Sarker S, Isberg SR, Milic NL, Lock P, Helbig KJ. Molecular characterization of the first saltwater crocodilepox virus genome sequences from the world's largest living member of the Crocodylia.
Sci Rep 2018;
8:5623. [PMID:
29618766 PMCID:
PMC5884845 DOI:
10.1038/s41598-018-23955-6]
[Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Crocodilepox virus is a large dsDNA virus belonging to the genus Crocodylidpoxvirus, which infects a wide range of host species in the order Crocodylia worldwide. Here, we present genome sequences for a novel saltwater crocodilepox virus, with two subtypes (SwCRV-1 and -2), isolated from the Australian saltwater crocodile. Affected belly skins of juvenile saltwater crocodiles were used to sequence complete viral genomes, and perform electron microscopic analysis that visualized immature and mature virions. Analysis of the SwCRV genomes showed a high degree of sequence similarity to CRV (84.53% and 83.70%, respectively), with the novel SwCRV-1 and -2 complete genome sequences missing 5 and 6 genes respectively when compared to CRV, but containing 45 and 44 predicted unique genes. Similar to CRV, SwCRV also lacks the genes involved in virulence and host range, however, considering the presence of numerous hypothetical and or unique genes in the SwCRV genomes, it is completely reasonable that the genes encoding these functions are present but not recognized. Phylogenetic analysis suggested a monophyletic relationship between SwCRV and CRV, however, SwCRV is quite distinct from other chordopoxvirus genomes. These are the first SwCRV complete genome sequences isolated from saltwater crocodile skin lesions.
Collapse