1
|
Curvelo JADR, Barreto ALS, Bayona-Pacheco BL, de Moraes DC, Portela MB, Ferreira-Pereira A, Adade CM, Souto-Padrón T, Soares RMDA. Salivary proteins modulate Candida albicans virulence and may prevent oropharingeal candidiasis. Braz J Microbiol 2024:10.1007/s42770-024-01517-5. [PMID: 39320637 DOI: 10.1007/s42770-024-01517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Oral candidiasis can be presented in different ways due to the virulence factors of its etiology such as Candida albicans that have developed an effective set of these factors that are able to improve its pathogenesis. The role of salivary immunological components in the development of candidiasis can provide insights for the development of new methodologies aiming to control this disease. The aim of this study was to evaluate the antifungal activity of two salivary components, histatin 5 and lactoferrin on C. albicans viability and virulence using a fluconazole resistant C. albicans clinical strain. Results showed that histatin 5 and lactoferrin decreased cell viability, and the cell surface hydrophobicity was increased by 18% in presence of 151 µg/mL of histatin 5 but was not altered by lactoferrin. It was observed the reduction of 69.3% in the expression of mannoproteins on C. albicans surface in the presence of 151 µg/mL of histatin, but proteolytic activity of serine proteinases was not inhibited by any of the proteins. Histatin 5 altered cell ultrastructure predominantly in the cytoplasmic compartment. However, this peptide does not interfere with mitochondrial function neither in membrane permeability of the yeasts. The association index between C. albicans and epithelial cells was increased by 51% in presence of 151 µg/mL of histatin. Results suggest that histatin 5 and lactoferrin affects viability and virulence of C. albicans at physiological levels, and the maintenance of these levels may be essential in the prevention of oropharyngeal candidiasis. Exogenous administration of these proteins may become a therapeutic alternative for resistant strains of C. albicans, circumventing toxicity issues, considering their constitutive features.
Collapse
Affiliation(s)
| | - Anna Lea Silva Barreto
- Grande Área Ciências Biológicas e da Saúde, Centro Universitário IBMR, Rio de Janeiro, Brazil.
| | - Brayan Leonardo Bayona-Pacheco
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, via Puerto Colombia, Área Metropolitana de Barranquilla, 081007, Colombia
| | - Daniel Clemente de Moraes
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maristela Barbosa Portela
- Faculdade de Odontologia, Centro de Ciências Médicas, Universidade Federal Fluminense, Niterói, Brazil
| | - Antônio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Marques Adade
- NanoOnco3D, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil
| | - Thaïs Souto-Padrón
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosangela Maria de Araújo Soares
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Revealing Candida glabrata biofilm matrix proteome: global characterization and pH response. Biochem J 2021; 478:961-974. [PMID: 33555340 DOI: 10.1042/bcj20200844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Candida glabrata is a clinically relevant human pathogen with the ability to form high recalcitrant biofilms that contribute to the establishment and persistence of infection. A defining trait of biofilms is the auto-produced matrix, which is suggested to have structural, virulent and protective roles. Thus, elucidation of matrix components, their function and modulation by the host environment is crucial to disclose their role in C. glabrata pathogenesis. As a major step toward this end, this study aimed to reveal, for the first time, the matrix proteome of C. glabrata biofilms, to characterize it with bioinformatic tools and to study its modulation by the environmental pH (acidic and neutral). The results showed the presence of several pH-specific matrix proteins (51 acidic- and 206 neutral-specific) and also proteins commonly found at both pH conditions (236). Of note, several proteins related to mannan and β-glucan metabolism, which have a potential role in the delivery/organization of carbohydrates in the matrix, were found in both pH conditions but in much higher quantity under the neutral environment. Additionally, several virulence-related proteins, including epithelial adhesins, yapsins and moonlighting enzymes, were found among matrix proteins. Importantly, several proteins seem to have a non-canonical secretion pathway and Pdr1 was found to be a potential regulator of matrix proteome. Overall, this study indicates a relevant impact of environmental cues in the matrix proteome and provides a unique resource for further functional investigation of matrix proteins, contributing to the identification of potential targets for the development of new therapies against C. glabrata biofilms.
Collapse
|
3
|
Lohse MB, Brenes LR, Ziv N, Winter MB, Craik CS, Johnson AD. An Opaque Cell-Specific Expression Program of Secreted Proteases and Transporters Allows Cell-Type Cooperation in Candida albicans. Genetics 2020; 216:409-429. [PMID: 32839241 PMCID: PMC7536846 DOI: 10.1534/genetics.120.303613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
An unusual feature of the opportunistic pathogen Candida albicans is its ability to switch stochastically between two distinct, heritable cell types called white and opaque. Here, we show that only opaque cells, in response to environmental signals, massively upregulate a specific group of secreted proteases and peptide transporters, allowing exceptionally efficient use of proteins as sources of nitrogen. We identify the specific proteases [members of the secreted aspartyl protease (SAP) family] needed for opaque cells to proliferate under these conditions, and we identify four transcriptional regulators of this specialized proteolysis and uptake program. We also show that, in mixed cultures, opaque cells enable white cells to also proliferate efficiently when proteins are the sole nitrogen source. Based on these observations, we suggest that one role of white-opaque switching is to create mixed populations where the different phenotypes derived from a single genome are shared between two distinct cell types.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Lucas R Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| |
Collapse
|
4
|
Abstract
Yeast resistance to antifungal drugs is a major public health issue. Fungal adhesion onto the host mucosal surface is still a partially unknown phenomenon that is modulated by several actors among which fibronectin plays an important role. Targeting the yeast adhesion onto the mucosal surface could lead to potentially highly efficient treatments. In this work, we explored the effect of fibronectin on the nanomotion pattern of different Candida albicans strains by atomic force microscopy (AFM)-based nanomotion detection and correlated the cellular oscillations to the yeast adhesion onto epithelial cells. Preliminary results demonstrate that strongly adhering strains reduce their nanomotion activity upon fibronectin exposure whereas low adhering Candida remain unaffected. These results open novel avenues to explore cellular reactions upon exposure to stimulating agents and possibly to monitor in a rapid and simple manner adhesive properties of C. albicans.
Collapse
|
5
|
Abstract
Aspartyl proteases are present in various organisms and, among virulent species, are considered major virulence factors. Host tissue and cell damage, hijacking of immune responses, and hiding from innate immune cells are the most common behaviors of fungal secreted proteases enabling pathogen survival and invasion. C. parapsilosis, an opportunistic human-pathogenic fungus mainly threatening low-birth weight neonates and children, possesses three SAPP protein-encoding genes that could contribute to the invasiveness of the species. Our results suggest that SAPP1 and SAPP2, but not SAPP3, influence host evasion by regulating cell damage, phagocytosis, phagosome-lysosome maturation, killing, and cytokine secretion. Furthermore, SAPP1 and SAPP2 also effectively contribute to complement evasion. Candida parapsilosis is an emerging non-albicans Candida species that largely affects low-birth-weight infants and immunocompromised patients. Fungal pathogenesis is promoted by the dynamic expression of diverse virulence factors, with secreted proteolytic enzymes being linked to the establishment and progression of disease. Although secreted aspartyl proteases (Sap) are critical for Candida albicans pathogenicity, their role in C. parapsilosis is poorly elucidated. In the present study, we aimed to examine the contribution of C. parapsilosisSAPP genes SAPP1, SAPP2, and SAPP3 to the virulence of the species. Our results indicate that SAPP1 and SAPP2, but not SAPP3, influence adhesion, host cell damage, phagosome-lysosome maturation, phagocytosis, killing capacity, and cytokine secretion by human peripheral blood-derived macrophages. Purified Sapp1p and Sapp2p were also shown to efficiently cleave host complement component 3b (C3b) and C4b proteins and complement regulator factor H. Additionally, Sapp2p was able to cleave factor H-related protein 5 (FHR-5). Altogether, these data demonstrate the diverse, significant contributions that SAPP1 and SAPP2 make to the establishment and progression of disease by C. parapsilosis through enabling the attachment of the yeast cells to mammalian cells and modulating macrophage biology and disruption of the complement cascade. IMPORTANCE Aspartyl proteases are present in various organisms and, among virulent species, are considered major virulence factors. Host tissue and cell damage, hijacking of immune responses, and hiding from innate immune cells are the most common behaviors of fungal secreted proteases enabling pathogen survival and invasion. C. parapsilosis, an opportunistic human-pathogenic fungus mainly threatening low-birth weight neonates and children, possesses three SAPP protein-encoding genes that could contribute to the invasiveness of the species. Our results suggest that SAPP1 and SAPP2, but not SAPP3, influence host evasion by regulating cell damage, phagocytosis, phagosome-lysosome maturation, killing, and cytokine secretion. Furthermore, SAPP1 and SAPP2 also effectively contribute to complement evasion.
Collapse
|
6
|
Konečná K, Klimentová J, Benada O, Němečková I, Janďourek O, Jílek P, Vejsová M. A comparative analysis of protein virulence factors released via extracellular vesicles in two Candida albicans strains cultivated in a nutrient-limited medium. Microb Pathog 2019; 136:103666. [PMID: 31412284 DOI: 10.1016/j.micpath.2019.103666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/26/2022]
Abstract
One of the pathways for the delivery of virulence effector molecules into the extracellular environment of Candida albicans relies on the release of membrane-bound carriers which are called extracellular vesicles (EVs). Only a few studies aimed at investigating Candida albicans extracellular vesicles protein cargo and its potential contribution to the pathogenesis of C. albicans infections have been conducted to date. In this study, we mainly focused on a search for proteins with a demonstrated linkage to pathogenesis in EVs isolated from two C. albicans strains, the model strain ATCC 90028 and the clinical isolate from a woman suffering from vulvovaginal candidiasis. For the purpose of mimicking one of many hostile conditions during a host-pathogen interaction, C. albicans strains in a nutrient-limited medium were cultivated. We have hypothesized that this unfavourable, stressful condition could contribute to the induction of virulence effector molecules being released at a more extensive rate. In conclusion, 34 proteins with an undisputed linkage to C. albicans pathogenesis were detected in the extracellular vesicle cargoes of both strains. In case of the clinical isolate strain, no unique virulence-associated proteins were detected. In the C. albicans ATCC 90028 model strain, three unique proteins were detected, namely: agglutinin-like protein 3 (Als3), secreted aspartic protease 8 (Sap8) and cell surface superoxide dismutase [Cu-Zn] 6 (Sod6).
Collapse
Affiliation(s)
- Klára Konečná
- Charles University, Faculty of Pharmacy in Hradec Králové, Teaching and Research Center, Czech Republic.
| | - Jana Klimentová
- University of Defence, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Czech Republic
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i, Czech Republic
| | - Ivana Němečková
- Charles University, Faculty of Pharmacy in Hradec Králové, Teaching and Research Center, Czech Republic
| | - Ondřej Janďourek
- Charles University, Faculty of Pharmacy in Hradec Králové, Teaching and Research Center, Czech Republic
| | - Petr Jílek
- Charles University, Faculty of Pharmacy in Hradec Králové, Teaching and Research Center, Czech Republic
| | - Marcela Vejsová
- Charles University, Faculty of Pharmacy in Hradec Králové, Teaching and Research Center, Czech Republic
| |
Collapse
|
7
|
Richardson JP, Moyes DL, Ho J, Naglik JR. Candida innate immunity at the mucosa. Semin Cell Dev Biol 2018; 89:58-70. [PMID: 29501618 DOI: 10.1016/j.semcdb.2018.02.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022]
Abstract
The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces.
Collapse
Affiliation(s)
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| | - Jemima Ho
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| |
Collapse
|
8
|
Candida-Epithelial Interactions. J Fungi (Basel) 2018; 4:jof4010022. [PMID: 29419738 PMCID: PMC5872325 DOI: 10.3390/jof4010022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 01/03/2023] Open
Abstract
A plethora of intricate and dynamic molecular interactions occur between microbes and the epithelial cells that form the mucosal surfaces of the human body. Fungi, particularly species of Candida, are commensal members of our microbiota, continuously interacting with epithelial cells. Transient and localised perturbations to the mucosal environment can facilitate the overgrowth of fungi, causing infection. This minireview will examine the direct and indirect mechanisms by which Candida species and epithelial cells interact with each other, and explore the factors involved in the central processes of adhesion, invasion, and destruction of host mucosal surfaces.
Collapse
|
9
|
Sidhu YS, Cairns TC, Chaudhari YK, Usher J, Talbot NJ, Studholme DJ, Csukai M, Haynes K. Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:102-9. [PMID: 26092796 PMCID: PMC4502460 DOI: 10.1016/j.fgb.2015.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/25/2022]
Abstract
We have constructed Z. tritici ku70 and ku80 null mutants. Gene targeting frequency in the ku null strains is greater than 85%. Deletion of KU70 and KU80 does not affect in vitro growth or pathogenicity. Sulfonylurea resistance was established as a new positive selection marker in Z. tritici. Ternary vectors were constructed to enable yeast recombinational cloning in Z. tritici.
The lack of techniques for rapid assembly of gene deletion vectors, paucity of selectable marker genes available for genetic manipulation and low frequency of homologous recombination are major constraints in construction of gene deletion mutants in Zymoseptoria tritici. To address these issues, we have constructed ternary vectors for Agrobacterium tumefaciens mediated transformation of Z. tritici, which enable the single step assembly of multiple fragments via yeast recombinational cloning. The sulfonylurea resistance gene, which is a mutated allele of the Magnaporthe oryzae ILV2 gene, was established as a new dominant selectable marker for Z. tritici. To increase the frequency of homologous recombination, we have constructed Z. tritici strains deficient in the non-homologous end joining pathway of DNA double stranded break repair by inactivating the KU70 and KU80 genes. Targeted gene deletion frequency increased to more than 85% in both Z. tritici ku70 and ku80 null strains, compared to ⩽10% seen in the wild type parental strain IPO323. The in vitro growth and in planta pathogenicity of the Z. tritici ku70 and ku80 null strains were comparable to strain IPO323. Together these molecular tools add significantly to the platform available for genomic analysis through targeted gene deletion or promoter replacements and will facilitate large-scale functional characterization projects in Z. tritici.
Collapse
Affiliation(s)
- Y S Sidhu
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - T C Cairns
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Y K Chaudhari
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - J Usher
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - N J Talbot
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - D J Studholme
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - M Csukai
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG426EY, UK
| | - K Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
10
|
Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety. CHEMICAL PAPERS 2016. [DOI: 10.1515/chempap-2016-0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractHydrolytic enzymes e.g., Saps and
Collapse
|
11
|
Sulfone derivatives reduce growth, adhesion and aspartic protease SAP2 gene expression. World J Microbiol Biotechnol 2014; 30:2511-21. [DOI: 10.1007/s11274-014-1676-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
|
12
|
Mehra T, Köberle M, Braunsdorf C, Mailänder-Sanchez D, Borelli C, Schaller M. Alternative approaches to antifungal therapies. Exp Dermatol 2013; 21:778-82. [PMID: 23078400 DOI: 10.1111/exd.12004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The expansive use of immunosuppressive medications in fields such as transplantational medicine and oncology, the higher frequency of invasive procedures in an ageing population and the HIV/AIDS pandemic have increased the frequency of systemic fungal infections. At the same time, increased resistance of pathogenic fungi to classical antifungal agents has led to sustained research efforts targeting alternative antifungal strategies. In this review, we focus on two promising approaches: cationic peptides and the targeting of fungal virulence factors. Cationic peptides are small, predominantly positively charged protein fragments that exert direct and indirect antifungal activities, one mechanism of action being the permeabilization of the fungal membrane. They include lysozyme, defensins and cathelicidins as well as novel synthetic peptides. Among fungal virulence factors, the targeting of candidal secreted aspartic proteinases seems to be a particularly promising approach.
Collapse
Affiliation(s)
- Tarun Mehra
- Department of Dermatology, Eberhard-Karls-University, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122-80. [PMID: 22537156 DOI: 10.1111/j.1574-6976.2012.00340.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
Laminin (Ln) and collagen are multifunctional glycoproteins that play an important role in cellular morphogenesis, cell signalling, tissue repair and cell migration. These proteins are ubiquitously present in tissues as a part of the basement membrane (BM), constitute a protective layer around blood capillaries and are included in the extracellular matrix (ECM). As a component of BMs, both Lns and collagen(s), thus function as major mechanical containment molecules that protect tissues from pathogens. Invasive pathogens breach the basal lamina and degrade ECM proteins of interstitial spaces and connective tissues using various ECM-degrading proteases or surface-bound plasminogen and matrix metalloproteinases recruited from the host. Most pathogens associated with the respiratory, gastrointestinal, or urogenital tracts, as well as with the central nervous system or the skin, have the capacity to bind and degrade Lns and collagen(s) in order to adhere to and invade host tissues. In this review, we focus on the adaptability of various pathogens to utilize these ECM proteins as enhancers for adhesion to host tissues or as a targets for degradation in order to breach the cellular barriers. The major pathogens discussed are Streptococcus, Staphylococcus, Pseudomonas, Salmonella, Yersinia, Treponema, Mycobacterium, Clostridium, Listeria, Porphyromonas and Haemophilus; Candida, Aspergillus, Pneumocystis, Cryptococcus and Coccidioides; Acanthamoeba, Trypanosoma and Trichomonas; retrovirus and papilloma virus.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
14
|
Loss of heterozygosity at an unlinked genomic locus is responsible for the phenotype of a Candida albicans sap4Δ sap5Δ sap6Δ mutant. EUKARYOTIC CELL 2010; 10:54-62. [PMID: 21097666 DOI: 10.1128/ec.00281-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The diploid genome of the pathogenic yeast Candida albicans exhibits a high degree of heterozygosity. Genomic alterations that result in a loss of heterozygosity at specific loci may affect phenotypes and confer a selective advantage under certain conditions. Such genomic rearrangements can also occur during the construction of C. albicans mutants and remain undetected. The SAP2 gene on chromosome R encodes a secreted aspartic protease that is induced and required for growth of C. albicans when proteins are the only available nitrogen source. In strain SC5314, the two SAP2 alleles are functionally divergent because of differences in their regulation. Basal expression of the SAP2-2 allele, but not the SAP2-1 allele, provides the proteolytic degradation products that serve as inducers for full SAP2 induction. A triple mutant lacking the SAP4, SAP5, and SAP6 genes, which are located on chromosome 6, has previously been reported to have a growth defect on proteins, suggesting that one of the encoded proteases is required for SAP2 expression. Here we show that this sap4Δ sap5Δ sap6Δ mutant has become homozygous for chromosome R and lost the SAP2-2 allele. Replacement of one of the SAP2-1 copies in this strain by SAP2-2 and its regulatory region restored the ability of the sap4Δ sap5Δ sap6Δ mutant to utilize proteins as the sole nitrogen source. This is an illustrative example of how loss of heterozygosity at a different genomic locus can cause the mutant phenotype attributed to targeted deletion of a specific gene in C. albicans.
Collapse
|
15
|
Nailis H, Kucharíková S, Ricicová M, Van Dijck P, Deforce D, Nelis H, Coenye T. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol 2010; 10:114. [PMID: 20398368 PMCID: PMC2862034 DOI: 10.1186/1471-2180-10-114] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/16/2010] [Indexed: 01/09/2023] Open
Abstract
Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein) and of genes belonging to the ALS (agglutinin-like sequence), SAP (secreted aspartyl protease), PLB (phospholipase B) and LIP (lipase) gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP) or in the Centres for Disease Control (CDC) reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR) model, and on mucosal surfaces in the reconstituted human epithelium (RHE) model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression levels were observed. This suggests that data obtained in one biofilm model cannot be extrapolated to other model systems. Therefore, the need to use multiple model systems when studying the expression of genes encoding potential virulence factors in C. albicans biofilms is highlighted.
Collapse
Affiliation(s)
- Heleen Nailis
- Laboratory for Pharmaceutical Microbiology, Universiteit Gent, Harelbekestraat 72, B-9000, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
16
|
Baldo A, Mathy A, Tabart J, Camponova P, Vermout S, Massart L, Maréchal F, Galleni M, Mignon B. Secreted subtilisin Sub3 from Microsporum canis
is required for adherence to but not for invasion of the epidermis. Br J Dermatol 2009; 162:990-7. [DOI: 10.1111/j.1365-2133.2009.09608.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Abstract
The fungus, Candida albicans, interacts with epithelial cells in the human host both as a normal commensal and as an invasive pathogen. It has evolved multiple complementary mechanisms to adhere to epithelial cells. Adherent C. albicans cells can invade epithelial surfaces both by penetrating into individual epithelial cells, and by degrading interepithelial cell junctions and passing between epithelial cells. Invasion into epithelial cells is mediated by both induced endocytosis and active penetration, whereas degradation of epithelial cell junction proteins, such as E-cadherin, occurs mainly via proteolysis by secreted aspartyl proteinases. C. albicans invasion of epithelial cells results in significant epithelial cell damage, which is probably induced by lytic enzymes, such as proteases and phospholipase secreted by the organism. Future challenges include identifying the epithelial cell targets of adhesins and invasins, and determining the mechanisms by which C. albicans actively penetrates epithelial cells and induces epithelial cell damage.
Collapse
Affiliation(s)
- Weidong Zhu
- Divison of Infectious Disease, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | |
Collapse
|
18
|
Abstract
The Candida albicans cell wall maintains the structural integrity of the organism in addition to providing a physical contact interface with the environment. The major components of the cell wall are fibrillar polysaccharides and proteins. The proteins of the cell wall are the focus of this review. Three classes of proteins are present in the candidal cell wall. One group of proteins attach to the cell wall via a glycophosphatidylinositol remnant or by an alkali-labile linkage. A second group of proteins with N-terminal signal sequences but no covalent attachment sequences are secreted by the classical secretory pathway. These proteins may end up in the cell wall or in the extracellular space. The third group of proteins lack a secretory signal, and the pathway(s) by which they become associated with the surface is unknown. Potential constituents of the first two classes have been predicted from analysis of genome sequences. Experimental analyses have identified members of all three classes. Some members of each class selected for consideration of confirmed or proposed function, phenotypic analysis of a mutant, and regulation by growth conditions and transcription factors are discussed in more detail.
Collapse
|
19
|
Baldo A, Tabart J, Vermout S, Mathy A, Collard A, Losson B, Mignon B. Secreted subtilisins of Microsporum canis are involved in adherence of arthroconidia to feline corneocytes. J Med Microbiol 2008; 57:1152-1156. [PMID: 18719187 DOI: 10.1099/jmm.0.47827-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microsporum canis is a pathogenic fungus that causes a superficial cutaneous infection called dermatophytosis, mainly in cats and humans. The mechanisms involved in adherence of M. canis to epidermis have never been investigated. Here, a model was developed to study the adherence of M. canis to feline corneocytes through the use of a reconstructed interfollicular feline epidermis (RFE). In this model, adherence of arthroconidia to RFE was found to be time-dependent, starting at 2 h post-inoculation and still increasing at 6 h. Chymostatin, a serine protease inhibitor, inhibited M. canis adherence to RFE by 53%. Moreover, two mAbs against the keratinolytic protease subtilisin 3 (Sub3) inhibited M. canis adherence to RFE by 23%, suggesting that subtilisins, and Sub3 in particular, are involved in the adherence process.
Collapse
Affiliation(s)
- Aline Baldo
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B43 Sart Tilman, 4000 Liège, Belgium
| | - Jérémy Tabart
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B43 Sart Tilman, 4000 Liège, Belgium
| | - Sandy Vermout
- Federal Agency for Medicinal and Health Products, Victor Horta Plein 40/40, 1060 Brussels, Belgium
| | - Anne Mathy
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B43 Sart Tilman, 4000 Liège, Belgium
| | - Alfred Collard
- Centre d'Economie Rurale (CER), Animal Immunology, Rue du Carmel 1, 6900 Marloie, Belgium
| | - Bertrand Losson
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B43 Sart Tilman, 4000 Liège, Belgium
| | - Bernard Mignon
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B43 Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
20
|
Brand A, Barnes JD, Mackenzie KS, Odds FC, Gow NAR. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa. FEMS Microbiol Lett 2008; 287:48-55. [PMID: 18680523 PMCID: PMC2613227 DOI: 10.1111/j.1574-6968.2008.01301.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The fungus, Candida albicans, and the bacterium, Pseudomonas aeruginosa, are opportunistic human pathogens that have been coisolated from diverse body sites. Pseudomonas aeruginosa suppresses C. albicans proliferation in vitro and potentially in vivo but it is the C. albicans hyphae that are killed while yeast cells are not. We show that hyphal killing involves both contact-mediated and soluble factors. Bacterial culture filtrates contained heat-labile soluble factors that killed C. albicans hyphae. In cocultures, localized points of hyphal lysis were observed, suggesting that adhesion and subsequent bacteria-mediated cell wall lysis is involved in the killing of C. albicans hyphae. The glycosylation status of the C. albicans cell wall affected the rate of contact-dependent killing because mutants with severely truncated O-linked, but not N-linked, glycans were hypersensitive to Pseudomonas-mediated killing. Deletion of HWP1, ALS3 or HYR1, which encode major hypha-associated cell wall proteins, had no effect on fungal susceptibility.
Collapse
Affiliation(s)
- Alexandra Brand
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | |
Collapse
|
21
|
Dabas N, Morschhäuser J. A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans. Mol Microbiol 2008; 69:586-602. [PMID: 18547391 DOI: 10.1111/j.1365-2958.2008.06297.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Secreted aspartic proteases (Saps) contribute to the virulence of Candida albicans, a major fungal pathogen of humans. One function of the Saps, which is specifically mediated by the Sap2p isoenzyme, is the degradation of proteins for use as a nitrogen source. The utilization of alternative nitrogen sources in fungi is controlled by GATA transcription factors and we found that C. albicans mutants lacking the GATA transcription factors Gln3p and Gat1p were unable to grow in a medium containing bovine serum albumin (BSA) as the sole nitrogen source. The growth defect was mainly caused by the inability of gln3Deltagat1Delta mutants to express the SAP2 gene, as SAP2 expression from the constitutive ADH1 promoter restored the ability of the mutants to grow on BSA. Expression of STP1, which encodes a transcription factor that is required for SAP2 induction in the presence of proteins, was regulated by Gln3p and Gat1p, and forced expression of STP1 from a tetracycline-inducible promoter bypassed the requirement of the GATA transcription factors for growth of C. albicans on proteins. SAP2 is repressed when preferred nitrogen sources are available and this nitrogen catabolite repression of SAP2 was correlated with downregulation of STP1 in the presence of high concentrations of ammonium, glutamine or urea. Tetracycline-induced STP1 expression abolished nitrogen catabolite repression of SAP2, demonstrating that the control of STP1 expression levels by the GATA transcription factors is a key aspect of both positive and negative regulation of SAP2 expression. Therefore, secreted aspartic protease expression, a long-known virulence attribute of C. albicans, is controlled by a regulatory cascade in which the general regulators Gln3p and Gat1p control the expression of the transcription factor Stp1p, which in turn mediates SAP2 expression.
Collapse
Affiliation(s)
- Neelam Dabas
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | |
Collapse
|
22
|
Tetracycline-inducible expression of individual secreted aspartic proteases in Candida albicans allows isoenzyme-specific inhibitor screening. Antimicrob Agents Chemother 2007; 52:146-56. [PMID: 17954688 DOI: 10.1128/aac.01072-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Candida albicans possesses a gene family that encodes secreted aspartic proteases (Saps), which are important for the virulence of this human fungal pathogen. Inhibitors of the Saps could therefore be used as novel antimycotic agents for the treatment of C. albicans infections. In the present study, we established a bioassay which allows testing of the activity of potential protease inhibitors against specific Sap isoenzymes by their ability to inhibit protease-dependent growth of C. albicans. In a medium containing bovine serum albumin (BSA) as the sole source of nitrogen, C. albicans specifically expresses the Sap2p isoenzyme, which degrades the BSA and thereby enables the fungus to grow. As the other SAP genes are not significantly expressed under these conditions, mutants lacking SAP2 are unable to utilize BSA as a nitrogen source and cannot grow in such a medium. To investigate whether forced expression of SAP genes other than SAP2 would also allow growth on BSA, we constructed a set of strains expressing each of the 10 SAP genes from a tetracycline-inducible promoter in a sap2Delta mutant background. Expression of Sap1p, Sap2p, Sap3p, Sap4p, Sap5p, Sap6p, Sap8p, and a C-terminally truncated, secreted Sap9p restored the growth of the sap2Delta mutant with different efficiencies. This set of strains was then used to test the activities of various aspartic protease inhibitors against specific Sap isoenzymes by monitoring growth on BSA in the presence of the inhibitors. While pepstatin blocked the activity of all of the Saps tested, the human immunodeficiency virus protease inhibitors ritonavir and saquinavir inhibited growth of the strains expressing Sap1p to Sap3p and Sap1p, respectively, but not that of strains expressing other Saps. Therefore, the strain set can be used to test the activity of new protease inhibitors against individual C. albicans Sap isoenzymes by their ability to block the growth of the pathogen.
Collapse
|
23
|
. MKAS, . KHAE, . AZE, . MAH, . RFK. Influence of Various Ultraviolet Light Intensities on Pathogenic Determinants of Candida albicans. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/biotech.2007.210.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Henriques M, Azeredo J, Oliveira R. Candida species adhesion to oral epithelium: factors involved and experimental methodology used. Crit Rev Microbiol 2007; 32:217-26. [PMID: 17123906 DOI: 10.1080/10408410601023524] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to the increasing prevalence and emergence of Non-Candida albicans Candida (NCAC) species, especially in immunosupressed patients, it is becoming urgent to deepen the current knowledge about virulence factors of these species. Adhesion of cells to epithelium is considered one of the major virulence factors of Candida species. However, relatively little is known concerning the adhesion mechanisms of NCAC species to epithelium, as well as about the factors affecting the adhesion process. This review focuses both the mechanisms that regulate the adhesion interactions and the factors involved and the description of the experimental methodology that has been used to perform the adhesion assays.
Collapse
Affiliation(s)
- Mariana Henriques
- Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | | | | |
Collapse
|
25
|
Consolaro MEL, Gasparetto A, Svidzinski TIE, Peralta RM. Effect of pepstatin A on the virulence factors of Candida albicans strains isolated from vaginal environment of patients in three different clinical conditions. Mycopathologia 2006; 162:75-82. [PMID: 16897584 DOI: 10.1007/s11046-006-0026-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 03/23/2006] [Indexed: 11/30/2022]
Abstract
The aspartate proteinase inhibitor pepstatin A was used to study a possible correlation among proteinase activity and other virulence factors of Candida albicans strains isolated from the vaginal environment of patients in three different clinical conditions: asympthomatic, vulvovaginal candidiasis (VVC) and recurrent vulvovaginal candidiasis (RVVC). The addition of 1.0 muM pepstatin A did not have any significant effect on hyphae formation, biofilm production and in the cell surface hydrofobicity of isolates in the three different clinical conditions. However, pepstatin A reduced the adherence of C. albicans to vaginal mucosa epithelial cells (53.1, 48.7 and 59.9%, respectively to isolates from asymptomatic, VVC and RVVC patients). This result suggests that the secreted aspartate proteinases (Saps) of this fungal pathogen may have auxiliary roles in cellular adhesion.
Collapse
Affiliation(s)
- M E L Consolaro
- Division of Medical Mycology, Teaching and Research in Clinical Analysis Laboratory, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | | |
Collapse
|
26
|
Reuss O, Morschhäuser J. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol Microbiol 2006; 60:795-812. [PMID: 16629678 DOI: 10.1111/j.1365-2958.2006.05136.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The human fungal pathogen Candida albicans can use proteins as the sole source of nitrogen for growth. The secretion of aspartic proteinases, which have been shown to contribute to virulence of C. albicans, allows the fungus to digest host proteins to produce peptides that must be taken up into the cell by specific transporters. To understand in more detail how C. albicans utilizes proteins as a nitrogen source, we undertook a comprehensive analysis of oligopeptide transporters encoded in the C. albicans genome. We identified eight OPT genes encoding putative oligopeptide transporters, almost all of which are represented by polymorphic alleles in strain SC5314. Expression of these genes was differentially induced when C. albicans was grown in YCB-BSA medium, which contains bovine serum albumin as the sole nitrogen source. Whereas deletion of single OPT genes in strain SC5314 did not affect its ability to utilize proteins as a nitrogen source, opt123delta triple mutants had a severe growth defect in YCB-BSA which was rescued by reintroduction of a single copy of OPT1, OPT2 or OPT3. In addition, forced expression of OPT4 or OPT5 under control of the ADH1 promoter also restored growth of an opt123delta mutant, demonstrating that at least OPT1-OPT5 encode functional peptide transporters. The various oligopeptide transporters differ in their substrate preferences, as shown by the ability of strains expressing specific OPT genes to grow on peptides of defined length and sequence. We present evidence that in addition to the known role of oligopeptide transporters in the uptake of tetra- and pentapeptides these proteins can also transport longer peptides up to at least eight amino acids in length, ensuring an efficient utilization of the various peptides produced via endoproteolytic digestion of proteins by the secreted aspartic proteinases. As even transporters encoded by polymorphic alleles of a single gene exhibited differences in their efficiency to take up specific peptides, the oligopeptide transporters represent an example for how the evolution of gene families containing differentially expressed and functionally optimized members increases the nutritional versatility and, presumably, the adaptation of C. albicans to different host niches.
Collapse
Affiliation(s)
- Oliver Reuss
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | |
Collapse
|
27
|
O'Mahony R, Basset C, Holton J, Vaira D, Roitt I. Comparison of image analysis software packages in the assessment of adhesion of microorganisms to mucosal epithelium using confocal laser scanning microscopy. J Microbiol Methods 2005; 61:105-26. [PMID: 15676201 DOI: 10.1016/j.mimet.2004.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 11/09/2004] [Accepted: 11/19/2004] [Indexed: 02/07/2023]
Abstract
We have compared current image analysis software packages in order to find the most useful one for assessing microbial adhesion and inhibition of adhesion to tissue sections. We have used organisms of different sizes, the bacterium Helicobacter pylori and the yeast Candida albicans. Adhesion of FITC-labelled H. pylori and C. albicans was assessed by confocal microscopy. Four different Image analysis software packages, NIH-Image, IP Lab, Image Pro+, and Metamorph, were compared for their ability to quantify adhesion of the two organisms and several quantification methods were devised for each package. For both organisms, the dynamic range that could be detected by the software packages was 1x10(6)-1x10(9) cells/ml. Of the four software packages tested, our results showed that Metamorph software, using our 'Region of Interest' method, with the software's 'Standard Area Method' of counting, was the most suitable for quantifying adhesion of both organisms because of its unique ability to separate clumps of microbial cells. Moreover, fewer steps were required. By pre-incubating H. pylori with the glycoconjugate Lewis b-HSA, an inhibition of binding of 48.8% was achieved using 250 mug/ml Lewis b-HSA. The method we have devised using Metamorph software, provides a simple, quick and accurate way of quantifying adhesion and inhibition of adhesion of microbial cells to the epithelial surface of tissue sections. The method can be applied to organisms ranging in size from small bacteria to larger yeast cells.
Collapse
Affiliation(s)
- Rachel O'Mahony
- Centre for Infectious Diseases and International Health, Royal Free and University College London Medical School, The Windeyer Building, 46 Cleveland Street, London W1T 4JF, UK.
| | | | | | | | | |
Collapse
|
28
|
Munro CA, Bates S, Buurman ET, Hughes HB, MacCallum DM, Bertram G, Atrih A, Ferguson MAJ, Bain JM, Brand A, Hamilton S, Westwater C, Thomson LM, Brown AJP, Odds FC, Gow NAR. Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 2004; 280:1051-60. [PMID: 15519997 PMCID: PMC3749086 DOI: 10.1074/jbc.m411413200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MNT1 gene of the human fungal pathogen Candida albicans is involved in O-glycosylation of cell wall and secreted proteins and is important for adherence of C. albicans to host surfaces and for virulence. Here we describe the molecular analysis of CaMNT2, a second member of the MNT1-like gene family in C. albicans. Mnt2p also functions in O-glycosylation. Mnt1p and Mnt2p encode partially redundant alpha-1,2-mannosyltransferases that catalyze the addition of the second and third mannose residues in an O-linked mannose pentamer. Deletion of both copies of MNT1 and MNT2 resulted in reduction in the level of in vitro mannosyltransferase activity and truncation of O-mannan. Both the mnt2Delta and mnt1Delta single mutants were significantly reduced in adherence to human buccal epithelial cells and Matrigel-coated surfaces, indicating a role for O-glycosylated cell wall proteins or O-mannan itself in adhesion to host surfaces. The double mnt1Deltamnt2Delta mutant formed aggregates of cells that appeared to be the result of abnormal cell separation. The double mutant was attenuated in virulence, underlining the importance of O-glycosylation in pathogenesis of C. albicans infections.
Collapse
Affiliation(s)
- Carol A. Munro
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Steven Bates
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Ed T. Buurman
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - H. Bleddyn Hughes
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Donna M. MacCallum
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Gwyneth Bertram
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Abdel Atrih
- School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee DD1 4NH, United Kingdom
| | - Michael A. J. Ferguson
- School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee DD1 4NH, United Kingdom
| | - Judith M. Bain
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Alexandra Brand
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Suzanne Hamilton
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Caroline Westwater
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Lynn M. Thomson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Alistair J. P. Brown
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Frank C. Odds
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Neil A. R. Gow
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
- To whom correspondence should be addressed. Tel.: 44-1224-555879; Fax.: 44-1224-555844;
| |
Collapse
|
29
|
Fradin C, Hube B. Tissue infection and site-specific gene expression in Candida albicans. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:271-90. [PMID: 14696322 DOI: 10.1016/s0065-2164(03)53008-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
C. albicans is able to survive and proliferate in and on a range of different tissues, either as a commensal or as a pathogen. During the different stages and types of infection, the fungal cells need a broad flexibility since each anatomic site has its own set of environmental pressures (Calderone and Fonzi, 2001). The fact that C. albicans possesses gene families encoding known virulence factors may reflect an adaptation to the wide range of environmental pressures that a C. albicans cell is likely to encounter during growth in vivo. In fact, specific members of each family are likely to be differentially expressed in different tissues and at different stages of infection, suggesting that these features have evolved as a consequence of these pressures. It remains to be investigated whether the members of the families have different functions or if they are just proteins with the same function but adapted to the specific demands of each anatomical site. Furthermore, with a few exceptions, the regulatory mechanisms responsible for the differential expression of individual members within gene families are not clear. However, the use of microarrays and other high-throughput technologies will certainly accelerate our knowledge of tissue-specific gene expression in microorganisms and will therefore help to understand why C. albicans is such a successful fungal commensal and pathogen.
Collapse
Affiliation(s)
- Chantal Fradin
- Robert Koch-Institut Nordufer 20, D-13353 Berlin, Germany
| | | |
Collapse
|
30
|
Borst A, Fluit AC. High levels of hydrolytic enzymes secreted by Candida albicans isolates involved in respiratory infections. J Med Microbiol 2004; 52:971-974. [PMID: 14532341 DOI: 10.1099/jmm.0.05228-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differences in production of two putative virulence factors of Candida albicans, phospholipase and proteinase, were determined for a large panel of clinical C. albicans isolates (n = 186) obtained from the European SENTRY programme. Seventy-two per cent of isolates produced detectable amounts of phospholipase and 95 % of isolates produced detectable amounts of proteinase. There was no clear correlation between the results of the phospholipase and proteinase assays and the geographical distribution of the isolates. However, isolates that originated from respiratory infections produced significantly higher amounts of phospholipase than isolates obtained from blood, the urinary tract or wounds/skin/soft tissue and also appeared to produce more proteinase. These virulent isolates involved in respiratory infections may originate from the oral cavity. Whether these results are caused by selection for these highly virulent isolates remains to be resolved.
Collapse
Affiliation(s)
- Annemarie Borst
- Eijkman-Winkler Center for Microbiology, Infectious Diseases and Inflammation, University Medical Center, Utrecht, The Netherlands
| | - Ad C Fluit
- Eijkman-Winkler Center for Microbiology, Infectious Diseases and Inflammation, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
31
|
Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003; 67:400-28, table of contents. [PMID: 12966142 PMCID: PMC193873 DOI: 10.1128/mmbr.67.3.400-428.2003] [Citation(s) in RCA: 792] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis.
Collapse
Affiliation(s)
- Julian R Naglik
- Department of Oral Medicine, Pathology & Immunology, GKT Dental Institute, Kings College London, London, United Kingdom.
| | | | | |
Collapse
|
32
|
Morrison CJ, Hurst SF, Reiss E. Competitive binding inhibition enzyme-linked immunosorbent assay that uses the secreted aspartyl proteinase of Candida albicans as an antigenic marker for diagnosis of disseminated candidiasis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:835-48. [PMID: 12965914 PMCID: PMC193877 DOI: 10.1128/cdli.10.5.835-848.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Revised: 03/18/2003] [Accepted: 06/23/2003] [Indexed: 11/20/2022]
Abstract
The secreted aspartyl proteinases (Saps) of Candida albicans have been implicated as virulence factors associated with adherence and tissue invasion. The potential use of proteinases as markers of invasive candidiasis led us to develop a competitive binding inhibition enzyme-linked immunosorbent assay (ELISA) to detect Sap in clinical specimens. Daily serum and urine specimens were collected from rabbits that had been immunosuppressed with cyclophosphamide and cortisone acetate and infected intravenously with 10(7) C. albicans blastoconidia. Disseminated infection was confirmed by organ culture and histopathology. Although ELISA inhibition was observed when serum specimens from these rabbits were used, more significant inhibition, which correlated with disease progression, occurred when urine specimens were used. Urine collected as early as 1 day after infection resulted in significant ELISA inhibition (mean inhibition +/- standard error [SE] compared with preinfection control urine, 15.7% +/- 2.7% [P < 0.01]), and inhibition increased on days 2 through 5 (29.4% +/- 4.8% to 44.5% +/- 3.5% [P < 0.001]). Urine specimens from immunosuppressed rabbits infected intravenously with Candida tropicalis, Candida parapsilosis, Candida krusei, Cryptococcus neoformans, Aspergillus fumigatus, or Staphylococcus aureus were negative in the assay despite culture-proven dissemination. Nonimmunosuppressed rabbits receiving oral tetracycline and gentamicin treatment were given 2 x 10(8) C. albicans blastoconidia orally or intraurethrally to establish colonization of the gastrointestinal tract or bladder, respectively, without systemic dissemination; urine specimens from these rabbits also gave negative ELISA results. Dissemination to the kidney and spleen occurred in one rabbit challenged by intragastric inoculation, and urine from this rabbit demonstrated significant inhibition in the ELISA (mean inhibition +/- SE by day 3 after infection, 32.9% +/- 2.7% [P < 0.001]). The overall test sensitivity was 83%, the specificity was 92%, the positive predictive value was 84%, the negative predictive value was 91%, and the efficiency was 89% (166 urine samples from 33 rabbits tested). The specificity, positive predictive value, and efficiency could be increased to 97, 95, and 92%, respectively, if at least two positive test results were required for a true positive designation. The ELISA was sensitive and specific for the detection of Sap in urine specimens from rabbits with disseminated C. albicans infection, discriminated between colonization and invasive disease, reflected disease progression and severity, and has the potential to be a noninvasive means to diagnose disseminated candidiasis.
Collapse
Affiliation(s)
- Christine J Morrison
- Mycotic Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | |
Collapse
|
33
|
Gruber A, Lell CP, Spruth M, Lass-Flörl C, Speth C, Stoiber H, Hube B, Coleman D, Polonelli L, Dierich MP, Würzner R. HIV-1 and its transmembrane protein gp41 bind to different Candida species modulating adhesion. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 37:77-83. [PMID: 12770763 DOI: 10.1016/s0928-8244(03)00110-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oral candidiasis in HIV-1-infected individuals is widely believed to be triggered by the acquired T-lymphocyte immunodeficiency. Recently, binding of the HIV-1 envelope protein gp160 and its subunit gp41, and also of the whole virus itself, to Candida albicans has been shown. The present study shows that, in addition to C. albicans, HIV-1 gp41 also binds to yeast and hyphal forms of Candida dubliniensis, a species which is closely related to C. albicans, and to Candida tropicalis but not to Candida krusei, Candida glabrata or Saccharomyces cerevisiae. The previous finding that gp41 binding to C. albicans augments fungal virulence in vitro is supported by the observation that the yeast showed an enhanced adhesion to HIV-infected H9 cells in comparison to uninfected cells. In line with these results soluble gp41 itself reduced binding of C. albicans to both endothelial and epithelial cell lines, confirming a dominant role of the gp41 binding moiety on the surface of Candida for adhesion. Surface-associated secreted aspartic proteinases (Saps) play an important role in candidial adhesion, but are not likely to be involved in the interaction as gp41 binding to the C. albicans parental wild-type strain was comparable to that of three different isogenic Sap deletion mutants. Furthermore, gp41 binding to the yeast killer toxin-susceptible C. albicans strain 10S was not inhibitable by an anti-YKT receptor antibody. In conclusion, HIV-1 interacts with different clinically important Candida spp., and may thereby affect the outcome of the respective fungal infection.
Collapse
Affiliation(s)
- Andreas Gruber
- Institute for Hygiene and Social Medicine, University of Innsbruck, and Ludwig Boltzmann Institute for AIDS Research, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schaller M, Bein M, Korting HC, Baur S, Hamm G, Monod M, Beinhauer S, Hube B. The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 2003; 71:3227-34. [PMID: 12761103 PMCID: PMC155757 DOI: 10.1128/iai.71.6.3227-3234.2003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secreted aspartyl proteinases (Saps) contribute to the ability of Candida albicans to cause mucosal and disseminated infections. A model of vaginal candidiasis based on reconstituted human vaginal epithelium (RHVE) was used to study the expression and role of these C. albicans proteinases during infection and tissue damage of vaginal epithelium. Colonization of the RHVE by C. albicans SC5314 did not cause any visible epithelial damage 6 h after inoculation, although expression of SAP2, SAP9, and SAP10 was detected by reverse transcriptase PCR. However, significant epithelial damage was observed after 12 h, concomitant with the additional expression of SAP1, SAP4, and SAP5. Additional transcripts of SAP6 and SAP7 were detected at a later stage of the artificial infection (24 h). Similar SAP expression profiles were observed in three samples isolated from human patients with vaginal candidiasis. In experimental infection, secretion of antigens Sap1 to Sap6 by C. albicans was confirmed at the ultrastructural level by using polyclonal antisera raised against Sap1 to Sap6. Addition of the aspartyl proteinase inhibitors pepstatin A and the human immunodeficiency virus proteinase inhibitors ritonavir and amprenavir strongly reduced the tissue damage of the vaginal epithelia by C. albicans cells. Furthermore, SAP null mutants lacking either SAP1 or SAP2 had a drastically reduced potential to cause tissue damage even though SAP3, SAP4, and SAP7 were up-regulated in these mutants. In contrast the vaginopathic potential of mutants lacking SAP3 or SAP4 to SAP6 was not reduced compared to wild-type cells. These data provide further evidence for a crucial role of Sap1 and Sap2 in C. albicans vaginal infections.
Collapse
Affiliation(s)
- Martin Schaller
- Department of Dermatology and Allergology, University of Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schaller M, Krnjaic N, Niewerth M, Hamm G, Hube B, Korting HC. Effect of antimycotic agents on the activity of aspartyl proteinases secreted by Candida albicans. J Med Microbiol 2003; 52:247-249. [PMID: 12621090 DOI: 10.1099/jmm.0.05048-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inhibitory effect of human immunodeficiency virus (HIV) proteinase inhibitors amprenavir and saquinavir and antifungal agents terbinafine, ketoconazole, amphotericin B and ciclopiroxolamine on aspartyl proteinases (Saps) secreted by Candida albicans was tested in an in vitro spectophotometric assay. As expected, both HIV proteinase inhibitors showed a significant inhibitory effect on Sap activity, which was comparable to that of the classical aspartyl proteinase inhibitor pepstatin A (P < 0.001). Antifungal drugs such as ketoconazole, terbinafine and amphotericin B had no, or only minor, inhibitory effects on proteolytic activity. In contrast, a significant reduction in Sap activity could be demonstrated during treatment with the antifungal agent ciclopiroxolamine (P < 0.001). These results point to a multiple effect of this antimycotic agent and might explain the reduced adherence of C. albicans to human epithelial cells at subinhibitory doses.
Collapse
Affiliation(s)
- Martin Schaller
- Department of Dermatology and Allergology1 and Department of Periodontology2, University of Munich, Frauenlobstr. 9-11, D-80337 München, Germany 3Robert Koch-Institut, Berlin, Germany
| | - Nikola Krnjaic
- Department of Dermatology and Allergology1 and Department of Periodontology2, University of Munich, Frauenlobstr. 9-11, D-80337 München, Germany 3Robert Koch-Institut, Berlin, Germany
| | - Markus Niewerth
- Department of Dermatology and Allergology1 and Department of Periodontology2, University of Munich, Frauenlobstr. 9-11, D-80337 München, Germany 3Robert Koch-Institut, Berlin, Germany
| | - Gerald Hamm
- Department of Dermatology and Allergology1 and Department of Periodontology2, University of Munich, Frauenlobstr. 9-11, D-80337 München, Germany 3Robert Koch-Institut, Berlin, Germany
| | - Bernhard Hube
- Department of Dermatology and Allergology1 and Department of Periodontology2, University of Munich, Frauenlobstr. 9-11, D-80337 München, Germany 3Robert Koch-Institut, Berlin, Germany
| | - Hans C Korting
- Department of Dermatology and Allergology1 and Department of Periodontology2, University of Munich, Frauenlobstr. 9-11, D-80337 München, Germany 3Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
36
|
Newport G, Kuo A, Flattery A, Gill C, Blake JJ, Kurtz MB, Abruzzo GK, Agabian N. Inactivation of Kex2p diminishes the virulence of Candida albicans. J Biol Chem 2003; 278:1713-20. [PMID: 12419804 DOI: 10.1074/jbc.m209713200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deletion of the kexin gene (KEX2) in Candida albicans has a pleiotropic effect on phenotype and virulence due partly to a defect in the expression of two major virulence factors: the secretion of active aspartyl proteinases and the formation of hyphae. kex2/kex2 mutants are highly attenuated in a mouse systemic infection model and persist within cultured macrophages for at least 24 h without causing damage. Pathology is modest, with little disruption of kidney matrix. The infecting mutant cells are largely confined to glomeruli, and are aberrant in morphology. The complex phenotype of the deletion mutants reflects a role for kexin in a wide range of cellular processes. Taking advantage of the specificity of Kex2p cleavage, an algorithm we developed to scan the 9168 open reading frames in Assembly 6 of the C. albicans genome identified 147 potential substrates of Kex2p. These include all previously identified substrates, including eight secreted aspartyl proteinases, the exoglucanase Xog1p, the immunodominant antigen Mp65, and the adhesin Hwp1p. Other putative Kex2p substrates identified include several adhesins, cell wall proteins, and hydrolases previously not implicated in pathogenesis. Kexins also process fungal mating pheromones; a modification of the algorithm identified a putative mating pheromone with structural similarities to Saccharomyces cerevisiae alpha-factor.
Collapse
Affiliation(s)
- George Newport
- Department of Stomatology, University of California at San Francisco, California 94143-0422, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J. Host versus in vitro signals and intrastrain allelic differences in the expression of a Candida albicans virulence gene. Mol Microbiol 2002; 44:1351-66. [PMID: 12028383 DOI: 10.1046/j.1365-2958.2002.02967.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast Candida albicans is a harmless colonizer of mucosal surfaces in healthy people but can become a serious pathogen in immunocompromised patients, causing superficial as well as systemic infections. The evolution of gene families encoding pathogenicity-related functions, like adhesins and secreted aspartic proteinases (Saps), which are differentially induced by host signals at various stages of colonization and infection, may have allowed C. albicans an optimal adaptation to many different host niches. We found that even the two alleles of a single gene can be differentially regulated in the diploid C. albicans. In the model strain SC5314, the in vitro expression of one of the two SAP2 alleles, SAP2-1, depended on the presence of a functional SAP2-2 allele. In contrast, inactivation of SAP2-1 did not in-fluence the expression of SAP2-2. The proteinase encoded by the SAP2-2 allele serves as a signal sensor and amplifier to enhance its own expression as well as to induce the SAP2-1 allele to achieve maximal proteolytic activity under appropriate conditions. Using in vivo expression technology, we could demonstrate that the SAP2-1 allele is significantly activated only in the late stages of systemic candidiasis in mice, whereas the SAP2-2 allele is induced much earlier. The differential regulation of the two SAP2 alleles was due to differences in their pro-moters, which contained a variable number of two pentameric nucleotide repeats. Mutations that reduced or increased the copy number of these repeats diminished the inducibility of the SAP2 promoter during infection but not in vitro, suggesting that the mutations affected interactions of regulatory factors that are necessary for SAP2 activation in vivo but dispensable for its induction in vitro. Therefore, the signals and signal transduction pathways that mediate SAP2 expression within certain host niches may differ from those that activate the gene in vitro. In addition to the generation of gene families whose members exhibit functional and regulatory diversification, C. albicans seems to use its diploid genome to create further variability and host adaptation by differential evolution of even the two alleles of a single gene.
Collapse
Affiliation(s)
- Peter Staib
- Zentrum für Infektionsforschung, Universität Würzburg, D-97020 Würzburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Jiang L, Lee CM, Shen SH. Functional characterization of the Candida albicans homologue of secretion-associated and Ras-related (Sar1) protein. Yeast 2002; 19:423-8. [PMID: 11921090 DOI: 10.1002/yea.842] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Secretion-associated and Ras-related protein (Sar1p) plays an essential role during the protein transport from the endoplasmic reticulum to the Golgi apparatus. The cDNA sequence of the Sar1 gene has been identified and characterized from the human yeast pathogen, Candida albicans. This cDNA encodes a protein of 190 amino acids, which shares a 78% sequence identity with Saccharomyces cerevisiae Sar1p and contains the conserved GTP-binding motifs of the small GTPase superfamily. Complementation studies confirmed that this cDNA encodes the functional homologue of ScSar1p. The recombinant C. albicans Sar1p exhibits GTP-binding activity in vitro that was abolished by deletion of one of the three GTP-binding motifs.
Collapse
Affiliation(s)
- Linghuo Jiang
- Mammalian Cell Genetics, Pharmaceutical Biotechnology Sector, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada H4P 2R2
| | | | | |
Collapse
|
39
|
Kelly CG, Medaglini D, Younson JS, Pozzi G. Biotechnological approaches to fight pathogens at mucosal sites. Biotechnol Genet Eng Rev 2002; 18:329-47. [PMID: 11530695 DOI: 10.1080/02648725.2001.10648018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- C G Kelly
- Department of Oral Medicine and Pathology, GKT Dental Institute, King's College London at Guy's Hospital, Floor 28 Guy's Tower, London SE1 9RT, UK.
| | | | | | | |
Collapse
|
40
|
Kretschmar M, Felk A, Staib P, Schaller M, Hess D, Callapina M, Morschhäuser J, Schäfer W, Korting HC, Hof H, Hube B, Nichterlein T. Individual acid aspartic proteinases (Saps) 1-6 of Candida albicans are not essential for invasion and colonization of the gastrointestinal tract in mice. Microb Pathog 2002; 32:61-70. [PMID: 11812212 DOI: 10.1006/mpat.2001.0478] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to investigate whether there is a role for individual secreted aspartic proteinases (Saps) of Candida albicans in gastrointestinal infection of mice we compared the differential expression of SAP1-6 genes and production of Sap1-6 proteins with invasion and persistence of SAP knockout strains in the gastrointestinal tract. Using an in vivo expression technology (IVET) we found a high percentage of expression of SAP4-6 genes which increased steadily in the course of infection. Expression of SAP1-3 genes was detected occasionally and in lower percentages than that of SAP4-6 genes. With reverse transcriptase-polymerase chain reaction (RT-PCR), mRNA for SAP 4 and SAP6 were detected in the stomach of all mice, whereas SAP2, SAP3 and SAP5 mRNA were detected not in all animals and SAP1 mRNA was not detectable. Also with immunoelectron microscopy we demonstrated production of Saps1-3 as well as Saps4-6 with antibodies cross-reacting with either Saps1-3 or Saps4-6. In contrast to the fact that gene expression and production of Saps were readily detectable, we were unable to demonstrate differences in the ability to invade the stomach, to disseminate to the brain as well as in the duration of faecal shedding and the number of fungi persisting in the faeces of mice infected with SAP knockout strains in comparison to control strains. We conclude that although Saps were produced, individual Saps were not indispensable factors for virulence during gastrointestinal infection of mice.
Collapse
Affiliation(s)
- Marianne Kretschmar
- Institut für Medizinische Mikrobiologie und Hygiene, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J. Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection. Infect Immun 2002; 70:921-7. [PMID: 11796627 PMCID: PMC127704 DOI: 10.1128/iai.70.2.921-927.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans can cause superficial as well as systemic infections. Successful adaptation to the different host niches encountered during infection requires coordinated expression of various virulence traits, including the switch between yeast and hyphal growth forms and secretion of aspartic proteinases. Using an in vivo expression technology that is based on genetic recombination as a reporter of gene activation during experimental candidiasis in mice, we investigated whether two signal transduction pathways controlling hyphal growth, a mitogen-activated protein kinase cascade ending in the transcriptional activator Cph1p and a cyclic AMP-dependent regulatory pathway that involves the transcription factor Efg1p, also control expression of the SAP5 gene, which encodes one of the secreted aspartic proteinases and is induced by host signals soon after infection. Our results show that both transcriptional regulators are important for SAP5 activation in vivo. SAP5 expression was reduced in a cph1 mutant, although filamentous growth in infected tissue was not detectably impaired. SAP5 expression was also reduced, but not eliminated, in an efg1 null mutant, although this strain grew exclusively in the yeast form in infected tissue, demonstrating that in contrast to in vitro conditions, SAP5 activation during infection does not depend on growth of C. albicans in the hyphal form. In a cph1 efg1 double mutant, however, SAP5 expression in infected mice was almost completely eliminated, suggesting that the two signal transduction pathways are important for SAP5 expression in vivo. The avirulence of the cph1 efg1 mutant seemed to be caused not only by the inability to form hyphae but also by a loss of expression of additional virulence genes in the host.
Collapse
Affiliation(s)
- Peter Staib
- Zentrum für Infektionsforschung. Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Gaur NK, Smith RL, Klotz SA. Candida albicans and Saccharomyces cerevisiae expressing ALA1/ALS5 adhere to accessible threonine, serine, or alanine patches. CELL COMMUNICATION & ADHESION 2002; 9:45-57. [PMID: 12200964 DOI: 10.1080/15419060212187] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Saccharomyces cerevisiae transformed with Candida albicans ALA1/ALS5 exhibits adherence properties similar to C. albicans. Adherence of the fungi to immobilized proteins involves hydrogen bonds, is stable to shear forces, and is resistant to competition from various biological molecules. The specificity determinants of target recognition in Ala1/Als5p-mediated adherence are not known. To determine features of target recognition, proteins and small peptides were covalently coupled at the N-terminus to the surface of carboxylate-modified magnetic beads. C. albicans yeast cells, germ tubes and pseudohyphae and S. cerevisiae expressing the adhesin, Ala1/Als5p, adhered to beads coated with fibronectin, laminin, type IV collagen, bovine serum albumin, and casein. No adherence to beads was observed if a single amino acid was coupled to the beads. However, 10-mer homopolymers of threonine, serine, and alanine served as ligands for adherence. The presence of a minimum of four contiguous threonine residues in a peptide was required for maximal adherence. Coupling of 10-mer peptides from fibronectin and Ala1/Als5p each possessing 5-7 threonine or serine residues also initiated adherence. On the other hand, a collagen and a fibronectin 10-mer peptide with few threonine and serine residues and lysine at the C-terminus did not serve as adherence ligands. Both of them are converted to adherence ligands by adding threonine or serine residues at the C-terminus or removing the lysine residue and adding threonine residues anywhere in the peptide. The presence of lysine at the C-terminus may have resulted in coupling of the peptides at both the N- and C-termini, thus making the threonine residues inaccessible for adherence. Thus, Ala1/Als5p recognizes patches of certain amino acids, which must be accessible before adherence will occur.
Collapse
Affiliation(s)
- Nand K Gaur
- Research Service, VA Medical Center, Kansas City, MO, University of Kansas School of Medicine, Kansas City, KS, USA
| | | | | |
Collapse
|
43
|
Abstract
Gene disruptions in the diploid opportunistic human fungal pathogen Candida albicans are usually created using multiple rounds of targeted integration called the 'ura-blaster' method. Resulting heterozygous and homozygous null mutants can be auxotrophic (Ura(-)) or prototrophic (Ura(+)) for uracil biosynthesis. Here we demonstrate that the Ura-status of otherwise isogenic mutants affected the adhesion of C. albicans. Moreover the effect of Ura-status on adhesion was also dependent on the null mutant background, the nature of the underlying surface and the carbon source for growth. Therefore the Ura-status is not neutral in determining adhesive properties of C. albicans mutants that are generated via the ura-blaster protocol.
Collapse
Affiliation(s)
- J M Bain
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | |
Collapse
|
44
|
Hube B, Naglik J. Candida albicans proteinases: resolving the mystery of a gene family. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1997-2005. [PMID: 11495978 DOI: 10.1099/00221287-147-8-1997] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Bernhard Hube
- Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany1
| | - Julian Naglik
- Division of Oral Medicine, Pathology, Microbiology and Immunology, King's College London (Guy's Campus), London, UK2
| |
Collapse
|
45
|
Staib P, Wirsching S, Strauss A, Morschhäuser J. Gene regulation and host adaptation mechanisms in Candida albicans. Int J Med Microbiol 2001; 291:183-8. [PMID: 11437340 DOI: 10.1078/1438-4221-00114] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast Candida albicans is a harmless member of the normal microflora on the mucosal surfaces of most healthy persons, but it can cause severe opportunistic infections in immunosuppressed patients. To become a successful human commensal and pathogen, C. albicans has evolved host adaptation mechanisms on different levels. The regulated expression of virulence and other genes in response to environmental signals allows an optimal adaptation to new host niches during the course of an infection. In addition, C. albicans is able to switch between different cell types in a reversible and apparently random fashion. Phenotypic switching involves the coordinated regulation of phase-specific genes, and the resulting generation of selected, pre-programmed cell types may represent an additional strategy to adapt to certain host environments. Finally, C. albicans produces genetically altered variants at a high rate. This microevolution ensures survival when the pathogen encounters new adverse conditions, as exemplified by the development of stable drug-resistant variants under the selection pressure caused by antimycotic therapy. Thus, rather than the possession of single dominant virulence factors, it is its remarkable versatility that makes C. albicans the most important fungal pathogen of humans.
Collapse
Affiliation(s)
- P Staib
- Zentrum für Infektionsforschung, Universität Würzburg, Germany
| | | | | | | |
Collapse
|
46
|
Campisi G, Pizzo G, Mancuso S, Margiotta V. Gender differences in human immunodeficiency virus-related oral lesions: an Italian study. ORAL SURGERY, ORAL MEDICINE, ORAL PATHOLOGY, ORAL RADIOLOGY, AND ENDODONTICS 2001; 91:546-51. [PMID: 11346733 DOI: 10.1067/moe.2001.113548] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the relationship between oral lesions and gender, age, CD4(+) cell count, human immunodeficiency virus-1 (HIV-1) viral load, antiretroviral therapy, and route of transmission in a group of HIV-infected (HIV+) persons from the Mediterranean region. STUDY DESIGN The participants in this study were HIV+ adults who sought dental care between January 1999 and June 1999 in the Department of Oral Medicine (University of Palermo, Italy). RESULTS One hundred thirty-six HIV+ adults came in for an initial oral examination. Their mean age was 35.2 years (SD +/- 7.97), and 33% were women. Their mean CD4(+) cell count was 325.3 x 10(6) /L (SD +/- 225.8), and their HIV-1 viral load was 39,168.3 copies/mL (SD +/- 144,256.1). Oral lesions were found in 47% of the study group, as well as in 56.5% of women (n = 46) versus 45.5% of men (n = 90; P =.05). Oral candidiasis was the most common disease; it is significantly associated with women (P =.004), CD4(+) cell count (P =.005), and HIV-1 viral load (P =.0003). No significant relationships were found between any types of oral lesions and age, antiretroviral therapy, or route of transmission (P >.2). CONCLUSION The prevalence of HIV-related oral lesions was significantly higher in women than in men, especially for oral candidiasis, the most common lesion observed related to immune status and HIV-1 viral load.
Collapse
Affiliation(s)
- G Campisi
- Department of Oral Medicine, School of Dentistry, University of Palermo, 90127 Palermo, Italy
| | | | | | | |
Collapse
|
47
|
Navarro-García F, Sánchez M, Nombela C, Pla J. Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 2001; 25:245-68. [PMID: 11250036 DOI: 10.1111/j.1574-6976.2001.tb00577.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In recent years, the incidence of fungal infections has been rising all over the world. Although the amount of research in the field of pathogenic fungi has also increased, there is still a need for the identification of reliable determinants of virulence. In this review, we focus on identified Candida albicans genes whose deletant strains have been tested in experimental virulence assays. We discuss the putative relationship of these genes to virulence and also outline the use of new different systems to examine the precise effect in virulence of different genes.
Collapse
Affiliation(s)
- F Navarro-García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Kelly CG, Younson JS. Anti-adhesive strategies in the prevention of infectious disease at mucosal surfaces. Expert Opin Investig Drugs 2000; 9:1711-21. [PMID: 11060770 DOI: 10.1517/13543784.9.8.1711] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Binding of microbial cell surface adhesins to host receptor molecules is a critical early step in microbial infection and pathogenesis. Anti-adhesive strategies aimed at blocking this interaction offer an attractive means of preventing infection at an early stage. The strategy should reduce the likelihood of resistant strains of microorganisms emerging, since those that do not bind will not be subjected to sustained selective pressure, as may occur with antibiotic therapy. Three classes of adhesion-blocking agent have been investigated, namely anti-adhesin antibodies, adhesin analogues and receptor analogues. The effectiveness of a number of these adhesion-blocking compounds has been demonstrated in human and animal models of infection. Direct application to the tooth surface of anti-adhesin monoclonal antibody, or a synthetic peptide adhesion epitope, prevented infection with the oral pathogen, Streptococcus mutans in humans. Intranasal administration of a soluble receptor analogue significantly reduced virus production and symptoms following experimental infection with rhinovirus. Similarly, all three types of anti-adhesion agent protected against a variety of infections at other mucosal surfaces in animal models. A common finding from these studies is the long duration of protection, which cannot be due to persistence of the anti-adhesion agent, but may be the result of competitive exclusion by members of the normal flora at specific mucosal surfaces. Development of these novel antimicrobial agents is particularly timely in view of the increasing concern over the spread of antibiotic resistance.
Collapse
Affiliation(s)
- C G Kelly
- Department of Oral Medicine and Pathology, Floor 28 Guy's Tower, Guy's Hospital, London SE1 9RT, UK.
| | | |
Collapse
|
49
|
Cannon RD, Chaffin WL. Oral colonization by Candida albicans. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:359-83. [PMID: 10759414 DOI: 10.1177/10454411990100030701] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Candida albicans is a commensal yeast normally present in small numbers in the oral flora of a large proportion of humans. Colonization of the oral cavity by C. albicans involves the acquisition and maintenance of a stable yeast population. Micro-organisms are continually being removed from the oral cavity by host clearance mechanisms, and so, in order to survive and inhabit this eco-system, C. albicans cells have to adhere and replicate. The oral cavity presents many niches for C. albicans colonization, and the yeast is able to adhere to a plethora of ligands. These include epithelial and bacterial cell-surface molecules, extracellular matrix proteins, and dental acrylic. In addition, saliva molecules, including basic proline-rich proteins, adsorbed to many oral surfaces promote C. albicans adherence. Several adhesins present in the C. albicans cell wall have now been partially characterized. Adherence involves lectin, protein-protein, and hydrophobic interactions. As C. albicans cells evade host defenses and colonize new environments by penetrating tissues, they are exposed to new adherence receptors and respond by expressing alternative adhesins. The relatively small number of commensal Candida cells in the oral flora raises the possibility that strategies can be devised to prevent oral colonization and infection. However, the variety of oral niches and the complex adherence mechanisms of the yeast mean that such a goal will remain elusive until more is known about the contribution of each mechanism to colonization.
Collapse
Affiliation(s)
- R D Cannon
- Department of Oral Sciences and Orthodontics, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
50
|
Kvaal C, Lachke SA, Srikantha T, Daniels K, McCoy J, Soll DR. Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 1999; 67:6652-62. [PMID: 10569787 PMCID: PMC97079 DOI: 10.1128/iai.67.12.6652-6662.1999] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans WO-1 switches reversibly and at high frequency between a white and an opaque colony-forming phenotype that includes dramatic changes in cell morphology and physiology. A misexpression strategy has been used to investigate the role of the opaque-phase-specific gene PEP1 (SAP1), which encodes a secreted aspartyl proteinase, in the expression of the unique opaque-phase phenotype and phase-specific virulence in two animal models. The PEP1 (SAP1) open reading frame was inserted downstream of the promoter of the white-phase-specific gene WH11 in the transforming vector pCPW7, and the resulting transformants were demonstrated to misexpress PEP1 (SAP1) in the white phase. Misexpression did not confer any of the unique morphological characteristics of the opaque phase to cells in the white phase and had no effect on the switching process. However, misexpression conferred upon white-phase cells the increased capacity of opaque-phase cells to grow in medium in which protein was the sole nitrogen source. Misexpression of PEP1 (SAP1) had no effect on the virulence of white-phase cells in a systemic mouse model, in which white-phase cells were already more virulent than opaque-phase cells. Misexpression did, however, confer upon white-phase cells the dramatic increase in colonization of skin in a cutaneous mouse model that was exhibited by opaque-phase cells. Misexpression of PEP1 (SAP1) conferred upon white-phase cells two dissociable opaque-phase characteristics: increased adhesion and the capacity to cavitate skin. The addition of pepstatin A to the cutaneous model inhibited the latter, but not the former, suggesting that the latter is effected by released enzyme, while the former is effected by cell-associated enzyme.
Collapse
Affiliation(s)
- C Kvaal
- Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|