipoprotein/immunology
- Receptors, Lipoprotein/metabolism
- Streptococcus/genetics
- Streptococcus/growth & development
- Streptococcus/pathogenicity
- Streptococcus/physiology
- Virulence/genetics
Collapse
Affiliation(s)
- Amanda J Smith
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berks RG20 7NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Idone V, Brendtro S, Gillespie R, Kocaj S, Peterson E, Rendi M, Warren W, Michalek S, Krastel K, Cvitkovitch D, Spatafora G. Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis. Infect Immun 2003; 71:4351-60. [PMID: 12874312 PMCID: PMC166011 DOI: 10.1128/iai.71.8.4351-4360.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is the principal acidogenic component of dental plaque that demineralizes tooth enamel, leading to dental decay. Cell-associated glucosyltransferases catalyze the sucrose-dependent synthesis of sticky glucan polymers that, together with glucan binding proteins, promote S. mutans adherence to teeth and cell aggregation. We generated an S. mutans Tn916 transposon mutant, GMS315, which is defective in sucrose-dependent adherence and significantly less cariogenic than the UA130 wild-type progenitor in germfree rats. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and N-terminal sequence analysis confirmed the absence of a 155-kDa glucosyltransferase S (Gtf-S) from GMS315 protein profiles. Mapping of the unique transposon insertion in GMS315 revealed disruption of a putative regulatory region located upstream of gcrR, a gene previously described by Sato et al. that shares significant amino acid identity with other bacterial response regulators (Y. Sato, Y. Yamamoto, and H. Kizaki, FEMS Microbiol. Lett. 186: 187-191, 2000). The gcrR regulator, which we call "tarC," does not align with any of the 13 proposed two-component signal transduction systems derived from in silico analysis of the S. mutans genome, but rather represents one of several orphan response regulators in the genome. The results of Northern hybridization and/or real-time reverse transcription-PCR experiments reveal increased expression of both Gtf-S and glucan binding protein C (GbpC) in a tarC knockout mutant (GMS900), thereby supporting the notion that TarC acts as a negative transcriptional regulator. In addition, we noted that GMS900 has altered biofilm architecture relative to the wild type and is hypocariogenic in germfree rats. Taken collectively, these findings support a role for signal transduction in S. mutans sucrose-dependent adherence and aggregation and implicate TarC as a potential target for controlling S. mutans-induced cariogenesis.
Collapse
Affiliation(s)
- Vincent Idone
- Department of Biology, Middlebury College, Middlebury Vermont 05753, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Love RM, Jenkinson HF. Invasion of dentinal tubules by oral bacteria. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 13:171-83. [PMID: 12097359 DOI: 10.1177/154411130201300207] [Citation(s) in RCA: 281] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial invasion of dentinal tubules commonly occurs when dentin is exposed following a breach in the integrity of the overlying enamel or cementum. Bacterial products diffuse through the dentinal tubule toward the pulp and evoke inflammatory changes in the pulpo-dentin complex. These may eliminate the bacterial insult and block the route of infection. Unchecked, invasion results in pulpitis and pulp necrosis, infection of the root canal system, and periapical disease. While several hundred bacterial species are known to inhabit the oral cavity, a relatively small and select group of bacteria is involved in the invasion of dentinal tubules and subsequent infection of the root canal space. Gram-positive organisms dominate the tubule microflora in both carious and non-carious dentin. The relatively high numbers of obligate anaerobes present-such as Eubacterium spp., Propionibacterium spp., Bifidobacterium spp., Peptostreptococcus micros, and Veillonella spp.-suggest that the environment favors growth of these bacteria. Gram-negative obligate anaerobic rods, e.g., Porphyromonas spp., are less frequently recovered. Streptococci are among the most commonly identified bacteria that invade dentin. Recent evidence suggests that streptococci may recognize components present within dentinal tubules, such as collagen type I, which stimulate bacterial adhesion and intra-tubular growth. Specific interactions of other oral bacteria with invading streptococci may then facilitate the invasion of dentin by select bacterial groupings. An understanding the mechanisms involved in dentinal tubule invasion by bacteria should allow for the development of new control strategies, such as inhibitory compounds incorporated into oral health care products or dental materials, which would assist in the practice of endodontics.
Collapse
Affiliation(s)
- R M Love
- Department of Stomatology, University of Otago School of Dentistry, PO Box 647, Dunedin, New Zealand.
| | | |
Collapse
|
50
|
Janulczyk R, Ricci S, Björck L. MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect Immun 2003; 71:2656-64. [PMID: 12704140 PMCID: PMC153223 DOI: 10.1128/iai.71.5.2656-2664.2003] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MtsABC is a Streptococcus pyogenes ABC transporter which was previously shown to be involved in iron and zinc accumulation. In this study, we showed that an mtsABC mutant has impaired growth, particularly in a metal-depleted medium and an aerobic environment. In metal-depleted medium, growth was restored by the addition of 10 microM MnCl(2), whereas other metals had modest or no effect. A characterization of metal radioisotope accumulation showed that manganese competes with iron accumulation in a dose-dependent manner. Conversely, iron competes with manganese accumulation but to a lesser extent. The mutant showed a pronounced reduction (>90%) of (54)Mn accumulation, showing that MtsABC is also involved in Mn transport. Using paraquat and hydrogen peroxide to induce oxidative stress, we show that the mutant has an increased susceptibility to reactive oxygen species. Moreover, activity of the manganese-cofactored superoxide dismutase in the mutant is reduced, probably as a consequence of reduced intracellular availability of manganese. The enzyme functionality was restored by manganese supplementation during growth. The mutant was also attenuated in virulence, as shown in animal experiments. These results emphasize the role of MtsABC and trace metals, especially manganese, for S. pyogenes growth, susceptibility to oxidative stress, and virulence.
Collapse
Affiliation(s)
- Robert Janulczyk
- Section for Molecular Pathogenesis, Department of Cell and Molecular Biology, BMC, University of Lund, 221 84 Lund, Sweden.
| | | | | |
Collapse
|