1
|
Brunt J, van Vliet AHM, Stringer SC, Carter AT, Lindström M, Peck MW. Pan-Genomic Analysis of Clostridium botulinum Group II (Non-Proteolytic C. botulinum) Associated with Foodborne Botulism and Isolated from the Environment. Toxins (Basel) 2020; 12:E306. [PMID: 32397147 PMCID: PMC7291236 DOI: 10.3390/toxins12050306] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
The neurotoxin formed by Clostridium botulinum Group II is a major cause of foodborne botulism, a deadly intoxication. This study aims to understand the genetic diversity and spread of C. botulinum Group II strains and their neurotoxin genes. A comparative genomic study has been conducted with 208 highly diverse C. botulinum Group II strains (180 newly sequenced strains isolated from 16 countries over 80 years, 28 sequences from Genbank). Strains possessed a single type B, E, or F neurotoxin gene or were closely related strains with no neurotoxin gene. Botulinum neurotoxin subtype variants (including novel variants) with a unique amino acid sequence were identified. Core genome single-nucleotide polymorphism (SNP) analysis identified two major lineages-one with type E strains, and the second dominated by subtype B4 strains with subtype F6 strains. This study revealed novel details of population structure/diversity and established relationships between whole-genome lineage, botulinum neurotoxin subtype variant, association with foodborne botulism, epidemiology, and geographical source. Additionally, the genome sequences represent a valuable resource for the research community (e.g., understanding evolution of C. botulinum and its neurotoxin genes, dissecting key aspects of C. botulinum Group II biology). This may contribute to improved risk assessments and the prevention of foodborne botulism.
Collapse
Affiliation(s)
- Jason Brunt
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Arnoud H. M. van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK;
| | - Sandra C. Stringer
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Andrew T. Carter
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Michael W. Peck
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| |
Collapse
|
2
|
Closed Genome Sequences of Two Clostridium botulinum Strains Obtained by Nanopore Sequencing. Microbiol Resour Announc 2018; 7:MRA01075-18. [PMID: 30533938 PMCID: PMC6256530 DOI: 10.1128/mra.01075-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 01/26/2023] Open
Abstract
Here we report the genome sequences of two toxin-producing Clostridium botulinum strains, one environmental sample (83F) and one clinical sample (CDC51232). The genomes were closed by a combination of long-read and short-read sequencing. Here we report the genome sequences of two toxin-producing Clostridium botulinum strains, one environmental sample (83F) and one clinical sample (CDC51232). The genomes were closed by a combination of long-read and short-read sequencing. The strains belong to C. botulinum sequence type 4 (ST4) and ST7, respectively.
Collapse
|
3
|
The hypothetical protein P47 of Clostridium botulinum E1 strain Beluga has a structural topology similar to bactericidal/permeability-increasing protein. Toxicon 2017; 147:19-26. [PMID: 29042313 DOI: 10.1016/j.toxicon.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022]
Abstract
Botulinum neurotoxins (BoNTs) are causative agents of the life-threatening disease botulism. They are naturally produced by species of the bacteria Clostridium botulinum as stable and non-covalent complexes, in which the BoNT molecule is assembled with several auxiliary non-toxic proteins. Some BoNT serotypes, represented by the well-studied BoNT serotype A (BoNT/A), are produced by Clostridium strains that carry the ha gene cluster, which encodes four neurotoxin-associated proteins (NTNHA, HA17, HA33, and HA70) that play an important role to deliver and protect BoNTs in the gastrointestinal tract during oral intoxication. In contrast, BoNT/E- and BoNT/F-producing strains carry a distinct gene cluster that encodes five proteins (NTNHA, P47, OrfX1, OrfX2, and OrfX3, termed the orfX cluster). The structures and functions of these proteins remain largely unknown. Here, we report the crystal structure of P47 resolved at 2.8 Å resolution. Surprisingly, P47 displays a structural topology that is similar to bactericidal/permeability-increasing (BPI) like proteins, which were previously identified only in eukaryotes. The similarity of a hydrophobic cleft of P47 with the phospholipid-binding groove of BPI suggests that P47 might be involved in lipid association to exert its function. Consistently, P47 associates and induces aggregation of asolectin-containing liposomes in a protein- and lipid-concentration dependent manner. These findings laid the foundation for future structural and functional studies of the potential roles of P47 and OrfX proteins in facilitating oral intoxication of BoNTs.
Collapse
|
4
|
Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon 2015; 107:9-24. [PMID: 26363288 DOI: 10.1016/j.toxicon.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxins (BoNT) cause the disease botulism, a flaccid paralysis of the muscle. They are also very effective, widely used medicines applied locally in sub-nanogram quantities. BoNTs are released together with several non-toxic, associated proteins as progenitor toxin complexes (PCT) by Clostridium botulinum to become highly potent oral poisons ingested via contaminated food. They block the neurotransmission in susceptible animals and humans already in nanogram quantities due to their specific ability to enter motoneurons and to cleave only selected neuronal proteins involved in neuroexocytosis. BoNTs have developed a sophisticated strategy to passage the gastrointestinal tract and to be absorbed in the intestine of the host to finally attack neurons. A non-toxic non-hemagglutinin (NTNHA) forms a binary complex with BoNT to protect it from gastrointestinal degradation. This binary M-PTC is one component of the bi-modular 14-subunit ∼760 kDa large progenitor toxin complex. The other component is the structurally and functionally independent dodecameric hemagglutinin (HA) complex which facilitates the absorption on the intestinal epithelium by glycan binding. Subsequent to its transcytosis the HA complex disrupts the tight junction of the intestinal barrier from the basolateral side by binding to E-cadherin. Now, the L-PTC can also enter the circulation by paracellular routes in much larger quantities. From here, the dissociated BoNTs reach the neuromuscular junction and accumulate via interaction with polysialo gangliosides, complex glycolipids, on motoneurons at the neuromuscular junction. Subsequently, additional specific binding to luminal segments of synaptic vesicles proteins like SV2 and synaptotagmin leads to their uptake. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had exploited before to enter their target cells, via specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, which constitute the core components of the cellular membrane fusion machinery.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| |
Collapse
|
5
|
Inhibiting oral intoxication of botulinum neurotoxin A complex by carbohydrate receptor mimics. Toxicon 2015; 107:43-9. [PMID: 26272706 DOI: 10.1016/j.toxicon.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Abstract
Botulinum neurotoxins (BoNTs) cause the disease botulism manifested by flaccid paralysis that could be fatal to humans and animals. Oral ingestion of the toxin with contaminated food is one of the most common routes for botulism. BoNT assembles with several auxiliary proteins to survive in the gastrointestinal tract and is subsequently transported through the intestinal epithelium into the general circulation. Several hemagglutinin proteins form a multi-protein complex (HA complex) that recognizes host glycans on the intestinal epithelial cell surface to facilitate BoNT absorption. Blocking carbohydrate binding to the HA complex could significantly inhibit the oral toxicity of BoNT. Here, we identify lactulose, a galactose-containing non-digestible sugar commonly used to treat constipation, as a prototype inhibitor against oral BoNT/A intoxication. As revealed by a crystal structure, lactulose binds to the HA complex at the same site where the host galactose-containing carbohydrate receptors bind. In vitro assays using intestinal Caco-2 cells demonstrated that lactulose inhibits HA from compromising the integrity of the epithelial cell monolayers and blocks the internalization of HA. Furthermore, co-administration of lactulose significantly protected mice against BoNT/A oral intoxication in vivo. Taken together, these data encourage the development of carbohydrate receptor mimics as a therapeutic intervention to prevent BoNT oral intoxication.
Collapse
|
6
|
Connan C, Popoff MR. Two-component systems and toxinogenesis regulation in Clostridium botulinum. Res Microbiol 2015; 166:332-43. [PMID: 25592073 DOI: 10.1016/j.resmic.2014.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. They are mostly produced by Clostridium botulinum but also by other clostridia. BoNTs associate with non-toxic proteins (ANTPs) to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 recently described two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. Several environmental stimuli have been identified to positively or negatively regulate toxin synthesis; however, the link between environmental stimuli and TCSs is still elusive. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum.
Collapse
Affiliation(s)
- Chloé Connan
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France.
| |
Collapse
|
7
|
Immunoprecipitation of native botulinum neurotoxin complexes from Clostridium botulinum subtype A strains. Appl Environ Microbiol 2014; 81:481-91. [PMID: 25362065 DOI: 10.1128/aem.02817-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) naturally exist as components of protein complexes containing nontoxic proteins. The nontoxic proteins impart stability of BoNTs in the gastrointestinal tract and during purification and handling. The two primary neurotoxin complexes (TCs) are (i) TC1, consisting of BoNT, nontoxin-nonhemagglutinin (NTNH), and hemagglutinins (HAs), and (ii) TC2, consisting of BoNT and NTNH (and possibly OrfX proteins). In this study, BoNT/A subtypes A1, A2, A3, and A5 were examined for the compositions of their TCs in culture extracts using immunoprecipitation (IP). IP analyses showed that BoNT/A1 and BoNT/A5 form TC1s, while BoNT/A2 and BoNT/A3 form TC2s. A Clostridium botulinum host strain expressing recombinant BoNT/A4 (normally present as a TC2) from an extrachromosomal plasmid formed a TC1 with complexing proteins from the host strain, indicating that the HAs and NTNH encoded on the chromosome associated with the plasmid-encoded BoNT/A4. Strain NCTC 2916 (A1/silent B1), which carries both an ha silent bont/b cluster and an orfX bont/a1 cluster, was also examined. IP analysis revealed that NCTC 2916 formed only a TC2 containing BoNT/A1 and its associated NTNH. No association between BoNT/A1 and the nontoxic proteins from the silent bont/b cluster was detected, although the HAs were expressed as determined by Western blotting analysis. Additionally, NTNH and HAs from the silent bont/b cluster did not form a complex in NCTC 2916. The stabilities of the two types of TC differed at various pHs and with addition of KCl and NaCl. TC1 complexes were more stable than TC2 complexes. Mouse serum stabilized TC2, while TC1 was unaffected.
Collapse
|
8
|
Dover N, Barash JR, Burke JN, Hill KK, Detter JC, Arnon SS. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters. PLoS One 2014; 9:e97983. [PMID: 24853378 PMCID: PMC4031146 DOI: 10.1371/journal.pone.0097983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/27/2014] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.
Collapse
Affiliation(s)
- Nir Dover
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| | - Jason R. Barash
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| | - Julianne N. Burke
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| | - Karen K. Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John C. Detter
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Stephen S. Arnon
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| |
Collapse
|
9
|
Connan C, Denève C, Mazuet C, Popoff MR. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani. Toxicon 2013; 75:90-100. [DOI: 10.1016/j.toxicon.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/25/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023]
|
10
|
Masuyer G, Chaddock JA, Foster KA, Acharya KR. Engineered botulinum neurotoxins as new therapeutics. Annu Rev Pharmacol Toxicol 2013; 54:27-51. [PMID: 24016211 DOI: 10.1146/annurev-pharmtox-011613-135935] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inhibiting neurotransmission at cholinergic nerve terminals. Each BoNT consists of three domains that are essential for toxicity: the binding domain, the translocation domain, and the catalytic light-chain domain. BoNT modular architecture is associated with a multistep mechanism that culminates in the intracellular proteolysis of SNARE (soluble N-ethylmaleimide-sensitive-fusion-protein attachment protein receptor) proteins, which prevents synaptic vesicle exocytosis. As the most toxic proteins known, BoNTs have been extensively studied and are used as pharmaceutical agents to treat an increasing variety of disorders. This review summarizes the level of sophistication reached in BoNT engineering and highlights the diversity of approaches taken to utilize the modularity of the toxin. Improved efficiency and applicability have been achieved by direct mutagenesis and interserotype domain rearrangement. The scope of BoNT activity has been extended to nonneuronal cells and offers the basis for novel biomolecules in the treatment of secretion disorders.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom;
| | | | | | | |
Collapse
|
11
|
Draft Genome Sequence of a Clostridium botulinum Isolate from Water Used for Cooling at a Plant Producing Low-Acid Canned Foods. GENOME ANNOUNCEMENTS 2013; 1:genomeA00200-12. [PMID: 23409268 PMCID: PMC3569341 DOI: 10.1128/genomea.00200-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 11/28/2022]
Abstract
Clostridium botulinum is a pathogen of concern for low-acid canned foods. Here we report draft genomes of a neurotoxin-producing C. botulinum strain isolated from water samples used for cooling low-acid canned foods at a canning facility. The genome sequence confirmed that this strain belonged to C. botulinum serotype B1, albeit with major differences, including thousands of unique single nucleotide polymorphisms (SNPs) compared to other genomes of the same serotype.
Collapse
|
12
|
Novel structural elements within the nonproteolytic clostridium botulinum type F toxin gene cluster. Appl Environ Microbiol 2010; 77:1904-6. [PMID: 21183631 DOI: 10.1128/aem.02422-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We sequenced for the first time the complete neurotoxin gene cluster of a nonproteolytic Clostridium botulinum type F. The neurotoxin gene cluster contained a novel gene arrangement that, compared to other C. botulinum neurotoxin gene clusters, lacked the regulatory botR gene and contained an intergenic is element between its orfX2 and orfX3 genes.
Collapse
|
13
|
Expression of the Clostridium botulinum A2 neurotoxin gene cluster proteins and characterization of the A2 complex. Appl Environ Microbiol 2009; 76:40-7. [PMID: 19915042 DOI: 10.1128/aem.01882-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium botulinum subtype A2 possesses a botulinum neurotoxin type A (BoNT/A) gene cluster consisting of an orfX cluster containing open reading frames (ORFs) of unknown functions. To better understand the association between the BoNT/A2 complex proteins, first, the orfX cluster proteins (ORFX1, ORFX3, P47, and the middle part of NTNH) from C. botulinum A2 strain Kyoto F and NTNH of A1 strain ATCC 3502 were expressed by using either an Escherichia coli or a C. botulinum expression system. Polyclonal antibodies against individual orfX cluster proteins were prepared by immunizing a rabbit and mice against the expressed proteins. Antibodies were then utilized as probes to determine which of the A2 orfX cluster genes were expressed in the native A2 culture. N-terminal protein sequencing was also employed to specifically detect ORFX2. Results showed that all of the neurotoxin cluster proteins, except ORFX1, were expressed in the A2 culture. A BoNT/A2 toxin complex (TC) was purified which showed that C. botulinum A2 formed a medium-size (300-kDa) TC composed of BoNT/A2 and NTNH without any of the other OrfX cluster proteins. NTNH subtype-specific immunoreactivity was also discovered, allowing for the differentiation of subtypes based on cluster proteins associated with BoNT.
Collapse
|
14
|
Quantitative real-time reverse transcription-PCR analysis reveals stable and prolonged neurotoxin cluster gene activity in a Clostridium botulinum type E strain at refrigeration temperature. Appl Environ Microbiol 2008; 74:6132-7. [PMID: 18708513 DOI: 10.1128/aem.00469-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The relative expression levels of six botulinum neurotoxin cluster genes in a group II Clostridium botulinum type E strain grown at 10 or 30 degrees C were investigated using quantitative real-time reverse transcription-PCR. An enzyme-linked immunosorbent assay was used to confirm neurotoxin expression. Distinct mRNA and toxin production patterns were observed at the two temperatures. The average relative mRNA levels at 10 degrees C were higher than (ntnh and p47), similar to (botE), or lower than (orfx1, orfx2, orfx3) those at 30 degrees C. The maximum botE expression levels and average neurotoxin levels at 10 degrees C were 45 to 65% of those at 30 degrees C. The relative mRNA levels at 10 degrees C declined generally slowly within 8 days, as opposed to the rapid decline observed at 30 degrees C within 24 h. Distinct expression patterns of the six genes at the two temperatures suggest that the type E neurotoxin cluster genes are transcribed as two tricistronic operons at 30 degrees C, whereas at 10 degrees C monocistronic (botE or orfx1 alone) and bicistronic (ntnh-p47 and orfx2-orfx3) transcription may dominate. Thus, type E botulinum neurotoxin production may be involved with various temperature-dependent regulatory events. In light of group II C. botulinum type E being a dangerous food-borne pathogen, these findings may be important in terms of the safety of refrigerated packaged foods of extended durability.
Collapse
|
15
|
Analysis of neurotoxin cluster genes in Clostridium botulinum strains producing botulinum neurotoxin serotype A subtypes. Appl Environ Microbiol 2008; 74:2778-86. [PMID: 18326685 DOI: 10.1128/aem.02828-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA(-) Orfx(+) A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA(-) Orfx(+) A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned.
Collapse
|
16
|
Smith TJ, Hill KK, Foley BT, Detter JC, Munk AC, Bruce DC, Doggett NA, Smith LA, Marks JD, Xie G, Brettin TS. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS One 2007; 2:e1271. [PMID: 18060065 PMCID: PMC2092393 DOI: 10.1371/journal.pone.0001271] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 11/06/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A-G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression. METHODOLOGY/PRINCIPAL FINDINGS Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid. CONCLUSIONS/SIGNIFICANCE Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.
Collapse
Affiliation(s)
- Theresa J. Smith
- Integrated Toxicology Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Karen K. Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Brian T. Foley
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John C. Detter
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - A. Christine Munk
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - David C. Bruce
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Norman A. Doggett
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Leonard A. Smith
- Integrated Toxicology Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - James D. Marks
- Department of Anesthesia and Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California, United States of America
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Thomas S. Brettin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
17
|
Chen Y, Korkeala H, Aarnikunnas J, Lindström M. Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype. J Bacteriol 2007; 189:8643-50. [PMID: 17905976 PMCID: PMC2168929 DOI: 10.1128/jb.00784-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Three Clostridium botulinum type E strains were sequenced for the botulinum neurotoxin (BoNT) gene cluster, and 11 type E strains, representing a wide biodiversity, were sequenced for the bont/E gene. The total length of the BoNT/E gene cluster was 12,908 bp, and a novel gene (partial) designated orfx3, together with the complete orfx2 gene, was identified in the three type E strains for the first time. Apart from orfx3, the structure and organization of the neurotoxin gene cluster of the three strains were identical to those of previously published ones. Only minor differences (</=3%) in the nucleotide sequences of the gene cluster components were observed among the three strains and the published BoNT/E-producing clostridia. The orfx3, orfx2, orfx1, and p47 gene sequences of the three type E strains shared homologies of 81%, 67 to 76%, 78 to 79%, and 79 to 85%, respectively, with published sequences for type A1 and A2 C. botulinum. Analysis of bont/E from the 14 type E strains and 19 previously published BoNT/E-producing clostridia revealed six neurotoxin subtypes, with a new distinct subtype consisting of three Finnish isolates alone. The amino acid sequence of the subtype E6 neurotoxin differed 3 to 6% from the other subtypes, suggesting that these subtype E6 neurotoxins may possess specific antigenic or functional properties.
Collapse
Affiliation(s)
- Ying Chen
- Department of Food and Environmental Hygiene, P.O. Box 66, FIN-00014, University of Helsinki, Finland
| | | | | | | |
Collapse
|
18
|
Bradshaw M, Dineen SS, Maks ND, Johnson EA. Regulation of neurotoxin complex expression in Clostridium botulinum strains 62A, Hall A-hyper, and NCTC 2916. Anaerobe 2007; 10:321-33. [PMID: 16701534 DOI: 10.1016/j.anaerobe.2004.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 07/12/2004] [Accepted: 07/14/2004] [Indexed: 11/18/2022]
Abstract
The kinetics of botulinum toxin gene expression have been investigated in Clostridium botulinum type A strains 62A, Hall A-hyper, and type A(B) strain NCTC 2916 during the growth cycle. The analyses were performed in TPGY and type A Toxin Production Media (TPM). The mRNA transcript levels encoding the proteins of the neurotoxin complex were determined using Northern analyses. Neurotoxin concentrations in culture supernatants and lysed cell pellets were assayed using ELISA, Western blots, and mouse bioassay. Proteolytic activation of botulinum neurotoxin during the growth cycle was evaluated by Western blots. For all three strains, mRNA transcripts for the toxin complex genes were initially detected in early log phase, reached peak levels in early stationary phase, and rapidly decreased in mid-to-late stationary phase and during lysis. Toxin expression varied depending on the strain and growth medium. Toxin production was highest in strain Hall A-hyper, followed by NCTC 2916 and 62A. For C. botulinum strain Hall A-hyper, cell lysis and toxin release into the supernatant occurred rapidly for cells grown in TPM, while cells grown in TPGY remained in stationary phase with minimal lysis and toxin release through 96 h of growth. In contrast, strains 62A and NCTC 2916 lysed more extensively than Hall A-hyper in TPGY. TPM supported higher toxin production and activation than TPGY in strains 62A and Hall A-hyper. These data support that the genes of the botulinum neurotoxin complex are temporally expressed during late-log and early stationary phase and that toxin complex formation depends on the strain and growth medium. Botulinum toxin synthesis and activation appears to be a complex process that is highly regulated by nutritional and environmental conditions. Further research is needed to elucidate the sensing mechanisms and genetic regulatory factors controlling these processes.
Collapse
Affiliation(s)
- Marite Bradshaw
- Department of Food Microbiology and Toxicology and Bacteriology, Food Research Institute, University of Wisconsin, 1925 Willow Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
19
|
Smith TJ, Lou J, Geren IN, Forsyth CM, Tsai R, Laporte SL, Tepp WH, Bradshaw M, Johnson EA, Smith LA, Marks JD. Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 2005; 73:5450-7. [PMID: 16113261 PMCID: PMC1231122 DOI: 10.1128/iai.73.9.5450-5457.2005] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The botulinum neurotoxins (BoNTs) are category A biothreat agents which have been the focus of intensive efforts to develop vaccines and antibody-based prophylaxis and treatment. Such approaches must take into account the extensive BoNT sequence variability; the seven BoNT serotypes differ by up to 70% at the amino acid level. Here, we have analyzed 49 complete published sequences of BoNTs and show that all toxins also exhibit variability within serotypes ranging between 2.6 and 31.6%. To determine the impact of such sequence differences on immune recognition, we studied the binding and neutralization capacity of six BoNT serotype A (BoNT/A) monoclonal antibodies (MAbs) to BoNT/A1 and BoNT/A2, which differ by 10% at the amino acid level. While all six MAbs bound BoNT/A1 with high affinity, three of the six MAbs showed a marked reduction in binding affinity of 500- to more than 1,000-fold to BoNT/A2 toxin. Binding results predicted in vivo toxin neutralization; MAbs or MAb combinations that potently neutralized A1 toxin but did not bind A2 toxin had minimal neutralizing capacity for A2 toxin. This was most striking for a combination of three binding domain MAbs which together neutralized >40,000 mouse 50% lethal doses (LD(50)s) of A1 toxin but less than 500 LD(50)s of A2 toxin. Combining three MAbs which bound both A1 and A2 toxins potently neutralized both toxins. We conclude that sequence variability exists within all toxin serotypes, and this impacts monoclonal antibody binding and neutralization. Such subtype sequence variability must be accounted for when generating and evaluating diagnostic and therapeutic antibodies.
Collapse
Affiliation(s)
- T J Smith
- Toxinology Division, USAMRIID, Frederick, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Franciosa G, Floridi F, Maugliani A, Aureli P. Differentiation of the gene clusters encoding botulinum neurotoxin type A complexes in Clostridium botulinum type A, Ab, and A(B) strains. Appl Environ Microbiol 2004; 70:7192-9. [PMID: 15574917 PMCID: PMC535171 DOI: 10.1128/aem.70.12.7192-7199.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 07/12/2004] [Indexed: 11/20/2022] Open
Abstract
We describe a strategy to identify the clusters of genes encoding components of the botulinum toxin type A (boNT/A) complexes in 57 strains of Clostridium botulinum types A, Ab, and A(B) isolated in Italy and in the United States from different sources. Specifically, we combined the results of PCR for detecting the ha33 and/or p47 genes with those of boNT/A PCR-restriction fragment length polymorphism analysis. Three different type A toxin gene clusters were revealed; type A1 was predominant among the strains from the United States, whereas type A2 predominated among the Italian strains, suggesting a geographic distinction between strains. By contrast, no relationship between the toxin gene clusters and the clinical or food source of strains was evident. In two C. botulinum type A isolates from the United States, we recognized a third type A toxin gene cluster (designated type A3) which was similar to that previously described only for C. botulinum type A(B) and Ab strains. Total genomic DNA from the strains was subjected to pulsed-filed gel electrophoresis and randomly amplified polymorphic DNA analyses, and the results were consistent with the boNT/A gene clusters obtained.
Collapse
Affiliation(s)
- Giovanna Franciosa
- Centro Nazionale per la Qualità degli Alimenti e per i Rischi Alimentari, Reparto Pericoli Microbiologici Connessi agli Alimenti, Istituto Superiore della Sanità, Rome, Italy
| | | | | | | |
Collapse
|
21
|
Dineen SS, Bradshaw M, Karasek CE, Johnson EA. Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster inClostridium botulinum. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09561.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Abstract
Clostridium botulinum comprises a diverse assemblage of clostridia that have the common property of producing a distinctive protein neurotoxin (BoNT) of similar pharmacological activity and extraordinary potency. BoNTs are produced in culture as molecular complexes consisting of BoNT, hemagglutinin (HA) and associated subcomponent proteins, nontoxic nonhemagglutinin (NTNH), and RNA. The genes encoding the protein components reside as a cluster on the chromosome, on bacteriophages, or on plasmids depending on the C. botulinum serotype. A gene BotR coding for a regulatory protein has been detected in toxin gene clusters from certain strains, as well as ORFs coding for uncharacterized components. The gene encoding TeNT is located on a large plasmid, and expression of the structural gene is controlled by the regulatory gene, TetR, located immediately upstream of the TeNT structural gene. TeNT is not known to be assembled into a protein/nucleic acid complex in culture. Cellular synthesis of BoNT and TeNT have been demonstrated to be positively regulated by the homologous proteins, BotR/A and TetR. Evidence suggests that negative regulatory factors and general control cascades such as those involved in nitrogen regulation and carbon catabolite repression also regulate synthesis of BoNTs. Neurotoxigenic clostridia have attracted considerable attention from scientists and clinicians during the past decade, and many excellent reviews are available on various aspects of these organisms and their neurotoxins. However, certain areas have not been well-studied, including metabolic regulation of toxin formation and genetic tools to study neurotoxigenic clostridia. These topics are the focus of this review.
Collapse
Affiliation(s)
- E A Johnson
- Department of Food Microbiology and Toxicology, and Bacteriology, Food Research Institute, University of Wisconsin, Madison, 53706, USA.
| | | |
Collapse
|