1
|
Shen Y, Nie J, Kuang L, Zhang J, Li H. DNA sequencing, genomes and genetic markers of microbes on fruits and vegetables. Microb Biotechnol 2020; 14:323-362. [PMID: 32207561 PMCID: PMC7936329 DOI: 10.1111/1751-7915.13560] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The development of DNA sequencing technology has provided an effective method for studying foodborne and phytopathogenic microorganisms on fruits and vegetables (F & V). DNA sequencing has successfully proceeded through three generations, including the tens of operating platforms. These advances have significantly promoted microbial whole‐genome sequencing (WGS) and DNA polymorphism research. Based on genomic and regional polymorphisms, genetic markers have been widely obtained. These molecular markers are used as targets for PCR or chip analyses to detect microbes at the genetic level. Furthermore, metagenomic analyses conducted by sequencing the hypervariable regions of ribosomal DNA (rDNA) have revealed comprehensive microbial communities in various studies on F & V. This review highlights the basic principles of three generations of DNA sequencing, and summarizes the WGS studies of and available DNA markers for major bacterial foodborne pathogens and phytopathogenic fungi found on F & V. In addition, rDNA sequencing‐based bacterial and fungal metagenomics are summarized under three topics. These findings deepen the understanding of DNA sequencing and its application in studies of foodborne and phytopathogenic microbes and shed light on strategies for the monitoring of F & V microbes and quality control.
Collapse
Affiliation(s)
- Youming Shen
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jiyun Nie
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lixue Kuang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jianyi Zhang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Haifei Li
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| |
Collapse
|
2
|
Marin-Felix Y, Groenewald J, Cai L, Chen Q, Marincowitz S, Barnes I, Bensch K, Braun U, Camporesi E, Damm U, de Beer Z, Dissanayake A, Edwards J, Giraldo A, Hernández-Restrepo M, Hyde K, Jayawardena R, Lombard L, Luangsa-ard J, McTaggart A, Rossman A, Sandoval-Denis M, Shen M, Shivas R, Tan Y, van der Linde E, Wingfield M, Wood A, Zhang J, Zhang Y, Crous P. Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol 2017; 86:99-216. [PMID: 28663602 PMCID: PMC5486355 DOI: 10.1016/j.simyco.2017.04.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genera of Phytopathogenic Fungi (GOPHY) is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, ten new combinations, and four typifications of older names.
Collapse
Affiliation(s)
- Y. Marin-Felix
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - S. Marincowitz
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - I. Barnes
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Botanische Staatssammlung München, Menzinger Straße 67, D-80638 München, Germany
| | - U. Braun
- Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle (Saale), Germany
| | - E. Camporesi
- A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy
- A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy
- Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Z.W. de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Dissanayake
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - J. Edwards
- AgriBio Centre for AgriBiosciences, Department of Economic Development, Jobs, Transport and Resources, 5 Ring Road, LaTrobe University, Bundoora, Victoria 3083, Australia
| | - A. Giraldo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M. Hernández-Restrepo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - K.D. Hyde
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - R.S. Jayawardena
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - J. Luangsa-ard
- Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA 113 Thailand Science Park Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - A.R. McTaggart
- Department of Plant and Soil Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A.Y. Rossman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - M. Shen
- Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, PR China
| | - R.G. Shivas
- Centre for Crop Health, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Y.P. Tan
- Department of Agriculture & Fisheries, Biosecurity Queensland, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
| | - E.J. van der Linde
- ARC – Plant Protection Research Institute, Biosystematics Division – Mycology, P. Bag X134, Queenswood 0121, South Africa
| | - M.J. Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A.R. Wood
- ARC – Plant Protection Research Institute, P. Bag X5017, Stellenbosch 7599, South Africa
| | - J.Q. Zhang
- Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, PR China
| | - Y. Zhang
- Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, PR China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Oliveira Lino L, Pacheco I, Mercier V, Faoro F, Bassi D, Bornard I, Quilot-Turion B. Brown Rot Strikes Prunus Fruit: An Ancient Fight Almost Always Lost. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4029-47. [PMID: 27133976 DOI: 10.1021/acs.jafc.6b00104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Brown rot (BR) caused by Monilinia spp., has been an economic problem for the stone fruit market due to dramatic losses, mainly during the postharvest period. There is much literature about basic aspects of Monilinia spp. infection, which indicates that environment significantly influences its occurrence in the orchard. However, progress is needed to sustainably limit this disease: the pathogen is able to develop resistance to pesticides, and most of BR resistance research programs in plant models perish. Solving this problem becomes important due to the need to decrease chemical treatments and reduce residues on fruit. Thus, research has recently increased, exploring a wide range of disease control strategies (e.g., genetic, chemical, physical). Summarizing this information is difficult, as studies evaluate different Monilinia and Prunus model species, with diverse strategies and protocols. Thus, the purpose of this review is to present the diversity and distribution of agents causing BR, focusing on the biochemical mechanisms of Monilinia spp. infection both of the fungi and of the fruit, and report on the resistance sources in Prunus germplasm. This review comprehensively compiles the information currently available to better understand mechanisms related to BR resistance.
Collapse
Affiliation(s)
- Leandro Oliveira Lino
- CAPES Foundation, Ministry of Education of Brazil , Brası́lia, DF 70040-020, Brazil
- GAFL, INRA , 84000, Avignon, France
| | - Igor Pacheco
- INTA, Universidad de Chile , Avenida El Lı́bano, 5524 Macul, Santiago, Chile
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano , Via Celoria 2, 20133 Milano, Italy
| | | | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano , Via Celoria 2, 20133 Milano, Italy
| | - Daniele Bassi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano , Via Celoria 2, 20133 Milano, Italy
| | | | | |
Collapse
|
4
|
Sanoamuang N, Jitjak W, Rodtong S, Whalley AJ. Gelatinomyces siamensis gen. sp. nov. (Ascomycota, Leotiomycetes, incertae sedis) on bamboo in Thailand. IMA Fungus 2013; 4:71-87. [PMID: 23898414 PMCID: PMC3719209 DOI: 10.5598/imafungus.2013.04.01.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 04/08/2013] [Indexed: 11/04/2022] Open
Abstract
Gelatinomyces siamensis gen. sp. nov., incertae sedis within Leotiomycetes, the Siamese jelly-ball, is described. The fungus was collected from bamboo culms and branches in Nam Nao National Park, Phetchabun, Thailand. It presents as a ping-pong ball-sized and golf ball-like gelatinous ascostroma. The asci have numerous ascospores, are thick-walled, and arise on discoid apothecia which are aggregated and clustered to form the spherical gelatinous structures. An hyphomycete asexual morph is morphologically somewhat phialophora-like, and produces red pigments. On the basis of phylogenetic analysis based on rRNA, SSU, and LSU gene sequences, the lineage is closest to Collophora rubra. However, ITS sequences place the fungus on a well-separated branch from that fungus, and the morphological and ecological differences exclude it from Collophora.
Collapse
Affiliation(s)
- Niwat Sanoamuang
- Applied Taxonomic Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Plant Sciences and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttiwat Jitjak
- Department of Plant Sciences and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sureelak Rodtong
- School of Microbiology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anthony J.S. Whalley
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Institute Bldg. 3, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Scupham AJ, Presley LL, Wei B, Bent E, Griffith N, McPherson M, Zhu F, Oluwadara O, Rao N, Braun J, Borneman J. Abundant and diverse fungal microbiota in the murine intestine. Appl Environ Microbiol 2006; 72:793-801. [PMID: 16391120 PMCID: PMC1352209 DOI: 10.1128/aem.72.1.793-801.2006] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enteric microbiota play a variety of roles in intestinal health and disease. While bacteria in the intestine have been broadly characterized, little is known about the abundance or diversity of enteric fungi. This study utilized a culture-independent method termed oligonucleotide fingerprinting of rRNA genes (OFRG) to describe the compositions of fungal and bacterial rRNA genes from small and large intestines (tissue and luminal contents) of restricted-flora and specific-pathogen-free mice. OFRG analysis identified rRNA genes from all four major fungal phyla: Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The largest assemblages of fungal rRNA sequences were related to the genera Acremonium, Monilinia, Fusarium, Cryptococcus/Filobasidium, Scleroderma, Catenomyces, Spizellomyces, Neocallimastix, Powellomyces, Entophlyctis, Mortierella, and Smittium and the order Mucorales. The majority of bacterial rRNA gene clones were affiliated with the taxa Bacteroidetes, Firmicutes, Acinetobacter, and Lactobacillus. Sequence-selective PCR analyses also detected several of these bacterial and fungal rRNA genes in the mouse chow. Fluorescence in situ hybridization analysis with a fungal small-subunit rRNA probe revealed morphologically diverse microorganisms resident in the mucus biofilm adjacent to the cecal and proximal colonic epithelium. Hybridizing organisms comprised about 2% of the DAPI (4',6-diamidino-2-phenylindole, dihydrochloride)-positive organisms in the mucus biofilm, but their abundance in fecal material may be much lower. These data indicate that diverse fungal taxa are present in the intestinal microbial community. Their abundance suggests that they may play significant roles in enteric microbial functions.
Collapse
MESH Headings
- Animals
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- DNA, Bacterial/analysis
- DNA, Bacterial/isolation & purification
- DNA, Fungal/analysis
- DNA, Fungal/isolation & purification
- Female
- Fungi/classification
- Fungi/genetics
- Fungi/isolation & purification
- Genes, rRNA
- In Situ Hybridization, Fluorescence
- Intestine, Large/microbiology
- Intestine, Small/microbiology
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Oligonucleotide Probes
- Polymerase Chain Reaction
- RNA, Ribosomal/genetics
- Sequence Analysis, DNA
- Specific Pathogen-Free Organisms
Collapse
|