1
|
Morita Y, Yoshida A, Ye S, Tomita T, Yoshida M, Kosono S, Nishiyama M. Protein-protein interaction-mediated regulation of lysine biosynthesis of Thermus thermophilus through the function-unknown protein LysV. J GEN APPL MICROBIOL 2023; 69:91-101. [PMID: 37357393 DOI: 10.2323/jgam.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Thermus thermophilus biosynthesizes lysine via α-aminoadipate as an intermediate using the amino-group carrier protein, LysW, to transfer the attached α-aminoadipate and its derivatives to biosynthetic enzymes. A gene named lysV, which encodes a hypothetical protein similar to LysW, is present in the lysine biosynthetic gene cluster. Although the knockout of lysV did not affect lysine auxotrophy, lysV homologs are conserved in the lysine biosynthetic gene clusters of microorganisms belonging to the phylum Deinococcus-Thermus, suggesting a functional role for LysV in lysine biosynthesis. Pulldown assays and crosslinking experiments detected interactions between LysV and all of the biosynthetic enzymes requiring LysW for reactions, and the activities of most of all these enzymes were affected by LysV. These results suggest that LysV modulates the lysine biosynthesis through protein-protein interactions.
Collapse
Affiliation(s)
- Yutaro Morita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Ayako Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Siyan Ye
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takeo Tomita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Minoru Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science
| | - Saori Kosono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
2
|
Isogai S, Matsushita T, Imanishi H, Koonthongkaew J, Toyokawa Y, Nishimura A, Yi X, Kazlauskas R, Takagi H. High-Level Production of Lysine in the Yeast Saccharomyces cerevisiae by Rational Design of Homocitrate Synthase. Appl Environ Microbiol 2021; 87:e0060021. [PMID: 33990312 PMCID: PMC8276798 DOI: 10.1128/aem.00600-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
Homocitrate synthase (HCS) catalyzes the aldol condensation of 2-oxoglutarate (2-OG) and acetyl coenzyme A (AcCoA) to form homocitrate, which is the first enzyme of the lysine biosynthetic pathway in the yeast Saccharomyces cerevisiae. The HCS activity is tightly regulated via feedback inhibition by the end product lysine. Here, we designed a feedback inhibition-insensitive HCS of S. cerevisiae (ScLys20) for high-level production of lysine in yeast cells. In silico docking of the substrate 2-OG and the inhibitor lysine to ScLys20 predicted that the substitution of serine with glutamate at position 385 would be more suitable for desensitization of the lysine feedback inhibition than the substitution from serine to phenylalanine in the already known Ser385Phe variant. Enzymatic analysis revealed that the Ser385Glu variant is far more insensitive to feedback inhibition than the Ser385Phe variant. We also found that the lysine contents in yeast cells expressing the Ser385Glu variant were 4.62- and 1.47-fold higher than those of cells expressing the wild-type HCS and Ser385Phe variant, respectively, due to the extreme desensitization to feedback inhibition. In this study, we obtained highly feedback inhibition-insensitive HCS using in silico docking and enzymatic analysis. Our results indicate that the rational engineering of HCS for feedback inhibition desensitization by lysine could be useful for constructing new yeast strains with higher lysine productivity. IMPORTANCE A traditional method for screening toxic analogue-resistant mutants has been established for the breeding of microbes that produce high levels of amino acids, including lysine. However, another efficient strategy is required to further improve their productivity. Homocitrate synthase (HCS) catalyzes the first step of lysine biosynthesis in the yeast Saccharomyces cerevisiae, and its activity is subject to feedback inhibition by lysine. Here, in silico design of a key enzyme that regulates the biosynthesis of lysine was utilized to increase the productivity of lysine. We designed HCS for the high-level production of lysine in yeast cells by in silico docking simulation. The engineered HCS exhibited much less sensitivity to lysine and conferred higher production of lysine than the already known variant obtained by traditional breeding. The combination of in silico design and experimental analysis of a key enzyme will contribute to advances in metabolic engineering for the construction of industrial microorganisms.
Collapse
Affiliation(s)
- Shota Isogai
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tomonori Matsushita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hiroyuki Imanishi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Jirasin Koonthongkaew
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yoichi Toyokawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Akira Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Xiao Yi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- The BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Romas Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- The BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
3
|
Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol 2018; 18:177. [PMID: 30400856 PMCID: PMC6219164 DOI: 10.1186/s12866-018-1320-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background The ambient temperature of all habitats is a key physical property that shapes the biology of microbes inhabiting them. The optimal growth temperature (OGT) of a microbe, is therefore a key piece of data needed to understand evolutionary adaptations manifested in their genome sequence. Unfortunately there is no growth temperature database or easily downloadable dataset encompassing the majority of cultured microorganisms. We are thus limited in interpreting genomic data to identify temperature adaptations in microbes. Results In this work I significantly contribute to closing this gap by mining data from major culture collection centres to obtain growth temperature data for a nonredundant set of 21,498 microbes. The dataset (10.5281/zenodo.1175608) contains mainly bacteria and archaea and spans psychrophiles, mesophiles, thermophiles and hyperthermophiles. Using this data a full 43% of all protein entries in the UniProt database can be annotated with the growth temperature of the species from which they originate. I validate the dataset by showing a Pearson correlation of up to 0.89 between growth temperature and mean enzyme optima, a physiological property directly influenced by the growth temperature. Using the temperature dataset I correlate the genomic occurance of enzyme functional annotations with growth temperature. I identify 319 enzyme functions that either increase or decrease in occurrence with temperature. Eight metabolic pathways were statistically enriched for these enzyme functions. Furthermore, I establish a correlation between 33 domains of unknown function (DUFs) with growth temperature in microbes, four of which (DUF438, DUF1524, DUF1957 and DUF3458_C) were significant in both archaea and bacteria. Conclusions The growth temperature dataset enables large-scale correlation analysis with enzyme function- and domain-level annotations. Growth-temperature dependent changes in their occurrence highlight potential evolutionary adaptations. A few of the identified changes are previously known, such as the preference for menaquinone biosynthesis through the futalosine pathway in bacteria growing at high temperatures. Others represent important starting points for future studies, such as DUFs where their occurrence change with temperature. The growth temperature dataset should become a valuable community resource and will find additional, important, uses in correlating genomic, transcriptomic, proteomic, metabolomic, phenotypic or taxonomic properties with temperature in future studies. Electronic supplementary material The online version of this article (10.1186/s12866-018-1320-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin K M Engqvist
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
4
|
Wang D, Zhao L, Wang D, Liu J, Yu X, Wei Y, Ouyang Z. Transcriptome analysis and identification of key genes involved in 1-deoxynojirimycin biosynthesis of mulberry ( Morus alba L.). PeerJ 2018; 6:e5443. [PMID: 30155358 PMCID: PMC6109587 DOI: 10.7717/peerj.5443] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Mulberry (Morus alba L.) represents one of the most commonly utilized plants in traditional medicine and as a nutritional plant used worldwide. The polyhydroxylated alkaloid 1-deoxynojirimycin (DNJ) is the major bioactive compounds of mulberry in treating diabetes. However, the DNJ content in mulberry is very low. Therefore, identification of key genes involved in DNJ alkaloid biosynthesis will provide a basis for the further analysis of its biosynthetic pathway and ultimately for the realization of synthetic biological production. Here, two cDNA libraries of mulberry leaf samples with different DNJ contents were constructed. Approximately 16 Gb raw RNA-Seq data was generated and de novo assembled into 112,481 transcripts, with an average length of 766 bp and an N50 value of 1,392. Subsequently, all unigenes were annotated based on nine public databases; 11,318 transcripts were found to be significantly differentially regulated. A total of 38 unique candidate genes were identified as being involved in DNJ alkaloid biosynthesis in mulberry, and nine unique genes had significantly different expression. Three key transcripts of DNJ biosynthesis were identified and further characterized using RT-PCR; they were assigned to lysine decarboxylase and primary-amine oxidase genes. Five CYP450 transcripts and two methyltransferase transcripts were significantly associated with DNJ content. Overall, the biosynthetic pathway of DNJ alkaloid was preliminarily speculated.
Collapse
Affiliation(s)
- Dujun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Oceanology and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Li Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jia Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaofeng Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Kublanov IV, Sigalova OM, Gavrilov SN, Lebedinsky AV, Rinke C, Kovaleva O, Chernyh NA, Ivanova N, Daum C, Reddy TBK, Klenk HP, Spring S, Göker M, Reva ON, Miroshnichenko ML, Kyrpides NC, Woyke T, Gelfand MS, Bonch-Osmolovskaya EA. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota. Front Microbiol 2017; 8:195. [PMID: 28265262 PMCID: PMC5317091 DOI: 10.3389/fmicb.2017.00195] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family, while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.
Collapse
Affiliation(s)
- Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Olga M Sigalova
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Sergey N Gavrilov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Alexander V Lebedinsky
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia QLD, Australia
| | - Olga Kovaleva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Nikolai A Chernyh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | | | - Chris Daum
- DOE Joint Genome Institute, Walnut Creek CA, USA
| | - T B K Reddy
- DOE Joint Genome Institute, Walnut Creek CA, USA
| | | | - Stefan Spring
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Oleg N Reva
- Center for Bioinformatics and Computational Biology, Department of Biochemistry, University of Pretoria Pretoria, South Africa
| | - Margarita L Miroshnichenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut CreekCA, USA; Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, BerkeleyCA, USA
| | - Mikhail S Gelfand
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia; Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State UniversityMoscow, Russia; Skolkovo Institute of Science and TechnologyMoscow, Russia; Faculty of Computer Science, National Research University - Higher School of EconomicsMoscow, Russia
| | | |
Collapse
|
6
|
Fazius F, Shelest E, Gebhardt P, Brock M. The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol Microbiol 2012; 86:1508-30. [PMID: 23106124 PMCID: PMC3556520 DOI: 10.1111/mmi.12076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 11/30/2022]
Abstract
Fungi produce α-aminoadipate, a precursor for penicillin and lysine via the α-aminoadipate pathway. Despite the biotechnological importance of this pathway, the essential isomerization of homocitrate via homoaconitate to homoisocitrate has hardly been studied. Therefore, we analysed the role of homoaconitases and aconitases in this isomerization. Although we confirmed an essential contribution of homoaconitases from Saccharomyces cerevisiae and Aspergillus fumigatus, these enzymes only catalysed the interconversion between homoaconitate and homoisocitrate. In contrast, aconitases from fungi and the thermophilic bacterium Thermus thermophilus converted homocitrate to homoaconitate. Additionally, a single aconitase appears essential for energy metabolism, glutamate and lysine biosynthesis in respirating filamentous fungi, but not in the fermenting yeast S. cerevisiae that possesses two contributing aconitases. While yeast Aco1p is essential for the citric acid cycle and, thus, for glutamate synthesis, Aco2p specifically and exclusively contributes to lysine biosynthesis. In contrast, Aco2p homologues present in filamentous fungi were transcribed, but enzymatically inactive, revealed no altered phenotype when deleted and did not complement yeast aconitase mutants. From these results we conclude that the essential requirement of filamentous fungi for respiration versus the preference of yeasts for fermentation may have directed the evolution of aconitases contributing to energy metabolism and lysine biosynthesis.
Collapse
Affiliation(s)
- Felicitas Fazius
- Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | | | | | | |
Collapse
|
7
|
Comparative analyses of homocitrate synthase genes of ascomycetous yeasts. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:254941. [PMID: 22518332 PMCID: PMC3317173 DOI: 10.1155/2012/254941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/12/2012] [Indexed: 11/17/2022]
Abstract
Most ascomycetous yeasts have 2 homocitrate synthases (HCSs). Among the fungal lysine biosynthesis-related genes, only the HCS gene was duplicated in the course of evolution. It was recently reported that HCS of Saccharomyces cerevisiae has an additional function in nuclear activities involving chromatin regulation related to DNA damage repair, which is not related to lysine biosynthesis. Thus, it is possible that the bifunctionality is associated with HCS gene duplication. Phylogenetic analysis showed that duplication has occurred multiple times during evolution of the ascomycetous yeasts. It is likely that the HCS gene duplication in S. cerevisiae occurred in the course of Saccharomyces evolution. Although the nucleosome position profiles of the two S. cerevisiae HCS genes were similar in the coding regions, they were different in the promoter regions, suggesting that they are subject to different regulatory controls. S. cerevisiae has maintained HCS activity for lysine biosynthesis and has obtained bifunctionality.
Collapse
|
8
|
Morgat A, Coissac E, Coudert E, Axelsen KB, Keller G, Bairoch A, Bridge A, Bougueleret L, Xenarios I, Viari A. UniPathway: a resource for the exploration and annotation of metabolic pathways. Nucleic Acids Res 2011; 40:D761-9. [PMID: 22102589 PMCID: PMC3245108 DOI: 10.1093/nar/gkr1023] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathway.
Collapse
Affiliation(s)
- Anne Morgat
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Marco-Urrea E, Paul S, Khodaverdi V, Seifert J, von Bergen M, Kretzschmar U, Adrian L. Identification and characterization of a re-citrate synthase in Dehalococcoides strain CBDB1. J Bacteriol 2011; 193:5171-8. [PMID: 21784924 PMCID: PMC3187404 DOI: 10.1128/jb.05120-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/17/2011] [Indexed: 01/12/2023] Open
Abstract
The genome annotations of all sequenced Dehalococcoides strains lack a citrate synthase, although physiological experiments have indicated that such an activity should be encoded. We here report that a Re face-specific citrate synthase is synthesized by Dehalococcoides strain CBDB1 and that this function is encoded by the gene cbdbA1708 (NCBI accession number CAI83711), previously annotated as encoding homocitrate synthase. Gene cbdbA1708 was heterologously expressed in Escherichia coli, and the recombinant enzyme was purified. The enzyme catalyzed the condensation of oxaloacetate and acetyl coenzyme A (acetyl-CoA) to citrate. The protein did not have homocitrate synthase activity and was inhibited by citrate, and Mn2+ was needed for full activity. The stereospecificity of the heterologously expressed citrate synthase was determined by electrospray ionization liquid chromatography-mass spectrometry (ESI LC/MS). Citrate was synthesized from [2-(13)C]acetyl-CoA and oxaloacetate by the Dehalococcoides recombinant citrate synthase and then converted to acetate and malate by commercial citrate lyase plus malate dehydrogenase. The formation of unlabeled acetate and 13C-labeled malate proved the Re face-specific activity of the enzyme. Shotgun proteome analyses of cell extracts of strain CBDB1 demonstrated that cbdbA1708 is expressed in strain CBDB1.
Collapse
Affiliation(s)
- Ernest Marco-Urrea
- Helmholtz Centre for Environmental Research—UFZ, Department of Isotope Biogeochemistry, Leipzig, Germany
- Department of Chemical Engineering, Autonomous University of Barcelona, Bellaterra 08193, Spain
| | - Steffanie Paul
- Technische Universität Berlin, FG Angewandte Biochemie, Berlin, Germany
| | - Viola Khodaverdi
- Technische Universität Berlin, FG Angewandte Biochemie, Berlin, Germany
| | - Jana Seifert
- Helmholtz Centre for Environmental Research—UFZ, Department of Proteomics, Leipzig, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research—UFZ, Department of Proteomics, Leipzig, Germany
| | - Utta Kretzschmar
- Technische Universität Berlin, FG Angewandte Biochemie, Berlin, Germany
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research—UFZ, Department of Isotope Biogeochemistry, Leipzig, Germany
- Technische Universität Berlin, FG Angewandte Biochemie, Berlin, Germany
| |
Collapse
|
10
|
Bulfer SL, Scott EM, Pillus L, Trievel RC. Structural basis for L-lysine feedback inhibition of homocitrate synthase. J Biol Chem 2010; 285:10446-53. [PMID: 20089861 PMCID: PMC2856251 DOI: 10.1074/jbc.m109.094383] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/12/2010] [Indexed: 11/06/2022] Open
Abstract
The alpha-aminoadipate pathway of lysine biosynthesis is modulated at the transcriptional and biochemical levels by feedback inhibition. The first enzyme in the alpha-aminoadipate pathway, homocitrate synthase (HCS), is the target of the feedback regulation and is strongly inhibited by l-lysine. Here we report the structure of Schizosaccharomyces pombe HCS (SpHCS) in complex with l-lysine. The structure illustrates that the amino acid directly competes with the substrate 2-oxoglutarate for binding within the active site of HCS. Differential recognition of the substrate and inhibitor is achieved via a switch position within the (alpha/beta)(8) TIM barrel of the enzyme that can distinguish between the C5-carboxylate group of 2-oxoglutarate and the epsilon-ammonium group of l-lysine. In vitro and in vivo assays demonstrate that mutations of the switch residues, which interact with the l-lysine epsilon-ammonium group, abrogate feedback inhibition, as do substitutions of residues within the C-terminal domain that were identified in a previous study of l-lysine-insensitive HCS mutants in Saccharomyces cerevisiae. Together, these results yield new insights into the mechanism of feedback regulation of an enzyme central to lysine biosynthesis.
Collapse
Affiliation(s)
- Stacie L. Bulfer
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Erin M. Scott
- the Division of Biological Sciences and Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093-0347
| | - Lorraine Pillus
- the Division of Biological Sciences and Moores UCSD Cancer Center, University of California San Diego, La Jolla, California 92093-0347
| | - Raymond C. Trievel
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and
| |
Collapse
|
11
|
Bulfer SL, Scott EM, Couture JF, Pillus L, Trievel RC. Crystal structure and functional analysis of homocitrate synthase, an essential enzyme in lysine biosynthesis. J Biol Chem 2009; 284:35769-80. [PMID: 19776021 PMCID: PMC2791007 DOI: 10.1074/jbc.m109.046821] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/10/2009] [Indexed: 11/06/2022] Open
Abstract
Homocitrate synthase (HCS) catalyzes the first and committed step in lysine biosynthesis in many fungi and certain Archaea and is a potential target for antifungal drugs. Here we report the crystal structure of the HCS apoenzyme from Schizosaccharomyces pombe and two distinct structures of the enzyme in complex with the substrate 2-oxoglutarate (2-OG). The structures reveal that HCS forms an intertwined homodimer stabilized by domain-swapping between the N- and C-terminal domains of each monomer. The N-terminal catalytic domain is composed of a TIM barrel fold in which 2-OG binds via hydrogen bonds and coordination to the active site divalent metal ion, whereas the C-terminal domain is composed of mixed alpha/beta topology. In the structures of the HCS apoenzyme and one of the 2-OG binary complexes, a lid motif from the C-terminal domain occludes the entrance to the active site of the neighboring monomer, whereas in the second 2-OG complex the lid is disordered, suggesting that it regulates substrate access to the active site through its apparent flexibility. Mutations of the active site residues involved in 2-OG binding or implicated in acid-base catalysis impair or abolish activity in vitro and in vivo. Together, these results yield new insights into the structure and catalytic mechanism of HCSs and furnish a platform for developing HCS-selective inhibitors.
Collapse
Affiliation(s)
- Stacie L. Bulfer
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Erin M. Scott
- the Division of Biological Sciences and UCSD Moores Cancer Center, University of California, San Diego, California 92093
| | - Jean-François Couture
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Lorraine Pillus
- the Division of Biological Sciences and UCSD Moores Cancer Center, University of California, San Diego, California 92093
| | - Raymond C. Trievel
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and
| |
Collapse
|
12
|
Fondi M, Brilli M, Emiliani G, Paffetti D, Fani R. The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis. BMC Evol Biol 2007; 7 Suppl 2:S3. [PMID: 17767731 PMCID: PMC1963480 DOI: 10.1186/1471-2148-7-s2-s3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND It is generally assumed that primordial cells had small genomes with simple genes coding for enzymes able to react with a wide range of chemically related substrates, interconnecting different metabolic routes. New genes coding for enzymes with a narrowed substrate specificity arose by paralogous duplication(s) of ancestral ones and evolutionary divergence. In this way new metabolic pathways were built up by primordial cells. Useful hints to disclose the origin and evolution of ancestral metabolic routes and their interconnections can be obtained by comparing sequences of enzymes involved in the same or different metabolic routes. From this viewpoint, the lysine, arginine, and leucine biosynthetic routes represent very interesting study-models. Some of the lys, arg and leu genes are paralogs; this led to the suggestion that their ancestor genes might interconnect the three pathways. The aim of this work was to trace the evolutionary pathway leading to the appearance of the extant biosynthetic routes and to try to disclose the interrelationships existing between them and other pathways in the early stages of cellular evolution. RESULTS The comparative analysis of the genes involved in the biosynthesis of lysine, leucine, and arginine, their phylogenetic distribution and analysis revealed that the extant metabolic "grids" and their interrelationships might be the outcome of a cascade of duplication of ancestral genes that, according to the patchwork hypothesis, coded for unspecific enzymes able to react with a wide range of substrates. These genes belonged to a single common pathway in which the three biosynthetic routes were highly interconnected between them and also to methionine, threonine, and cell wall biosynthesis. A possible evolutionary model leading to the extant metabolic scenarios was also depicted. CONCLUSION The whole body of data obtained in this work suggests that primordial cells synthesized leucine, lysine, and arginine through a single common metabolic pathway, whose genes underwent a set of duplication events, most of which can have predated the appearance of the last common universal ancestor of the three cell domains (Archaea, Bacteria, and Eucaryotes). The model proposes a relative timing for the appearance of the three routes and also suggests a possible evolutionary pathway for the assembly of bacterial cell-wall.
Collapse
Affiliation(s)
- Marco Fondi
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italia
| | - Matteo Brilli
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italia
| | - Giovanni Emiliani
- Dipartimento di Scienze e Tecnologie Ambientali Forestali, Università di Firenze, Via S. Bonaventura 13, Firenze, Italia
| | - Donatella Paffetti
- Dipartimento di Scienze e Tecnologie Ambientali Forestali, Università di Firenze, Via S. Bonaventura 13, Firenze, Italia
| | - Renato Fani
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italia
| |
Collapse
|
13
|
Jia Y, Tomita T, Yamauchi K, Nishiyama M, Palmer D. Kinetics and product analysis of the reaction catalysed by recombinant homoaconitase from Thermus thermophilus. Biochem J 2006; 396:479-85. [PMID: 16524361 PMCID: PMC1482822 DOI: 10.1042/bj20051711] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HACN (homoaconitase) is a member of a family of [4Fe-4S] cluster-dependent enzymes that catalyse hydration/dehydration reactions. The best characterized example of this family is the ubiquitous ACN (aconitase), which catalyses the dehydration of citrate to cis-aconitate, and the subsequent hydration of cis-aconitate to isocitrate. HACN is an enzyme from the alpha-aminoadipate pathway of lysine biosynthesis, and has been identified in higher fungi and several archaea and one thermophilic species of bacteria, Thermus thermophilus. HACN catalyses the hydration of cis-homoaconitate to (2R,3S)-homoisocitrate, but the HACN-catalysed dehydration of (R)-homocitrate to cis-homoaconitate has not been observed in vitro. We have synthesized the substrates and putative substrates for this enzyme, and in the present study report the first steady-state kinetic data for recombinant HACN from T. thermophilus using a (2R,3S)-homoisocitrate dehydrogenase-coupled assay. We have also examined the products of the reaction using HPLC. We do not observe HACN-catalysed 'homocitrate dehydratase' activity; however, we have observed that ACN can catalyse the dehydration of (R)-homocitrate to cis-homoaconitate, but HACN is required for subsequent conversion of cis-homoaconitate into homoisocitrate. This suggests that the in vivo process for conversion of homocitrate into homoisocitrate requires two enzymes, in simile with the propionate utilization pathway from Escherichia coli. Surprisingly, HACN does not show any activity when cis-aconitate is substituted for the substrate, even though other enzymes from the alpha-aminoadipate pathway can accept analogous tricarboxylic acid-cycle substrates. The enzyme shows no apparent feedback inhibition by L-lysine.
Collapse
Affiliation(s)
- Yunhua Jia
- *Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Takeo Tomita
- †Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuma Yamauchi
- †Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- †Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - David R. J. Palmer
- *Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
- To whom correspondence should be addressed (email )
| |
Collapse
|