1
|
Bras G, Satala D, Juszczak M, Kulig K, Wronowska E, Bednarek A, Zawrotniak M, Rapala-Kozik M, Karkowska-Kuleta J. Secreted Aspartic Proteinases: Key Factors in Candida Infections and Host-Pathogen Interactions. Int J Mol Sci 2024; 25:4775. [PMID: 38731993 PMCID: PMC11084781 DOI: 10.3390/ijms25094775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular proteases are key factors contributing to the virulence of pathogenic fungi from the genus Candida. Their proteolytic activities are crucial for extracting nutrients from the external environment, degrading host defenses, and destabilizing the internal balance of the human organism. Currently, the enzymes most frequently described in this context are secreted aspartic proteases (Saps). This review comprehensively explores the multifaceted roles of Saps, highlighting their importance in biofilm formation, tissue invasion through the degradation of extracellular matrix proteins and components of the coagulation cascade, modulation of host immune responses via impairment of neutrophil and monocyte/macrophage functions, and their contribution to antifungal resistance. Additionally, the diagnostic challenges associated with Candida infections and the potential of Saps as biomarkers were discussed. Furthermore, we examined the prospects of developing vaccines based on Saps and the use of protease inhibitors as adjunctive therapies for candidiasis. Given the complex biology of Saps and their central role in Candida pathogenicity, a multidisciplinary approach may pave the way for innovative diagnostic strategies and open new opportunities for innovative clinical interventions against candidiasis.
Collapse
Affiliation(s)
- Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| |
Collapse
|
2
|
Overview of Candida albicans and Human Papillomavirus (HPV) Infection Agents and their Biomolecular Mechanisms in Promoting Oral Cancer in Pediatric Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7312611. [PMID: 34765678 PMCID: PMC8577934 DOI: 10.1155/2021/7312611] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022]
Abstract
Oral carcinoma represents one of the most common malignancies worldwide. Oral squamous cell carcinomas (OSCCs) account over 90% of all oral malignant tumors and are characterized by high mortality in the advanced stages. Early diagnosis is often a challenge for its ambiguous appearance in early stages. Mucosal infection by the human papillomavirus (HPV) is responsible for a growing number of malignancies, particularly cervical cancer and oropharyngeal carcinomas. In addition, Candida albicans (C. albicans), which is the principal fungi involved in the oral cancer development, may induce carcinogenesis through several mechanisms, mainly promoting inflammation. Medical knowledge and research on adolescent/pediatric patients' management and prevention are in continuous evolution. Besides, microbiota can play an important role in maintaining oral health and therefore all human health. The aim of this review is to evaluate epidemiological and pathophysiological characteristics of the several biochemical pathways involved during HPV and C. albicans infections in pediatric dentistry.
Collapse
|
3
|
Effect of prolactin-induced protein on human skin: new insight into the digestive action of this aspartic peptidase on the stratum corneum and its induction of keratinocyte proliferation. J Invest Dermatol 2014; 135:776-785. [PMID: 25313533 DOI: 10.1038/jid.2014.448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/21/2014] [Accepted: 09/24/2014] [Indexed: 11/08/2022]
Abstract
Human prolactin-induced protein (PIP) is a major protein found in exocrine fluids such as saliva and sweat. Intriguingly, PIP possesses residues (human PIP (hPIP): PIP (29-63)) that display similarity to the aspartic peptidase candidapepsin. Here, we aimed to determine the effect of PIP as a protease on normal skin structure. Using an adhesive tape-stripping technique, we applied hPIP peptide on the corneocytes of normal-appearing facial skin from infants with eczema and healthy infants and then analyzed the morphological structure of corneocytes with Nile Red fluorescence. We also repeatedly applied the hPIP peptide onto the surface of a three-dimensional (3-D) human skin model and then analyzed any changes to the stratum corneum and epidermis using light microscopy and scanning electron microscopy. In both infant groups, a decrease in hydrophobic lipids from the cornified envelope was observed after treatment with hPIP. The peptide hPIP appeared to digest the fine structure of the stratum corneum and induce a proliferation of epidermal keratinocytes within the 3-D human skin model. Our results suggest that aspartic peptidase of PIP found in sweat or saliva deteriorates the skin barrier in a de novo manner, which potentially leads directly to the proliferation of epidermal keratinocytes without any external antigenic factors.
Collapse
|
4
|
Wu H, Downs D, Ghosh K, Ghosh AK, Staib P, Monod M, Tang J. Candida albicans secreted aspartic proteases 4-6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J 2013; 27:2132-44. [PMID: 23430844 PMCID: PMC6188231 DOI: 10.1096/fj.12-214353] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 02/04/2013] [Indexed: 11/11/2022]
Abstract
Systemic infection by the pathogenic yeast Candida albicans produces high mortality in immune-compromised people. Such infection starts with the penetration of the organism at the mucosal surfaces, facilitated by the secreted aspartic proteases (Saps) 4, 5, and 6. The functional mechanism of these virulence factors is unclear. We discovered that Saps 4-6 each contains amino acid motifs RGD/KGD to bind integrins on epithelial cell A549 and are internalized to endosomes and lysosomes. These processes are inhibited by RGD-containing peptides or by substituting RGD motifs of these Saps. The internalization of Saps 4-6 results in partial permeabilization of lysosomal membranes, measured by the redistribution of the lysosomal tropic dye acridine orange to the cytosol, and the triggering of apoptosis via caspase activation. Sap 2 and mutated Saps 4-6 contain no RGD motif, are ineffective in these processes, and a proteolytic inhibitor abolished Sap 4 activity in lysosome permeabilization. Same results were also seen for human tongue keratinocyte SCC-15 cells. Mucosal lesions from this fundamental new mechanism may permit C. albicans to enter the body and may be used to attack cells in immune defense during systemic infections. RGD-motif may also be incorporated in Sap inhibitors for Candidiasis drugs targeting to lysosomes.
Collapse
Affiliation(s)
- Hao Wu
- Protein Studies Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Deborah Downs
- Protein Studies Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Koena Ghosh
- Department of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Inidana, USA
| | - Arun K. Ghosh
- Department of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Inidana, USA
| | - Peter Staib
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany; and
| | - Michel Monod
- Laboratoire de Mycologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jordan Tang
- Protein Studies Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122-80. [PMID: 22537156 DOI: 10.1111/j.1574-6976.2012.00340.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
Laminin (Ln) and collagen are multifunctional glycoproteins that play an important role in cellular morphogenesis, cell signalling, tissue repair and cell migration. These proteins are ubiquitously present in tissues as a part of the basement membrane (BM), constitute a protective layer around blood capillaries and are included in the extracellular matrix (ECM). As a component of BMs, both Lns and collagen(s), thus function as major mechanical containment molecules that protect tissues from pathogens. Invasive pathogens breach the basal lamina and degrade ECM proteins of interstitial spaces and connective tissues using various ECM-degrading proteases or surface-bound plasminogen and matrix metalloproteinases recruited from the host. Most pathogens associated with the respiratory, gastrointestinal, or urogenital tracts, as well as with the central nervous system or the skin, have the capacity to bind and degrade Lns and collagen(s) in order to adhere to and invade host tissues. In this review, we focus on the adaptability of various pathogens to utilize these ECM proteins as enhancers for adhesion to host tissues or as a targets for degradation in order to breach the cellular barriers. The major pathogens discussed are Streptococcus, Staphylococcus, Pseudomonas, Salmonella, Yersinia, Treponema, Mycobacterium, Clostridium, Listeria, Porphyromonas and Haemophilus; Candida, Aspergillus, Pneumocystis, Cryptococcus and Coccidioides; Acanthamoeba, Trypanosoma and Trichomonas; retrovirus and papilloma virus.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
6
|
Davis MM, Alvarez FJ, Ryman K, Holm ÅA, Ljungdahl PO, Engström Y. Wild-type Drosophila melanogaster as a model host to analyze nitrogen source dependent virulence of Candida albicans. PLoS One 2011; 6:e27434. [PMID: 22110651 PMCID: PMC3215725 DOI: 10.1371/journal.pone.0027434] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/17/2011] [Indexed: 12/21/2022] Open
Abstract
The fungal pathogen Candida albicans is a common cause of opportunistic infections in humans. We report that wild-type Drosophila melanogaster (OrR) flies are susceptible to virulent C. albicans infections and have established experimental conditions that enable OrR flies to serve as model hosts for studying C. albicans virulence. After injection into the thorax, wild-type C. albicans cells disseminate and invade tissues throughout the fly, leading to lethality. Similar to results obtained monitoring systemic infections in mice, well-characterized cph1Δ efg1Δ and csh3Δ fungal mutants exhibit attenuated virulence in flies. Using the OrR fly host model, we assessed the virulence of C. albicans strains individually lacking functional components of the SPS sensing pathway. In response to extracellular amino acids, the plasma membrane localized SPS-sensor (Ssy1, Ptr3, and Ssy5) activates two transcription factors (Stp1 and Stp2) to differentially control two distinct modes of nitrogen acquisition (host protein catabolism and amino acid uptake, respectively). Our results indicate that a functional SPS-sensor and Stp1 controlled genes required for host protein catabolism and utilization, including the major secreted aspartyl protease SAP2, are required to establish virulent infections. By contrast, Stp2, which activates genes required for amino acid uptake, is dispensable for virulence. These results indicate that nutrient availability within infected hosts directly influences C. albicans virulence.
Collapse
Affiliation(s)
- Monica M. Davis
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | | | - Kicki Ryman
- Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Åsa A. Holm
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Per O. Ljungdahl
- Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail: (YE); (POL)
| | - Ylva Engström
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- * E-mail: (YE); (POL)
| |
Collapse
|
7
|
Mohd Bakri M, Mohd Hussaini H, Rachel Holmes A, David Cannon R, Mary Rich A. Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma. J Oral Microbiol 2010; 2. [PMID: 21523221 PMCID: PMC3084579 DOI: 10.3402/jom.v2i0.5780] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Tobacco and alcohol are risk factors associated with cancer of the upper aerodigestive tract, but increasingly the role of infection and chronic inflammation is recognized as being significant in cancer development. Bacteria, particularly Helicobacter pylori, and viruses such as members of the human papilloma virus family and hepatitis B and C are strongly implicated as etiological factors in certain cancers. There is less evidence for an association between fungi and cancer, although it has been recognized for many years that white patches on the oral mucosa, which are infected with Candida, have a greater likelihood of undergoing malignant transformation than those that are not infected. Objective This article reviews the association between the development of oral squamous cell carcinoma in potentially malignant oral lesions with chronic candidal infection and describes mechanisms that may be involved in Candida-associated malignant transformation.
Collapse
Affiliation(s)
- Marina Mohd Bakri
- Department of Oral Biology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
8
|
Pärnänen P, Kari K, Virtanen I, Sorsa T, Meurman JH. Human laminin-332 degradation by Candida proteinases. J Oral Pathol Med 2008; 37:329-35. [PMID: 18284540 DOI: 10.1111/j.1600-0714.2008.00638.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
BACKGROUND Human laminin-332 (Lm-332) degradation by 12 Candida strains and effects of synthetic proteinase inhibitors [Ilomastat (ILM), EDTA, chemically modified tetracycline-3(CMT-3), CMT-308, synthetic peptide CTT-2, and Pefabloc] were studied. MATERIALS AND METHODS Laminin-332 was incubated with sonicated cell fractions and 10 times concentrated cell-free fractions of reference and clinical strains of C. albicans, C. dubliniensis, C. guilliermondii, C. glabrata, C. krusei, and C. tropicalis. Proteolysis, pH effects, and inhibitors were analyzed by fluorography and zymography. RESULTS Cell fractions of all species except C. guilliermondii and cell-free fractions of C. albicans, and C. dubliniensis showed 20-70 kDa gelatinases at pH 5.0 and 6.0. At pH 7.6, C. glabrata, C. krusei, and C. tropicalis cell fractions and C. tropicalis cell-free fractions showed 55-70 kDa gelatinases. CMT-3, CMT-308, and CTT-2 inhibited Candida gelatinases slightly better than Pefabloc, ILM, and EDTA. No Candida fractions degraded Lm-332 at pH 7.6, but at pH 5.0, 100 kDa bands were generated by cell fractions of C. dubliniensis and C. tropicalis; C. albicans and C. glabrata clinical strains; and C. guilliermondii reference strain. C. krusei reference strain yielded three 100-130 kDa bands. C. albicans, C. dubliniensis, and C. tropicalis reference and clinical strain's cell-free fractions generated 100 kDa band. CONCLUSIONS Laminin-332 degradation is pH-dependent and differences exist between studied Candida strains. Lm-332 degradation can exert functional disturbances on basement membrane integrity, possibly aiding Candida cell invasion into tissues. Certain synthetic matrix metalloproteinase inhibitors (CMTs, CTT) can inhibit Candida proteinases and may be therapeutically useful in future.
Collapse
Affiliation(s)
- P Pärnänen
- University of Helsinki, Institute of Dentistry, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
9
|
Tetracycline-inducible expression of individual secreted aspartic proteases in Candida albicans allows isoenzyme-specific inhibitor screening. Antimicrob Agents Chemother 2007; 52:146-56. [PMID: 17954688 DOI: 10.1128/aac.01072-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Candida albicans possesses a gene family that encodes secreted aspartic proteases (Saps), which are important for the virulence of this human fungal pathogen. Inhibitors of the Saps could therefore be used as novel antimycotic agents for the treatment of C. albicans infections. In the present study, we established a bioassay which allows testing of the activity of potential protease inhibitors against specific Sap isoenzymes by their ability to inhibit protease-dependent growth of C. albicans. In a medium containing bovine serum albumin (BSA) as the sole source of nitrogen, C. albicans specifically expresses the Sap2p isoenzyme, which degrades the BSA and thereby enables the fungus to grow. As the other SAP genes are not significantly expressed under these conditions, mutants lacking SAP2 are unable to utilize BSA as a nitrogen source and cannot grow in such a medium. To investigate whether forced expression of SAP genes other than SAP2 would also allow growth on BSA, we constructed a set of strains expressing each of the 10 SAP genes from a tetracycline-inducible promoter in a sap2Delta mutant background. Expression of Sap1p, Sap2p, Sap3p, Sap4p, Sap5p, Sap6p, Sap8p, and a C-terminally truncated, secreted Sap9p restored the growth of the sap2Delta mutant with different efficiencies. This set of strains was then used to test the activities of various aspartic protease inhibitors against specific Sap isoenzymes by monitoring growth on BSA in the presence of the inhibitors. While pepstatin blocked the activity of all of the Saps tested, the human immunodeficiency virus protease inhibitors ritonavir and saquinavir inhibited growth of the strains expressing Sap1p to Sap3p and Sap1p, respectively, but not that of strains expressing other Saps. Therefore, the strain set can be used to test the activity of new protease inhibitors against individual C. albicans Sap isoenzymes by their ability to block the growth of the pathogen.
Collapse
|
10
|
Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun 2007; 75:2126-35. [PMID: 17339363 PMCID: PMC1865768 DOI: 10.1128/iai.00054-07] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The ability of Candida albicans to invade mucosal tissues is a major virulence determinant of this organism; however, the mechanism of invasion is not understood in detail. Proteolytic breakdown of E-cadherin, the major protein in epithelial cell junctions, has been proposed as a mechanism of invasion of certain bacteria in the oral mucosa. The objectives of this study were (i) to assess whether C. albicans degrades E-cadherin expressed by oral epithelial cells in vitro; (ii) to compare the abilities of strains with different invasive potentials to degrade this protein; and (iii) to investigate fungal virulence factors responsible for E-cadherin degradation. We found that while E-cadherin gene expression was not altered, E-cadherin was proteolytically degraded during the interaction of oral epithelial cells with C. albicans. Moreover, C. albicans-mediated degradation of E-cadherin was completely inhibited in the presence of protease inhibitors. Using a three-dimensional model of the human oral mucosa, we found that E-cadherin was degraded in localized areas of tissue invasion by C. albicans. An invasion-deficient rim101-/rim101- strain was deficient in degradation of E-cadherin, and this finding suggested that proteases may depend on Rim101p for expression. Indeed, reverse transcription-PCR data indicated that expression of the SAP4, SAP5, and SAP6 genes is severely reduced in the rim101-/rim101- mutant. These SAP genes are functional Rim101p targets, because engineered expression of SAP5 in the rim101-/rim101- strain restored E-cadherin degradation and invasion in the mucosal model. Our data support the hypothesis that there is a mechanism by which C. albicans invades mucosal tissues by promoting the proteolytic degradation of E-cadherin in epithelial adherens junctions.
Collapse
Affiliation(s)
- C C Villar
- Department of Periodontology, School of Dental Medicine, University of Connecticut, 263 Farmington Ave., Farmington, CT 06030-1710, USA.
| | | | | | | | | |
Collapse
|
11
|
Reuss O, Morschhäuser J. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol Microbiol 2006; 60:795-812. [PMID: 16629678 DOI: 10.1111/j.1365-2958.2006.05136.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The human fungal pathogen Candida albicans can use proteins as the sole source of nitrogen for growth. The secretion of aspartic proteinases, which have been shown to contribute to virulence of C. albicans, allows the fungus to digest host proteins to produce peptides that must be taken up into the cell by specific transporters. To understand in more detail how C. albicans utilizes proteins as a nitrogen source, we undertook a comprehensive analysis of oligopeptide transporters encoded in the C. albicans genome. We identified eight OPT genes encoding putative oligopeptide transporters, almost all of which are represented by polymorphic alleles in strain SC5314. Expression of these genes was differentially induced when C. albicans was grown in YCB-BSA medium, which contains bovine serum albumin as the sole nitrogen source. Whereas deletion of single OPT genes in strain SC5314 did not affect its ability to utilize proteins as a nitrogen source, opt123delta triple mutants had a severe growth defect in YCB-BSA which was rescued by reintroduction of a single copy of OPT1, OPT2 or OPT3. In addition, forced expression of OPT4 or OPT5 under control of the ADH1 promoter also restored growth of an opt123delta mutant, demonstrating that at least OPT1-OPT5 encode functional peptide transporters. The various oligopeptide transporters differ in their substrate preferences, as shown by the ability of strains expressing specific OPT genes to grow on peptides of defined length and sequence. We present evidence that in addition to the known role of oligopeptide transporters in the uptake of tetra- and pentapeptides these proteins can also transport longer peptides up to at least eight amino acids in length, ensuring an efficient utilization of the various peptides produced via endoproteolytic digestion of proteins by the secreted aspartic proteinases. As even transporters encoded by polymorphic alleles of a single gene exhibited differences in their efficiency to take up specific peptides, the oligopeptide transporters represent an example for how the evolution of gene families containing differentially expressed and functionally optimized members increases the nutritional versatility and, presumably, the adaptation of C. albicans to different host niches.
Collapse
Affiliation(s)
- Oliver Reuss
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | |
Collapse
|
12
|
Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003; 67:400-28, table of contents. [PMID: 12966142 PMCID: PMC193873 DOI: 10.1128/mmbr.67.3.400-428.2003] [Citation(s) in RCA: 792] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis.
Collapse
Affiliation(s)
- Julian R Naglik
- Department of Oral Medicine, Pathology & Immunology, GKT Dental Institute, Kings College London, London, United Kingdom.
| | | | | |
Collapse
|
13
|
Morrison CJ, Hurst SF, Reiss E. Competitive binding inhibition enzyme-linked immunosorbent assay that uses the secreted aspartyl proteinase of Candida albicans as an antigenic marker for diagnosis of disseminated candidiasis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:835-48. [PMID: 12965914 PMCID: PMC193877 DOI: 10.1128/cdli.10.5.835-848.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Revised: 03/18/2003] [Accepted: 06/23/2003] [Indexed: 11/20/2022]
Abstract
The secreted aspartyl proteinases (Saps) of Candida albicans have been implicated as virulence factors associated with adherence and tissue invasion. The potential use of proteinases as markers of invasive candidiasis led us to develop a competitive binding inhibition enzyme-linked immunosorbent assay (ELISA) to detect Sap in clinical specimens. Daily serum and urine specimens were collected from rabbits that had been immunosuppressed with cyclophosphamide and cortisone acetate and infected intravenously with 10(7) C. albicans blastoconidia. Disseminated infection was confirmed by organ culture and histopathology. Although ELISA inhibition was observed when serum specimens from these rabbits were used, more significant inhibition, which correlated with disease progression, occurred when urine specimens were used. Urine collected as early as 1 day after infection resulted in significant ELISA inhibition (mean inhibition +/- standard error [SE] compared with preinfection control urine, 15.7% +/- 2.7% [P < 0.01]), and inhibition increased on days 2 through 5 (29.4% +/- 4.8% to 44.5% +/- 3.5% [P < 0.001]). Urine specimens from immunosuppressed rabbits infected intravenously with Candida tropicalis, Candida parapsilosis, Candida krusei, Cryptococcus neoformans, Aspergillus fumigatus, or Staphylococcus aureus were negative in the assay despite culture-proven dissemination. Nonimmunosuppressed rabbits receiving oral tetracycline and gentamicin treatment were given 2 x 10(8) C. albicans blastoconidia orally or intraurethrally to establish colonization of the gastrointestinal tract or bladder, respectively, without systemic dissemination; urine specimens from these rabbits also gave negative ELISA results. Dissemination to the kidney and spleen occurred in one rabbit challenged by intragastric inoculation, and urine from this rabbit demonstrated significant inhibition in the ELISA (mean inhibition +/- SE by day 3 after infection, 32.9% +/- 2.7% [P < 0.001]). The overall test sensitivity was 83%, the specificity was 92%, the positive predictive value was 84%, the negative predictive value was 91%, and the efficiency was 89% (166 urine samples from 33 rabbits tested). The specificity, positive predictive value, and efficiency could be increased to 97, 95, and 92%, respectively, if at least two positive test results were required for a true positive designation. The ELISA was sensitive and specific for the detection of Sap in urine specimens from rabbits with disseminated C. albicans infection, discriminated between colonization and invasive disease, reflected disease progression and severity, and has the potential to be a noninvasive means to diagnose disseminated candidiasis.
Collapse
Affiliation(s)
- Christine J Morrison
- Mycotic Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | |
Collapse
|
14
|
Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J. Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection. Infect Immun 2002; 70:921-7. [PMID: 11796627 PMCID: PMC127704 DOI: 10.1128/iai.70.2.921-927.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans can cause superficial as well as systemic infections. Successful adaptation to the different host niches encountered during infection requires coordinated expression of various virulence traits, including the switch between yeast and hyphal growth forms and secretion of aspartic proteinases. Using an in vivo expression technology that is based on genetic recombination as a reporter of gene activation during experimental candidiasis in mice, we investigated whether two signal transduction pathways controlling hyphal growth, a mitogen-activated protein kinase cascade ending in the transcriptional activator Cph1p and a cyclic AMP-dependent regulatory pathway that involves the transcription factor Efg1p, also control expression of the SAP5 gene, which encodes one of the secreted aspartic proteinases and is induced by host signals soon after infection. Our results show that both transcriptional regulators are important for SAP5 activation in vivo. SAP5 expression was reduced in a cph1 mutant, although filamentous growth in infected tissue was not detectably impaired. SAP5 expression was also reduced, but not eliminated, in an efg1 null mutant, although this strain grew exclusively in the yeast form in infected tissue, demonstrating that in contrast to in vitro conditions, SAP5 activation during infection does not depend on growth of C. albicans in the hyphal form. In a cph1 efg1 double mutant, however, SAP5 expression in infected mice was almost completely eliminated, suggesting that the two signal transduction pathways are important for SAP5 expression in vivo. The avirulence of the cph1 efg1 mutant seemed to be caused not only by the inability to form hyphae but also by a loss of expression of additional virulence genes in the host.
Collapse
Affiliation(s)
- Peter Staib
- Zentrum für Infektionsforschung. Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Gifford AHT, Klippenstein JR, Moore MM. Serum stimulates growth of and proteinase secretion by Aspergillus fumigatus. Infect Immun 2002; 70:19-26. [PMID: 11748159 PMCID: PMC127604 DOI: 10.1128/iai.70.1.19-26.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serum contains iron-binding proteins, which inhibit the growth of most pathogenic microorganisms, including fungi. The purpose of this research was to investigate the effect of serum on growth of the opportunistic fungal pathogen Aspergillus fumigatus. Supplementing minimal essential medium (MEM) with up to 80% human serum or up to 80% fetal bovine serum (FBS) stimulated growth and increased the amount of A. fumigatus dry biomass approximately fourfold. In addition, a 100-fold increase in proteinase secretion, as measured by azocasein hydrolysis, was observed when 10% human serum or 10% FBS was added to MEM. The fungal proteinases secreted in serum-containing media were shown to degrade (3)H-labeled basal lamina proteins. The factor in serum that stimulated proteinase secretion was larger than 10 kDa and was 85% inactivated when the serum was heated for 30 min at 66 degrees C. The proportions of proteinases of each catalytic class secreted by A. fumigatus in the presence of serum were different from the proportions secreted in media containing single proteins. Proteinase secretion did not result from increased protein concentration in the medium per se because bovine serum albumin (BSA) at a concentration equivalent to the concentration of serum produced only 20% of the proteinase activity per milligram (dry weight) that was produced by FBS. Addition of BSA plus 100 microM FeCl(3) to MEM resulted in the same level of growth as addition of serum, indicating that a combination of nutritional factors in serum may stimulate growth. However, the level of proteinase secretion was still only 30% of the level observed with FBS. These data indicate that serum does not inhibit the growth of A. fumigatus and that the nutrients in serum result in high levels of proteinase secretion, potentially increasing the invasiveness of this species.
Collapse
Affiliation(s)
- Anna H T Gifford
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|