1
|
Suthi S, Mounika A, Potukuchi VGKS. Elevated acetate kinase (ackA) gene expression, activity, and biofilm formation observed in methicillin-resistant strains of Staphylococcus aureus (MRSA). J Genet Eng Biotechnol 2023; 21:100. [PMID: 37831271 PMCID: PMC10575836 DOI: 10.1186/s43141-023-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Staphylococcus aureus spreads its infections through biofilms. This usually happens in the stationary phase of S. aureus growth where it utilizes accumulated acetate as a carbon source via the phosphotrans-acetylase-acetate kinase (Pta-Ack) pathway. In which acetate kinase (ackA) catalyzes the substrate-level phosphorylation, a vital secondary energy-yielding pathway that promotes biofilms formation aids bacterium survival in hostile environments. In this study, we describe the cloning, sequencing, and expression of S. aureus ackA gene. The expression analysis of ackA gene in methicillin-resistant strains of S. aureus (MRSA) correlates with ackA activity and biofilm units. The uniqueness of ackA was analyzed by using in silico methods. RESULTS Elevated ackA gene expression was observed in MRSA strains, which correlates with increased ackA activity and biofilm units, explaining ackA role in MRSA growth and pathogenicity. The pure recombinant acetate kinase showed a molecular weight of 44 kDa, with enzyme activity of 3.35 ± 0.05 μM/ml/min. The presence of ACKA-1, ACKA-2 sites, one ATP, and five serine/threonine-protein kinase sites in the ackA gene (KC954623.1) indicated that acetyl phosphate production is strongly controlled. The comparative structural analysis of S. aureus ackA with ackA structures of Mycobacterium avium (3P4I) and Salmonella typhimurium (3SLC) exhibited variations as indicated by the RMSD values 1.877 Å and 2.141 Å respectively, explaining why ackA functions are differently placed in bacteria, concurring its involvement in S. aureus pathogenesis. CONCLUSIONS Overall findings of this study highlight the correlation of ackA expression profoundly increases survival capacity through biofilm formation, which is a pathogenic factor in MRSA and plays a pivotal role in infection spreading.
Collapse
Affiliation(s)
- Subbarayudu Suthi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Alipiri Road, Tirupati, 517501, Andhra Pradesh, India
| | - A Mounika
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Alipiri Road, Tirupati, 517501, Andhra Pradesh, India
| | | |
Collapse
|
2
|
Loh HQ, Hervé V, Brune A. Metabolic Potential for Reductive Acetogenesis and a Novel Energy-Converting [NiFe] Hydrogenase in Bathyarchaeia From Termite Guts - A Genome-Centric Analysis. Front Microbiol 2021; 11:635786. [PMID: 33613473 PMCID: PMC7886697 DOI: 10.3389/fmicb.2020.635786] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Symbiotic digestion of lignocellulose in the hindgut of higher termites is mediated by a diverse assemblage of bacteria and archaea. During a large-scale metagenomic study, we reconstructed 15 metagenome-assembled genomes of Bathyarchaeia that represent two distinct lineages in subgroup 6 (formerly MCG-6) unique to termite guts. One lineage (TB2; Candidatus Termitimicrobium) encodes all enzymes required for reductive acetogenesis from CO2 via an archaeal variant of the Wood–Ljungdahl pathway, involving tetrahydromethanopterin as C1 carrier and an (ADP-forming) acetyl-CoA synthase. This includes a novel 11-subunit hydrogenase, which possesses the genomic architecture of the respiratory Fpo-complex of other archaea but whose catalytic subunit is phylogenetically related to and shares the conserved [NiFe] cofactor-binding motif with [NiFe] hydrogenases of subgroup 4 g. We propose that this novel Fpo-like hydrogenase provides part of the reduced ferredoxin required for CO2 reduction and is driven by the electrochemical membrane potential generated from the ATP conserved by substrate-level phosphorylation; the other part may require the oxidation of organic electron donors, which would make members of TB2 mixotrophic acetogens. Members of the other lineage (TB1; Candidatus Termiticorpusculum) are definitely organotrophic because they consistently lack hydrogenases and/or methylene-tetrahydromethanopterin reductase, a key enzyme of the archaeal Wood–Ljungdahl pathway. Both lineages have the genomic capacity to reduce ferredoxin by oxidizing amino acids and might conduct methylotrophic acetogenesis using unidentified methylated compound(s). Our results indicate that Bathyarchaeia of subgroup 6 contribute to acetate formation in the guts of higher termites and substantiate the genomic evidence for reductive acetogenesis from organic substrates, possibly including methylated compounds, in other uncultured representatives of the phylum.
Collapse
Affiliation(s)
- Hui Qi Loh
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Brune
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
3
|
Su F, Yang YY. Microbially induced carbonate precipitation via methanogenesis pathway by a microbial consortium enriched from activated anaerobic sludge. J Appl Microbiol 2020; 131:236-256. [PMID: 33187022 DOI: 10.1111/jam.14930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
AIMS Various applications of microbially induced carbonate precipitation (MICP) has been proposed. However, most studies use cultured pure strains to obtain MICP, ignoring advantages of microbial consortia. The aims of this study were to: (i) test the feasibility of a microbial consortium to produce MICP; (ii) identify functional micro-organisms and their relationship; (iii) explain the MICP mechanism; (iv) propose a way of applying the MICP technique to soil media. METHODS AND RESULTS Anaerobic sludge was used as the source of the microbial consortium. A laboratory anaerobic sequencing batch reactor and beaker were used to perform precipitation experiment. The microbial consortium produced MICP with an efficiency of 96·6%. XRD and SEM analysis showed that the precipitation composed of different-size calcite crystals. According to high-throughput 16S rRNA gene sequencing, the functional micro-organisms included acetogenic bacteria, acetate-oxidizing bacteria and archaea Methanosaeta and Methanobacterium beijingense. The methanogenesis acetate degradation provides dissolved inorganic carbon and increases pH for MICP. A series of reactions catalysed by many enzymes and cofactors of methanogens and acetate-oxidizers are involved in the acetate degradation. CONCLUSION This work demonstrates the feasibility of using the microbial consortium to achieve MICP from an experimental and theoretical perspective. SIGNIFICANCE AND IMPACT OF THE STUDY A method of applying the microbial-consortium MICP to soil media is proposed. It has the advantages of low cost, low environmental impact, treatment uniformity and less limitations from natural soils. This method could be used to improve mechanical properties, plug pores and fix harmful elements of soil media, etc.
Collapse
Affiliation(s)
- F Su
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, P. R. China
| | - Y Y Yang
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, P. R. China
| |
Collapse
|
4
|
Youssef NH, Farag IF, Rudy S, Mulliner A, Walker K, Caldwell F, Miller M, Hoff W, Elshahed M. The Wood-Ljungdahl pathway as a key component of metabolic versatility in candidate phylum Bipolaricaulota (Acetothermia, OP1). ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:538-547. [PMID: 30888727 DOI: 10.1111/1758-2229.12753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The Wood-Ljungdahl (WL) pathway is an important component of the metabolic machinery in multiple anaerobic prokaryotes, including numerous yet-uncultured bacterial phyla. The pathway can operate in the reductive and oxidative directions, enabling a wide range of metabolic processes. Here, we present a detailed analysis of 14 newly acquired, previously analysed, and publicly available genomic assemblies belonging to the candidate phylum Bipolaricaulota (candidate division OP1, and candidatus Acetothermia), where the occurrence of WL pathway appears to be universal. In silico analysis of predicted metabolic capabilities indicates that the pathway enables homoacetogenic fermentation of sugars and amino acids in all three Bipolaricaulota orders (RBG-16-55-9, UBA7950 and Bipolaricaulales). In addition, members of RBG-16-55-9 appear to possess the additional capacity for syntrophic acetate oxidation using the WL pathway; as well as for respiratory growth using oxygen or nitrate. Anabolically, all UBA7950, and the majority of the Bipolaricaulales genomes possess the capacity for autotrophic growth using the WL pathway. Our results highlight the WL-enabled metabolic versatility in the Bipolaricaulota, emphasize the need for examining the WL pathway in context of the overall metabolic circuitry in uncultured taxa, and demonstrate the value of comparative genomic analysis for providing a detailed overview of metabolic potential in a target microbial lineage and its potential functional niche in an ecosystem.
Collapse
Affiliation(s)
- Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| | - Ibrahim F Farag
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| | - Sydney Rudy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| | - Ace Mulliner
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| | - Kara Walker
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| | - Ford Caldwell
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| | - Malik Miller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| | - Wouter Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| | - Mostafa Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74074, USA
| |
Collapse
|
5
|
Westerholm M, Dolfing J, Schnürer A. Growth Characteristics and Thermodynamics of Syntrophic Acetate Oxidizers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5512-5520. [PMID: 30990997 DOI: 10.1021/acs.est.9b00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Syntrophic acetate oxidation (SAO) plays a pivotal role in biogas production processes when aceticlastic methanogens are inhibited. Despite the importance of SAO, the metabolic interactions and syntrophic growth of the organisms involved are still poorly understood. Therefore, we studied growth parameters and interactions within constructed defined cocultures comprising the methanogen Methanoculleus bourgensis and one, or several, of the syntrophic acetate oxidizers Syntrophaceticus schinkii, [ Clostridium] ultunense, and Tepidanaerobacter acetatoxydans and a novel, uncharacterized bacterium. Cultivation experiments in a design-of-experiment approach revealed positive effects on methane production rate of increased ammonium levels (up to 0.2 M), temperature (up to 45 °C), and acetate concentrations (0.15-0.30 M). Molecular analyses and thermodynamic calculations demonstrated close interlinkages between the microorganisms, with available energies of -10 kJ/mol for acetate oxidation and -20 kJ/mol for hydrogenotrophic methanogenesis. The estimated generation time varied between 3 and 20 days for all syntrophic microorganisms involved, and the acetate minimum threshold level was 0.40-0.45 mM. The rate of methanogenesis depended on the SAO bacteria present in the culture. These data are beneficial for interpretation of SAO prevalence and competiveness against aceticlastic methanogens in anaerobic environments.
Collapse
Affiliation(s)
- Maria Westerholm
- Department of Microbiology , Swedish University of Agricultural Sciences , Uppsala BioCenter, Box 7025, SE-750 07 Uppsala , Sweden
| | - Jan Dolfing
- School of Engineering , Newcastle University , Newcastle-upon-Tyne NE1 7RU United Kingdom
| | - Anna Schnürer
- Department of Microbiology , Swedish University of Agricultural Sciences , Uppsala BioCenter, Box 7025, SE-750 07 Uppsala , Sweden
| |
Collapse
|
6
|
Treu L, Campanaro S, Kougias PG, Zhu X, Angelidaki I. Untangling the Effect of Fatty Acid Addition at Species Level Revealed Different Transcriptional Responses of the Biogas Microbial Community Members. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6079-90. [PMID: 27154312 DOI: 10.1021/acs.est.6b00296] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the present study, RNA-sequencing was used to elucidate the change of anaerobic digestion metatranscriptome after long chain fatty acids (oleate) exposure. To explore the general transcriptional behavior of the microbiome, the analysis was first performed on shotgun reads without considering a reference metagenome. As a second step, RNA reads were aligned on the genes encoded by the microbial community, revealing the expression of more than 51 000 different transcripts. The present study is the first research which was able to dissect the transcriptional behavior at a single species level by considering the 106 microbial genomes previously identified. The exploration of the metabolic pathways confirmed the importance of Syntrophomonas species in fatty acids degradation, and also highlighted the presence of protective mechanisms toward the long chain fatty acid effects in bacteria belonging to Clostridiales, Rykenellaceae, and in species of the genera Halothermothrix and Anaerobaculum. Additionally, an interesting transcriptional activation of the chemotaxis genes was evidenced in seven species belonging to Clostridia, Halothermothrix, and Tepidanaerobacter. Surprisingly, methanogens revealed a very versatile behavior different from each other, even among similar species of the Methanoculleus genus, while a strong increase of the expression level in Methanosarcina sp. was evidenced after oleate addition.
Collapse
Affiliation(s)
- Laura Treu
- Department of Environmental Engineering, Technical University of Denmark , 2800 Kgs. Lyngby, Denmark
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova , Viale dell'Università 16, Legnaro, PD 35020, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova , Via U. Bassi 58/b, 35121, Padova Italy
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark , 2800 Kgs. Lyngby, Denmark
| | - Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark , 2800 Kgs. Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark , 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Draft Genome Sequence of Clostridium ultunense Strain BS (DSMZ 10521), Recovered from a Mixed Culture. GENOME ANNOUNCEMENTS 2014; 2:2/1/e01269-13. [PMID: 24504003 PMCID: PMC3916497 DOI: 10.1128/genomea.01269-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clostridium ultunense BS is the first isolated strain (type strain) of C. ultunense that was identified as a mesophilic syntrophic acetate-oxidizing bacterium (SAOB). Here, we report the draft genome sequence of this strain, which will help us to elucidate the mechanism of syntrophic acetate oxidization.
Collapse
|
8
|
Müller B, Sun L, Schnürer A. First insights into the syntrophic acetate-oxidizing bacteria--a genetic study. Microbiologyopen 2012; 2:35-53. [PMID: 23239474 PMCID: PMC3584212 DOI: 10.1002/mbo3.50] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/18/2012] [Accepted: 11/05/2012] [Indexed: 11/10/2022] Open
Abstract
Syntrophic acetate-oxidizing bacteria have been identified as key organisms for efficient biogas production from protein-rich materials. They normally grow as lithotrophs or heterotrophs, producing acetate through the Wood–Ljungdahl pathway, but when growing in syntrophy with methanogens, they reportedly reverse this pathway and oxidize acetate to hydrogen and carbon dioxide. However, the biochemical and regulatory mechanisms behind the shift and the way in which the bacteria regain energy remain unknown. In a genome-walking approach, starting with degenerated primers, we identified those gene clusters in Syntrophaceticus schinkii, Clostridium ultunense, and Tepidanaerobacter acetatoxydans that comprise the formyltetrahydrofolate synthetase gene (fhs), encoding a key enzyme of the Wood–Ljungdahl pathway. We also discovered that the latter two harbor two fhs alleles. The fhs genes are phylogenetically separated and in the case of S. schinkii functionally linked to sulfate reducers. The T. acetatoxydansfhs1 cluster combines features of acetogens, sulfate reducers, and carbon monoxide oxidizers and is organized as a putative operon. The T. acetatoxydansfhs2 cluster encodes Wood–Ljungdahl pathway enzymes, which are also known to be involved in C1 carbon metabolism. Isolation of the enzymes illustrated that both formyltetrahydrofolate synthetases of T. acetatoxydans were functionally active. However, only fhs1 was expressed, confirming bidirectional usage of the pathway.
Collapse
Affiliation(s)
- Bettina Müller
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, SE 750 07, Sweden.
| | | | | |
Collapse
|
9
|
Westerholm M, Dolfing J, Sherry A, Gray ND, Head IM, Schnürer A. Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:500-5. [PMID: 23761313 PMCID: PMC3659410 DOI: 10.1111/j.1758-2229.2011.00249.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 02/11/2011] [Indexed: 05/18/2023]
Abstract
Changes in communities of syntrophic acetate-oxidizing bacteria (SAOB) and methanogens caused by elevated ammonia levels were quantified in laboratory-scale methanogenic biogas reactors operating at moderate temperature (37°C) using quantitative polymerase chain reaction (qPCR). The experimental reactor was subjected to gradually increasing ammonia levels (0.8-6.9 g NH4 (+) -N l(-1) ), whereas the level of ammonia in the control reactor was kept low (0.65-0.90 g NH4 (+) -N l(-1) ) during the entire period of operation (660 days). Acetate oxidation in the experimental reactor, indicated by increased production of (14) CO2 from acetate labelled in the methyl carbon, occurred when ammonia levels reached 5.5 and 6.9 g NH4 (+) -N l(-1) . Syntrophic acetate oxidizers targeted by newly designed qPCR primers were Thermacetogenium phaeum, Clostridium ultunense, Syntrophaceticus schinkii and Tepidanaerobacter acetatoxydans. The results showed a significant increase in abundance of all these bacteria except T. phaeum in the ammonia-stressed reactor, coincident with the shift to syntrophic acetate oxidation. As the abundance of the bacteria increased, a simultaneous decrease was observed in the abundance of aceticlastic methanogens from the families Methanosaetaceae and Methanosarcinaceae. qPCR analyses of sludge from two additional high ammonia processes, in which methane production from acetate proceeded through syntrophic acetate oxidation (reactor SB) or through aceticlastic degradation (reactor DVX), demonstrated that SAOB were significantly more abundant in the SB reactor than in the DVX reactor.
Collapse
Affiliation(s)
- Maria Westerholm
- Department of Microbiology, Swedish University of Agricultural SciencesSE-750 07 Uppsala, Sweden
| | - Jan Dolfing
- School of Civil Engineering and Geosciences, Newcastle UniversityNewcastle upon Tyne NE1 7RU, UK
| | - Angela Sherry
- School of Civil Engineering and Geosciences, Newcastle UniversityNewcastle upon Tyne NE1 7RU, UK
| | - Neil D Gray
- School of Civil Engineering and Geosciences, Newcastle UniversityNewcastle upon Tyne NE1 7RU, UK
| | - Ian M Head
- School of Civil Engineering and Geosciences, Newcastle UniversityNewcastle upon Tyne NE1 7RU, UK
| | - Anna Schnürer
- Department of Microbiology, Swedish University of Agricultural SciencesSE-750 07 Uppsala, Sweden
- *For correspondence. E-mail ; Tel. (+46) 18 671000; Fax (+46) 18 673393
| |
Collapse
|