1
|
Kandaswamy K, Subramanian R, Giri J, Guru A, Arockiaraj J. A Robust Strategy Against Multi-Resistant Pathogens in Oral Health: Harnessing the Potency of Antimicrobial Peptides in Nanofiber-Mediated Therapies. Int J Pept Res Ther 2024; 30:35. [DOI: 10.1007/s10989-024-10613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 01/12/2025]
|
2
|
Könönen E, Fteita D, Gursoy UK, Gursoy M. Prevotella species as oral residents and infectious agents with potential impact on systemic conditions. J Oral Microbiol 2022; 14:2079814. [PMID: 36393976 PMCID: PMC9662046 DOI: 10.1080/20002297.2022.2079814] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022] Open
Abstract
Oral Prevotella are known as anaerobic commensals on oral mucosae and in dental plaques from early life onwards, including pigmented P. melaninogenica, P. nigrescens, and P. pallens and non-pigmented Prevotella species. Many Prevotella species contribute to oral inflammatory processes, being frequent findings in dysbiotic biofilms of periodontal diseases (P. intermedia, P. nigrescens), cariotic lesions (P. denticola, Alloprevotella (formerly Prevotella) tannerae), endodontic infections (P. baroniae, P. oris, P. multisaccharivorax), and other clinically relevant oral conditions. Over the years, several novel species have been recovered from the oral cavity without knowledge of their clinical relevance. Within this wide genus, virulence properties and other characteristics like biofilm formation seemingly vary in a species- and strain-dependent manner, as shown for the P. intermedia group organisms (P. aurantiaca, P. intermedia, P. nigrescens, and P. pallens). Oral Prevotella species are identified in various non-oral infections and chronic pathological conditions. Here, we have updated the knowledge of the genus Prevotella and the role of Prevotella species as residents and infectious agents of the oral cavity, as well as their detection in non-oral infections, but also gathered information on their potential link to cancers of the head and neck, and other systemic disorders.
Collapse
Affiliation(s)
- Eija Könönen
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Dareen Fteita
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi K. Gursoy
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Mervi Gursoy
- Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Lu X, Liu T, Zhou J, Liu J, Yuan Z, Guo L. Subgingival microbiome in periodontitis and type 2 diabetes mellitus: an exploratory study using metagenomic sequencing. J Periodontal Implant Sci 2022; 52:282-297. [PMID: 36047582 PMCID: PMC9436641 DOI: 10.5051/jpis.2103460173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/20/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose To explore differences in the subgingival microbiome according to the presence of periodontitis and/or type 2 diabetes mellitus (T2D), a metagenomic sequencing analysis of the subgingival microbiome was performed. Methods Twelve participants were divided into 4 groups based on their health conditions (periodontitis, T2D, T2D complicated with periodontitis, and generally healthy). Subgingival plaque was collected for metagenomic sequencing, and gingival crevicular fluids were collected to analyze the concentrations of short-chain fatty acids. Results The shifts in the subgingival flora from the healthy to periodontitis states were less prominent in T2D subjects than in subjects without T2D. The pentose and glucuronate interconversion, fructose and mannose metabolism, and galactose metabolism pathways were enriched in the periodontitis state, while the phosphotransferase system, lipopolysaccharide (LPS) and peptidoglycan biosynthesis, bacterial secretion system, sulfur metabolism, and glycolysis pathways were enriched in the T2D state. Multiple genes whose expression was upregulated from the red and orange complex bacterial genomes were associated with bacterial biofilm formation and pathogenicity. The concentrations of propionic acid and butyric acid were significantly higher in subjects with periodontitis, with or without T2D, than in healthy subjects. Conclusions T2D patients are more susceptible to the presence of periodontal pathogens and have a higher risk of developing periodontitis. The pentose and glucuronate interconversion, fructose and mannose metabolism, galactose metabolism, and glycolysis pathways may represent the potential microbial functional association between periodontitis and T2D, and butyric acid may play an important role in the interaction between these 2 diseases. The enrichment of the LPS and peptidoglycan biosynthesis, bacterial secretion system, and sulfur metabolism pathways may cause T2D patients to be more susceptible to periodontitis.
Collapse
Affiliation(s)
- Xianjun Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Tingjun Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jiani Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jia Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zijian Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
4
|
Chhabra R, Saha A, Chamani A, Schneider N, Shah R, Nanjundan M. Iron Pathways and Iron Chelation Approaches in Viral, Microbial, and Fungal Infections. Pharmaceuticals (Basel) 2020; 13:E275. [PMID: 32992923 PMCID: PMC7601909 DOI: 10.3390/ph13100275] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (R.C.); (A.S.); (A.C.); (N.S.); (R.S.)
| |
Collapse
|
5
|
Prevotella intermedia produces two proteins homologous to Porphyromonas gingivalis HmuY but with different heme coordination mode. Biochem J 2020; 477:381-405. [PMID: 31899475 DOI: 10.1042/bcj20190607] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
As part of the infective process, Porphyromonas gingivalis must acquire heme which is indispensable for life and enables the microorganism to survive and multiply at the infection site. This oral pathogenic bacterium uses a newly discovered novel hmu heme uptake system with a leading role played by the HmuY hemophore-like protein, responsible for acquiring heme and increasing virulence of this periodontopathogen. We demonstrated that Prevotella intermedia produces two HmuY homologs, termed PinO and PinA. Both proteins were produced at higher mRNA and protein levels when the bacterium grew under low-iron/heme conditions. PinO and PinA bound heme, but preferentially under reducing conditions, and in a manner different from that of the P. gingivalis HmuY. The analysis of the three-dimensional structures confirmed differences between apo-PinO and apo-HmuY, mainly in the fold forming the heme-binding pocket. Instead of two histidine residues coordinating heme iron in P. gingivalis HmuY, PinO and PinA could use one methionine residue to fulfill this function, with potential support of additional methionine residue/s. The P. intermedia proteins sequestered heme only from the host albumin-heme complex under reducing conditions. Our findings suggest that HmuY-like family might comprise proteins subjected during evolution to significant diversification, resulting in different heme coordination modes. The newer data presented in this manuscript on HmuY homologs produced by P. intermedia sheds more light on the novel mechanism of heme uptake, could be helpful in discovering their biological function, and in developing novel therapeutic approaches.
Collapse
|
6
|
Nakashima C, Yamamoto K, Kishi S, Sasaki T, Ohmori H, Fujiwara-Tani R, Mori S, Kawahara I, Nishiguchi Y, Mori T, Kondoh M, Luo Y, Kirita T, Kuniyasu H. Clostridium perfringens enterotoxin induces claudin-4 to activate YAP in oral squamous cell carcinomas. Oncotarget 2020; 11:309-321. [PMID: 32064037 PMCID: PMC6996904 DOI: 10.18632/oncotarget.27424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Claudin (CLDN)-4 expression has been associated with malignancy in various cancers. When CLDN4 expression was examined in oral squamous cell carcinoma (OSCC), 22 out of 57 (39%) cases showed immunoreactivity in the nucleus. Nuclear CLDN4-positive cases showed a stronger correlation with cancer progression than the negative cases. Intratumoral anaerobic bacterial DNA examination revealed nuclear CLDN4 expression in 81% of Clostridium perfringens-positive cases. Treatment of human oral squamous cell carcinoma cell lines HSC3 and HSC4 with Clostridium perfringens enterotoxin (CPE), induced CLDN4 nuclear translocation to enhance epithelial-mesenchymal transition (EMT), stemness, cell proliferation and invasive ability. In addition, CPE treatment suppressed phosphorylation of yes-associated protein-1 (YAP1) and promoted YAP1 nuclear translocation, resulting in increased expression of YAP1 target genes; cyclin D1 and connective tissue growth factor. Moreover, it was revealed that the complex of YAP1, CLDN4 and zona occludens-2 (ZO-2) was formed by CPE treatment, further suppressing YAP1 phosphorylation by LATS1 and activating it. Thus YAP activation in OSCC was regarded important in promoting malignant phenotypes. Our research suggested that the control of oral anaerobic bacteria may suppress YAP activation and in turn tumor progression.
Collapse
Affiliation(s)
- Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
7
|
Arenas Rodrigues VA, de Avila ED, Nakano V, Avila-Campos MJ. Qualitative, quantitative and genotypic evaluation of Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum isolated from individuals with different periodontal clinical conditions. Anaerobe 2018; 52:50-58. [PMID: 29857043 DOI: 10.1016/j.anaerobe.2018.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/26/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum are strongly associated with periodontitis, and their evaluations are relevant to understand their role in the etiology and progression of periodontal diseases. In this study, the qualitative and quantitative detection of A. actinomycetemcomitans and F. nucleatum, as well as their genetic diversity, were evaluated in individuals with gingivitis, chronic periodontitis and periodontally healthy. In addition, the biotyping, serotyping, and prevalence of the ltx and cdt genes in A. actinomycetemcomitans were also determined. Subgingival biofilms obtained from gingivitis (70), periodontitis (75) and healthy (95) individuals were analyzed by cultures and PCR. Bacterial typing and presence of ltx and cdt genes in A. actinomycetemcomitans were also verified. DNA from A. actinomycetemcomitans and F. nucleatum was detected respectively, in 65.7% and 57.1% of gingivitis, 80% and 68% of periodontitis, and 57.8% and 37.8% of healthy. A. actinomycetemcomitans from gingivitis were biotypes I, II, IV, V, and X, and serotypes a, c, and e. In periodontitis, biotypes II, VI, and X, and serotypes a, b, and c were found. In healthy subjects, biotypes II and X, and serotypes b and c were found. The LTX and ltxA were observed in strains from gingivitis and periodontitis pockets. Subsequently, our data also showed no direct relationship between ltxA gene expression and leukotoxin gene 530-bp presence. On the other hand, cdt gene predominated during the inflammatory disease process. Our results strongly support a role of A. actinomycetemcomitans and F. nucleatum in advanced stage of periodontal disease.
Collapse
Affiliation(s)
- Viviane Aparecida Arenas Rodrigues
- Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo - USP, Av. Prof. Lineu Prestes, 1374, Sao Paulo, SP, Brazil
| | - Erica Dorigatti de Avila
- Postdoctoral Research Fellow, Department of Dental Materials and Prosthodontics, School of Dentistry of Araraquara, Sao Paulo State University - UNESP, Rua Humaita, 1680, Araraquara, SP, Brazil; Department of Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands
| | - Viviane Nakano
- Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo - USP, Av. Prof. Lineu Prestes, 1374, Sao Paulo, SP, Brazil
| | - Mario Julio Avila-Campos
- Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo - USP, Av. Prof. Lineu Prestes, 1374, Sao Paulo, SP, Brazil.
| |
Collapse
|
8
|
Rodriguez Herrero E, Boon N, Pauwels M, Bernaerts K, Slomka V, Quirynen M, Teughels W. Necrotrophic growth of periodontopathogens is a novel virulence factor in oral biofilms. Sci Rep 2017; 7:1107. [PMID: 28439126 PMCID: PMC5430626 DOI: 10.1038/s41598-017-01239-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/28/2017] [Indexed: 01/05/2023] Open
Abstract
The oral use of antimicrobial agents embedded in toothpastes and mouth rinses results in an oral microbial massacre with high amounts of dead bacteria in close proximity to few surviving bacteria. It was hypothesized that this provides the surviving pathogenic bacteria a large amount of dead microbial biomass as a nutritional source for growth (necrotrophy). This study demonstrated the necrotrophic growth of periodontal pathogens in the presence of different dead oral species. In addition, the presence of dead bacteria resulted in an outgrowth of several periodontal pathogens in complex multi-species biofilms. Additionally, upon contact with dead oral bacteria, virulence genes of P. intermedia and P. gingivalis were up-regulated (necrovirulence). This resulted in a more pronounced epithelial cytotoxicity (necrotoxicity). These findings indicate that presence of dead bacteria induce necrotrophy, necrovirulence and necrotoxicity in several oral pathogens.
Collapse
Affiliation(s)
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure links 653, 9000, Gent, Belgium
| | - Martine Pauwels
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven (University of Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), 3001, Leuven, Belgium
| | - Vera Slomka
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Marc Quirynen
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.,Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium. .,Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Guo L, Feng Y, Guo HG, Liu BW, Zhang Y. Consequences of orthodontic treatment in malocclusion patients: clinical and microbial effects in adults and children. BMC Oral Health 2016; 16:112. [PMID: 27793138 PMCID: PMC5084385 DOI: 10.1186/s12903-016-0308-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malocclusion is a common disease of oral and maxillofacial region. The study was aimed to investigate levels changes of periodontal pathogens in malocclusion patients before, during and after orthodontic treatments, and to confirm the difference between adults and children. METHOD One hundred and eight malocclusion patients (46 adults and 62 children at the school-age) were randomly selected and received orthodontic treatment with fixed orthodontic appliances. Subgingival plaques were Porphyromonas gingivalis (P.gingivalis), Fusobacterium nucleatum (F. nucleatum), Prevotella intermedia (P. intermedia) and Tannerella forsythensis (T. forsythensis) collected from the observed regions before and after treatment. Clinical indexes, including plaque index (PLI), gingival index (GI), sulcus bleeding index (SBI), probing depth (PD) and attachment loss (AL) of observed teeth were examined. RESULTS The detection rates of P.gingivalis, F. nucleatum, P. intermedia and T. forsythensis increased from baseline to the third month without significant difference, and then returned to pretreatment levels 12 month after applying fixed orthodontic appliances. Adults' percentage contents of P.gingivalis, F. nucleatum, P. intermedia and T. forsythensis were significantly higher than those of children at baseline and the first month, but not obvious at the third month. PLI and SBI were increased from baseline to the first and to the third month both in adults and children groups. Besides, PD were increased from baseline to first month, followed by a downward trend in the third month; however, all patients were failed to detect with AL. CONCLUSIONS Periodontal and microbiological statuses of malocclusion patients may be influenced by fixed orthodontic appliances in both adults and children, more significant in children than in adults. Some microbiological indexes have synchronous trend with the clinical indexes. Long-term efficacy of fixed orthodontic appliances for malocclusion should be confirmed by future researches.
Collapse
Affiliation(s)
- Li Guo
- Department of Stomatology, Ninth Hospital of Xi'an, No. 151, 2nd Ring Road East, Xi'an, 710054, People's Republic of China.
| | - Ying Feng
- Department of Stomatology, Ninth Hospital of Xi'an, No. 151, 2nd Ring Road East, Xi'an, 710054, People's Republic of China
| | - Hong-Gang Guo
- Department of Orthopedic, Engineering University Hospital of PAPF, Xi'an, 710086, People's Republic of China
| | - Bo-Wen Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Yang Zhang
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Jang EY, Kim M, Noh MH, Moon JH, Lee JY. In Vitro Effects of Polyphosphate against Prevotella intermedia in Planktonic Phase and Biofilm. Antimicrob Agents Chemother 2016; 60:818-26. [PMID: 26596937 PMCID: PMC4750699 DOI: 10.1128/aac.01861-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/14/2015] [Indexed: 11/20/2022] Open
Abstract
Polyphosphate (polyP) has gained a wide interest in the food industry due to its potential as a decontaminating agent. In this study, we examined the effect of sodium tripolyphosphate (polyP3; Na5P3O10) against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. The MIC of polyP3 against P. intermedia ATCC 49046 determined by agar dilution method was 0.075%, while 0.05% polyP3 was bactericidal against P. intermedia in time-kill analysis performed using liquid medium. A crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that sub-MICs of polyP3 significantly decreased biofilm formation. Under the scanning electron microscope, decreased numbers of P. intermedia cells forming the biofilms were observed when the bacterial cells were incubated with 0.025% or higher concentrations of polyP3. Assessment of biofilm viability with LIVE/DEAD staining and viable cell count methods showed that 0.05% or higher concentrations of polyP3 significantly decreased the viability of the preformed biofilms in a concentration-dependent manner. The zone sizes of alpha-hemolysis formed on horse blood agar produced by P. intermedia were decreased in the presence of polyP3. The expression of the genes encoding hemolysins and the genes of the hemin uptake (hmu) locus was downregulated by polyP3. Collectively, our results show that polyP is an effective antimicrobial agent against P. intermedia in biofilms as well as planktonic phase, interfering with the process of hemin acquisition by the bacterium.
Collapse
Affiliation(s)
- Eun-Young Jang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Minjung Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Hee Noh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Hoi Moon
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Yong Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Borgo PV, Rodrigues VAA, Feitosa ACR, Xavier KCB, Avila-Campos MJ. Association between periodontal condition and subgingival microbiota in women during pregnancy: a longitudinal study. J Appl Oral Sci 2015; 22:528-33. [PMID: 25591021 PMCID: PMC4307767 DOI: 10.1590/1678-775720140164] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/14/2014] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE In this study, the gingival conditions and the quantitative detection for Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia in pregnant women were determined. MATERIAL AND METHODS Quantitative determinations of periodontal bacteria by using a SyBr green system in women during pregnancy were performed. Women at the 2nd and 3rd trimesters of pregnancy and non-pregnant women were included in this study. A. actinomycetemcomitans was observed in high numbers in women at the 2nd and 3rd trimesters of pregnancy with a significant difference (p<0.05). F. nucleatum and P. intermedia were also observed in high levels. RESULTS AND CONCLUSION Our results show that pregnant women are more susceptible to gingivitis, and the presence of A. actinomycetemcomitans in subgingival biofilm might be taken into account for the treatment of periodontal disease.
Collapse
|
12
|
Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro U, Nakano V, Avila-Campos MJ. High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Braz J Microbiol 2015; 46:1135-40. [PMID: 26691472 PMCID: PMC4704648 DOI: 10.1590/s1517-838246420140665] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/16/2015] [Indexed: 12/12/2022] Open
Abstract
Colorectal carcinoma is considered the fourth leading cause of cancer deaths worldwide. Several microorganisms have been associated with carcinogenesis, including Enterococcus spp., Helicobacter pylori, enterotoxigenic Bacteroides fragilis, pathogenic E. coli strains and oral Fusobacterium. Here we qualitatively and quantitatively evaluated the presence of oral and intestinal microorganisms in the fecal microbiota of colorectal cancer patients and healthy controls. Seventeen patients (between 49 and 70 years-old) visiting the Cancer Institute of the Sao Paulo State were selected, 7 of whom were diagnosed with colorectal carcinoma. Bacterial detection was performed by qRT-PCR. Although all of the tested bacteria were detected in the majority of the fecal samples, quantitative differences between the Cancer Group and healthy controls were detected only for F. nucleatum and C. difficile. The three tested oral microorganisms were frequently observed, suggesting a need for furthers studies into a potential role for these bacteria during colorectal carcinoma pathogenesis. Despite the small number of patients included in this study, we were able to detect significantly more F. nucleatum and C. difficile in the Cancer Group patients compared to healthy controls, suggesting a possible role of these bacteria in colon carcinogenesis. This finding should be considered when screening for colorectal cancer.
Collapse
Affiliation(s)
- Márcia H. Fukugaiti
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, SP,
Brazil
| | - Aline Ignacio
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, SP,
Brazil
| | - Miriam R. Fernandes
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, SP,
Brazil
| | - Ulysses Ribeiro
- Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Viviane Nakano
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, SP,
Brazil
| | | |
Collapse
|
13
|
Barbosa GM, Colombo AV, Rodrigues PH, Simionato MRL. Intraspecies Variability Affects Heterotypic Biofilms of Porphyromonas gingivalis and Prevotella intermedia: Evidences of Strain-Dependence Biofilm Modulation by Physical Contact and by Released Soluble Factors. PLoS One 2015; 10:e0138687. [PMID: 26406499 PMCID: PMC4583444 DOI: 10.1371/journal.pone.0138687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P. gingivalis and P. intermedia, among others, to persist and establish chronic infections in the host.
Collapse
Affiliation(s)
- Graziela Murta Barbosa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Andrea Vieira Colombo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Paulo Henrique Rodrigues
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (PHR); (MRLS)
| | - Maria Regina Lorenzetti Simionato
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (PHR); (MRLS)
| |
Collapse
|
14
|
Ruan Y, Shen L, Zou Y, Qi Z, Yin J, Jiang J, Guo L, He L, Chen Z, Tang Z, Qin S. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation. BMC Genomics 2015; 16:122. [PMID: 25765460 PMCID: PMC4349605 DOI: 10.1186/s12864-015-1272-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/22/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Many species of the genus Prevotella are pathogens that cause oral diseases. Prevotella intermedia is known to cause various oral disorders e.g. periodontal disease, periapical periodontitis and noma as well as colonize in the respiratory tract and be associated with cystic fibrosis and chronic bronchitis. It is of clinical significance to identify the main drive of its various adaptation and pathogenicity. In order to explore the intra-species genetic differences among strains of Prevotella intermedia of different niches, we isolated a strain Prevotella intermedia ZT from the infected root canal of a Chinese patient with periapical periodontitis and gained a draft genome sequence. We annotated the genome and compared it with the genomes of other taxa in the genus Prevotella. RESULTS The raw data set, consisting of approximately 65X-coverage reads, was trimmed and assembled into contigs from which 2165 ORFs were predicted. The comparison of the Prevotella intermedia ZT genome sequence with the published genome sequence of Prevotella intermedia 17 and Prevotella intermedia ATCC25611 revealed that ~14% of the genes were strain-specific. The Preveotella intermedia strains share a set of conserved genes contributing to its adaptation and pathogenic and possess strain-specific genes especially those involved in adhesion and secreting bacteriocin. The Prevotella intermedia ZT shares similar gene content with other taxa of genus Prevotella. The genomes of the genus Prevotella is highly dynamic with relative conserved parts: on average, about half of the genes in one Prevotella genome were not included in another genome of the different Prevotella species. The degree of conservation varied with different pathways: the ability of amino acid biosynthesis varied greatly with species but the pathway of cell wall components biosynthesis were nearly constant. Phylogenetic tree shows that the taxa from different niches are scarcely distributed among clades. CONCLUSIONS Prevotella intermedia ZT belongs to a genus marked with highly dynamic genomes. The specific genes of Prevotella intermedia indicate that adhesion, competing with surrounding microbes and horizontal gene transfer are the main drive of the evolution of Prevotella intermedia.
Collapse
Affiliation(s)
- Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Yan Zou
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Zhengnan Qi
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jun Yin
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
| | - Liang Guo
- The Fourth Hospital of Jinan City; Taishan Medical College, Jinan, 250031, China.
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Zijiang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| | - Zisheng Tang
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| |
Collapse
|
15
|
Development and evaluation of new primers for PCR-based identification of Prevotella intermedia. Anaerobe 2014; 28:126-9. [PMID: 24875331 DOI: 10.1016/j.anaerobe.2014.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/14/2014] [Accepted: 05/16/2014] [Indexed: 02/05/2023]
Abstract
The aim of this study was to develop new Prevotella intermedia-specific PCR primers based on the 16S rRNA. The new primer set, Pi-192 and Pi-468, increased the accuracy of PCR-based P. intermedia identification and could be useful in the detection of P. intermedia as well as epidemiological studies on periodontal disease.
Collapse
|
16
|
Ma S, Li H, Yan C, Wang D, Li H, Xia X, Dong X, Zhao Y, Sun T, Hu P, Guan W. Antagonistic effect of protein extracts from Streptococcus sanguinis on pathogenic bacteria and fungi of the oral cavity. Exp Ther Med 2014; 7:1486-1494. [PMID: 24926331 PMCID: PMC4043591 DOI: 10.3892/etm.2014.1618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
An antibacterial substance from Streptococcus sanguinis (S. sanguinis) is known to have an inhibitory effect on putative periodontal pathogens, but its inhibitory effect on pathogens of oral candidiasis is unknown. In this study, intracellular and exocrine proteins were extracted from S. sanguinis. The antagonistic effect of the protein extracts on Prevotella intermedia (P. intermedia) and Porphyromonas gingivalis (P. gingivalis) was detected by a well-plate technique, and the effects of the protein extracts on biofilms formed by these bacteria were evaluated by confocal laser scanning microscopy. The antagonistic effect of the protein extracts on pathogenic fungi was investigated using Candida albicans (C. albicans) and Candida tropicalis (C. tropicalis). The growth curves of C. albicans and C. tropicalis were determined from ultraviolet absorption measurements, their morphological changes following treatment were observed by optical microscopy and scanning electron microscopy, and the effects of the protein extracts on the thickness of their biofilms and the distribution of dead/live bacteria within the biofilms were detected by confocal laser scanning microscopy. The results showed significant inhibitory effects of the intracellular proteins extracted from S. sanguinis on pathogenic bacteria (P. intermedia and P. gingivalis), fungi (C. albicans and C. tropicalis) and the biofilms formed by them. Furthermore, the growth curves and morphology of C. albicans and C. tropicalis were altered following treatment with the intracellular proteins, resulting in disc-like depressions in the surfaces of the fungal spores and mycelia. By contrast, the exocrine proteins demonstrated no significant inhibitory effect on the pathogenic bacteria, fungi and the biofilms formed by them. Thus, it may be concluded that intracellular proteins of S. sanguinis have antibacterial activity and exert an antagonistic effect on certain pathogenic bacteria and fungi of the oral cavity.
Collapse
Affiliation(s)
- Shengli Ma
- Department of Stomatology, Hospital of Heilongjiang Province, Harbin, Heilongjiang 150036, P.R. China
| | - Hui Li
- Department of Stomatology, Hospital of Heilongjiang Province, Harbin, Heilongjiang 150036, P.R. China
| | - Chuang Yan
- Department of Stomatology, Hospital of Heilongjiang Province, Harbin, Heilongjiang 150036, P.R. China
| | - Dan Wang
- Department of Stomatology, Hospital of Heilongjiang Province, Harbin, Heilongjiang 150036, P.R. China
| | - Haiqing Li
- Department of Stomatology, Hospital of Heilongjiang Province, Harbin, Heilongjiang 150036, P.R. China
| | - Xue Xia
- Department of Stomatology, Hospital of Heilongjiang Province, Harbin, Heilongjiang 150036, P.R. China
| | - Xue Dong
- Department of Stomatology, Hospital of Heilongjiang Province, Harbin, Heilongjiang 150036, P.R. China
| | - Yingnan Zhao
- Department of Stomatology, Hospital of Heilongjiang Province, Harbin, Heilongjiang 150036, P.R. China
| | - Tingting Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Pengfei Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Weijun Guan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
17
|
Kook JK, Sakamoto T, Nishi K, Kim MK, Seong JH, Son YN, Kim DK. Detection ofTannerella forsythiaand/orPrevotella intermediaMight Be Useful for Microbial Predictive Markers for the Outcome of Initial Periodontal Treatment in Koreans. Microbiol Immunol 2013; 49:9-16. [PMID: 15665448 DOI: 10.1111/j.1348-0421.2005.tb03634.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A proportion of diseased sites in periodontal disease do not respond to the initial treatment, which might be due in part to the presence of specific microbial pathogens. The aim of this study was to clarify the value of microbial screening for predicting the outcome of periodontal treatment in Koreans using a polymerase chain reaction (PCR). This study enrolled 32 adults with periodontal disease. Microbial and clinical examinations were performed at the baseline and after the initial treatment (professional toothbrushing, scaling, and root planing). Subgingival plaque samples were taken from four sites in each subject (total 128 samples). PCR was used to detect the four putative pathogenic bacteria. There was an improvement in the average of each clinical measurement after the initial treatment. However, approximately half of the sites exhibiting bleeding upon probing (BOP) at the baseline still exhibited bleeding after treatment. There was a close association between the presence of BOP and the presence of Tannerella forsythia (formerly Bacteroides forsythus) and/or Prevotella intermedia. Furthermore, the sites harboring both T. forsythia and P. intermedia at the baseline had a poorer response to treatment than the sites where these two species were not detected. Therefore, microbial screening for T. forsythia and P. intermedia might be useful for predicting the treatment outcome in Koreans.
Collapse
Affiliation(s)
- Joong-Ki Kook
- Department of Biochemistry, College of Dentistry, Chosun University, Seo-Suk Dong, Dong-ku, Gwang-ju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Byrne DP, Potempa J, Olczak T, Smalley JW. Evidence of mutualism between two periodontal pathogens: co-operative haem acquisition by the HmuY haemophore of Porphyromonas gingivalis and the cysteine protease interpain A (InpA) of Prevotella intermedia. Mol Oral Microbiol 2013; 28:219-29. [PMID: 23336115 DOI: 10.1111/omi.12018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2012] [Indexed: 11/27/2022]
Abstract
Haem (iron protoporphyrin IX) is both an essential growth factor and a virulence regulator of the periodontal pathogens Porphyromonas gingivalis and Prevotella intermedia, which acquire it through the proteolytic degradation of haemoglobin and other haem-carrying plasma proteins. The haem-binding lipoprotein HmuY haemophore and the gingipain proteases of P. gingivalis form a unique synthrophic system responsible for capture of haem from haemoglobin and methaemalbumin. In this system, methaemoglobin is formed from oxyhaemoglobin by the activities of gingipain proteases and serves as a facile substrate from which HmuY can capture haem. This study examined the possibility of cooperation between HmuY and the cysteine protease interpain A (InpA) of Pr. intermedia in the haem acquisition process. Using UV-visible spectroscopy and polyacrylamide gel electrophoresis, HmuY was demonstrated to be resistant to proteolysis and so able to cooperate with InpA to extract haem from haemoglobin, which was proteolytically converted to methaemoglobin by the protease. Spectroscopic pH titrations showed that both the iron(II) and iron(III) protoporphyrin IX-HmuY complexes were stable over the pH range 4-10, demonstrating that the haemophore could function over a range of pH that may be encountered in the dental plaque biofilm. This is the first demonstration of a bacterial haemophore working in conjunction with a protease from another bacterial species to acquire haem from haemoglobin and may represent mutualism between P. gingivalis and Pr. intermedia co-inhabiting the periodontal pocket.
Collapse
Affiliation(s)
- D P Byrne
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
20
|
Suzuki N, Fukamachi H, Arimoto T, Yamamoto M, Igarashi T. Contribution of hly homologs to the hemolytic activity of Prevotella intermedia. Anaerobe 2012; 18:350-6. [PMID: 22554902 DOI: 10.1016/j.anaerobe.2012.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
Prevotella intermedia is a periodontal pathogen that requires iron for its growth. Although this organism has hemolytic activity, the precise nature of its hemolytic substances and their associated hemolytic actions are yet to be fully determined. In the present study, we identified and characterized several putative hly genes in P. intermedia ATCC25611 which appear to encode hemolysins. Six hly genes (hlyA, B, C, D, E, and hlyI) of P. intermedia were identified by comparing their nucleotide sequences to those of known hly genes of Bacteroides fragilis NCTC9343. The hlyA-E, and hlyI genes were overexpressed individually in the non-hemolytic Escherichia coli strain JW5181 and examined its contribution to the hemolytic activity on sheep blood agar plates. E. coli cells expressing the hlyA and hlyI genes exhibited hemolytic activity under anaerobic conditions. On the other hand, only E. coli cells stably expressing the hlyA gene were able to lyse the red blood cells when cultured under aerobic conditions. In addition, expression of the hlyA and hlyI genes was significantly upregulated in the presence of red blood cells. Furthermore, we found that the growth of P. intermedia was similar in an iron-limited medium supplemented with either red blood cells or heme. Taken together, our results indicate that the hlyA and hlyI genes of P. intermedia encode putative hemolysins that appear to be involved in the lysis of red blood cells, and suggest that these hemolysins might play important roles in the iron-dependent growth of this organism.
Collapse
Affiliation(s)
- Naoko Suzuki
- Department of Periodontology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
21
|
Kim MJ, Hwang KH, Lee YS, Park JY, Kook JK. Development of Prevotella intermedia-specific PCR primers based on the nucleotide sequences of a DNA probe Pig27. J Microbiol Methods 2011; 84:394-7. [DOI: 10.1016/j.mimet.2010.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/24/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
|
22
|
Kim MJ, Lee YS, Park JY, Kook JK. Development of Prevotella nigrescens-specific PCR primers based on the nucleotide sequence of a Pn23 DNA probe. Anaerobe 2010; 17:32-5. [PMID: 21184839 DOI: 10.1016/j.anaerobe.2010.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/09/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Abstract
A previous study reported the cloning of a putative Prevotella nigrescens-specific DNA probe, Pn23, using random shotgun method. The present study evaluated the species-specificity of Pn23 for P. nigrescens using the clinical strains of Prevotella intermedia and P. nigrescens to develop P. nigrescens-specific polymerase chain reaction (PCR) primers. Southern blot analysis showed that the DNA probe, Pn23, detected only the genomic DNA of P. nigrescens strains. PCR showed that the two sets of PCR primers, Pn23-F1/Pn23-R1 and Pn23-F2/Pn23-R2, had species-specificity for P. nigrescens. Interestingly, the two sets of PCR primers, Pn23-F6/Pn23-R6 and Pn23-F7/Pn23-R7, had strain-specificity for P. nigrescens ATCC 33563. The detection limits of the four primer sets were 40 or 4 pg of the purified genomic DNA of P. nigrescens ATCC 33563. These results suggest that the DNA probe, Pn23, and the two sets of PCR primers, Pn23-F1/Pn23-R1 and Pn23-F2/Pn23-R2, can be useful for the detection of P. nigrescens in the molecular epidemiological studies of oral infectious diseases.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Oral Biochemistry, School of Dentistry, Chosun University, 375 Seosuk-Dong, Dong-Gu, Gwangju 501-759, Republic of Korea
| | | | | | | |
Collapse
|
23
|
Yano T, Fukamachi H, Yamamoto M, Igarashi T. Characterization of L-cysteine desulfhydrase from Prevotella intermedia. ACTA ACUST UNITED AC 2010; 24:485-92. [PMID: 19832801 DOI: 10.1111/j.1399-302x.2009.00546.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Hydrogen sulfide is responsible for lysis of red blood cells and is a major compound for oral malodor. To clarify the production mechanism of hydrogen sulfide in Prevotella intermedia, we found an L-cysteine desulfhydrase gene (lcs) homologue on the genome database of P. intermedia ATCC25611 and characterized its gene product. METHODS The lcs gene homologue cloned into pGEX6p-1 vector was expressed in Escherichia coli and purified. Lcs activity was assayed by detection of the reaction products (hydrogen sulfide and pyruvate) or its derivatives from L-cysteine. Site-directed mutagenesis was used to convert an amino acid of the Lcs molecule. RESULTS The purified lcs gene product catalysed the degradation of L-cysteine to pyruvate, ammonia, and hydrogen sulfide, indicating that the protein is L-cysteine desulfhydrase. The enzyme required pyridoxal 5'-phosphate as a cofactor, and it was highly active at pH 7.0 and completely inhibited by ZnCl(2). The K(m) and V(max) of the enzyme were 0.7 mm and 4.2 micromol/min/mg, respectively. Replacement of Tyr-59, Tyr-118, Asp-198, and Lys-233 with any of the amino acids resulted in the complete disappearance of Lcs activity, implying that these amino acids are essential for enzyme activity. In addition, hydrogen sulfide produced by this enzyme lysed sheep red blood cells and modified hemoglobin. CONCLUSION These results show the enzymatic properties of L-cysteine desulfhydrase from P. intermedia ATCC25611 and also suggest that the Lcs enzyme, which produces hydrogen sulfide from L-cysteine, is closely associated with the pathogenesis of P. intermedia.
Collapse
Affiliation(s)
- T Yano
- Department of Periodontology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Role of the cysteine protease interpain A of Prevotella intermedia in breakdown and release of haem from haemoglobin. Biochem J 2009; 425:257-64. [PMID: 19814715 DOI: 10.1042/bj20090343] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The gram-negative oral anaerobe Prevotella intermedia forms an iron(III) protoporphyrin IX pigment from haemoglobin. The bacterium expresses a 90 kDa cysteine protease, InpA (interpain A), a homologue of Streptococcus pyogenes streptopain (SpeB). The role of InpA in haemoglobin breakdown and haem release was investigated. At pH 7.5, InpA mediated oxidation of oxyhaemoglobin to hydroxymethaemoglobin [in which the haem iron is oxidized to the Fe(III) state and which carries OH- as the sixth co-ordinate ligand] by limited proteolysis of globin chains as indicated by SDS/PAGE and MALDI (matrix-assisted laser-desorption ionization)-TOF (time-of-flight) analysis. Prolonged incubation at pH 7.5 did not result in further haemoglobin protein breakdown, but in the formation of a haemoglobin haemichrome (where the haem Fe atom is co-ordinated by another amino acid ligand in addition to the proximal histidine residue) resistant to degradation by InpA. InpA-mediated haem release from hydroxymethaemoglobin-agarose was minimal compared with trypsin at pH 7.5. At pH 6.0, InpA increased oxidation at a rate greater than auto-oxidation, producing aquomethaemoglobin (with water as sixth co-ordinate ligand), and resulted in its complete breakdown and haem loss. Aquomethaemoglobin proteolysis and haem release was prevented by blocking haem dissociation by ligation with azide, whereas InpA proteolysis of haem-free globin was rapid, even at pH 7.5. Both oxidation of oxyhaemoglobin and breakdown of methaemoglobin by InpA were inhibited by the cysteine protease inhibitor E-64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane]. In summary, we conclude that InpA may play a central role in haem acquisition by mediating oxyhaemoglobin oxidation, and by degrading aquomethaemoglobin in which haem-globin affinity is weakened under acidic conditions.
Collapse
|
25
|
Dixon DR, Karimi-Naser L, Darveau RP, Leung KP. The anti-endotoxic effects of the KSL-W decapeptide on Escherichia coli O55:B5 and various oral lipopolysaccharides. J Periodontal Res 2008; 43:422-30. [DOI: 10.1111/j.1600-0765.2007.01067.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Yu F, Anaya C, Lewis JP. Outer membrane proteome of Prevotella intermedia 17: identification of thioredoxin and iron-repressible hemin uptake loci. Proteomics 2007; 7:403-12. [PMID: 17177252 DOI: 10.1002/pmic.200600441] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although hemin is an indispensable nutrient for the oral pathogen Prevotella intermedia, not much is known regarding the molecular mechanisms of hemin acquisition. The availability of the genomic sequence of the bacterium allowed us to apply proteomic approaches to identify proteins that may be mediating the hemin acquisition process. As hemin acquisition mechanisms have been shown to be induced in iron-depleted conditions, we applied proteomic approaches to detect those proteins whose expressions were affected by iron. We analyzed 40 protein spots and identified 19 such proteins. Interestingly, two proteins drastically upregulated in iron-depleted conditions, PIN0009 and PINA0611, are homologs of hemin uptake receptors in other bacteria. PIN0009 is predicted to be an outer membrane lipoprotein. It is encoded by a gene that is the first of a seven-gene genomic locus encoding proteins of a novel hemin acquisition system. The second protein, PINA0611, is a homolog of numerous TonB-dependent outer membrane receptors including outer membrane iron uptake receptors of various Gram-negative bacteria. There was also another protein, regulated by iron, that was previously demonstrated to bind hemoglobin in P. intermedia. Finally, we identified a thioredoxin-like protein that has a novel outer membrane location.
Collapse
Affiliation(s)
- Fan Yu
- The Philips Institute, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | | | | |
Collapse
|
27
|
Guan SM, Nagata H, Shizukuishi S, Wu JZ. Degradation of human hemoglobin by Prevotella intermedia. Anaerobe 2007; 12:279-82. [PMID: 17081784 DOI: 10.1016/j.anaerobe.2006.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 08/20/2006] [Accepted: 09/01/2006] [Indexed: 11/29/2022]
Abstract
In this study, the ability of Prevotella intermedia, an obligate anaerobic rod, to degrade human hemoglobin was determined by SDS-PAGE and the degradation was quantified by scanning densitometry. Both bacterial cells and culture supernatants degraded hemoglobin. The hemoglobin degradation by P. intermedia was time-dependent, heat sensitive, pH related and was not influenced by iron restriction. Inhibition studies demonstrated that a cysteine protease might be involved in hemoglobin degradation and this protease might require metal ions for its activity and it might be thiol-requiring and trypsin-inducible. The results indicate that P. intermedia is capable to release heme from hemoglobin, hence provide a source of iron for its proliferation.
Collapse
Affiliation(s)
- Su-Min Guan
- Department of Oral Biology, School of Stomatology, Fourth Military Medical University, 145 West Chang Le Road, Xi'an 710032, PR China.
| | | | | | | |
Collapse
|
28
|
Yanagisawa M, Kuriyama T, Williams DW, Nakagawa K, Karasawa T. Proteinase activity of prevotella species associated with oral purulent infection. Curr Microbiol 2006; 52:375-8. [PMID: 16586023 DOI: 10.1007/s00284-005-0261-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 11/22/2005] [Indexed: 10/24/2022]
Abstract
Prevotella intermedia and Prevotella nigrescens are often regarded as principal causes of acute dentoalveolar infection; however, other species within the genus are also known to be associated with such infection. The aim of this study was to determine the in vitro proteolytic activity of these different Prevotella species that have been implicated with dentoalveolar infection. A total of 234 strains were obtained from pus specimens from dentoalveolar infection and from the plaque of healthy volunteers. Prevotella loescheii, Prevotella oralis, Prevotella melaninogenica, Prevotella buccae, and Prevotella denticola were all shown to have a proteolytic activity (8.5-10.5 x 10(-8) A-units) lower than that of P. intermedia and P. nigrescens (21.1-23.5 x 10(-8) A-units). In the case of P. loescheii, P. melaninogenica, and P. intermedia, the level of proteolytic activity for clinical strains was significantly (P < 0.05) higher than that recorded for commensal strains. Proteolytic activity for all species of Prevotella examined was inhibited by N-ethylmaleimide and phenymethylsulfonyl fluoride. This study suggests that Prevotella species associated with oral purulent infection produce cysteine and serine proteinases and that in certain species of Prevotella, the strains involved in infection exhibit higher proteolytic activity when compared with strains from healthy sites.
Collapse
Affiliation(s)
- Maki Yanagisawa
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, 920-8640, Japan
| | | | | | | | | |
Collapse
|
29
|
Yamaura M, Sato T, Echigo S, Takahashi N. Quantification and detection of bacteria from postoperative maxillary cyst by polymerase chain reaction. ACTA ACUST UNITED AC 2005; 20:333-8. [PMID: 16238591 DOI: 10.1111/j.1399-302x.2005.00229.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/AIMS Postoperative maxillary cyst (POMC) is known to occur as a delayed complication of radical maxillary sinus surgery, such as Caldwell-Luc surgery. The cyst gradually expands with no symptoms over a period of years, and then occasionally causes swelling and pain in the buccal region and/or the mucogingival fold. It is probable that bacterial infection affects the progression of POMC symptoms. The aims of this study were to determine the bacterial density and to examine the presence of 20 oral bacteria in POMC fluids. METHODS POMC fluids (4 purulent, 2 mucous and 4 serous) were sampled from 10 subjects (aged 43-77 years). Bacterial quantification and detection were performed by real-time polymerase chain reaction (PCR) and nested PCR based on bacterial 16S rRNA genes, respectively. RESULTS Bacterial DNA was detected in all samples and the average concentrations of bacterial DNA were 5.9 (purulent), 0.5 (mucous), and 0.7 (serous) ng/mg of sample. Twelve bacterial species, including anginosus streptococci, known to be associated with abscess formation, were detected in the purulent fluids, while two and five species were detected in the mucous and serous fluids, respectively. CONCLUSION Purulent fluids contained numerous bacteria of various types, thus suggesting that oral bacteria may cause symptoms such as pain in POMC with purulent fluids. Mucous and serous fluids also contained bacteria, although their numbers were small, thus suggesting an association between bacteria and progression of POMC.
Collapse
Affiliation(s)
- M Yamaura
- Division of Oral Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | |
Collapse
|
30
|
Haraldsson G, Meurman JH, Könönen E, Holbrook WP. Properties of hemagglutination by Prevotella melaninogenica. Anaerobe 2005; 11:285-9. [PMID: 16701585 DOI: 10.1016/j.anaerobe.2005.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/16/2005] [Accepted: 02/25/2005] [Indexed: 11/30/2022]
Abstract
Although Prevotella melaninogenica belongs to the commensal oral microbiota, some strains possess putative virulence factors. For example, we have previously described fimbriated, hemagglutinating strains of P. melaninogenica, isolated from patients with periodontal disease. The aim of this investigation was to compare some chemical and physical properties of hemagglutination (HA) of P. melaninogenica with those of other pigmented gram-negative anaerobes. HA of 13 P. melaninogenica strains proved to be considerably weaker than that of the major periodontal pathogen, Porphyromonas gingivalis. Vigorous shaking reduced HA of shaken cells but the shaken supernatant had the same hemagglutinating activity as non-shaken cells. The hemagglutinating agent on P. melaninogenica seemed to be a protein, which can be separated from the cell and binds to lactose-, galactose-, and raffinose-containing carbohydrates on the erythrocytes. Adherence to epithelial cells did not differ significantly between the hemagglutinating and non-hemagglutinating strains of P. melaninogenica. Although P. melaninogenica is able to agglutinate erythrocytes, this potential virulence factor is of a considerably lower magnitude than that of major periodontal pathogens.
Collapse
|
31
|
Mayanagi G, Sato T, Shimauchi H, Takahashi N. Detection frequency of periodontitis-associated bacteria by polymerase chain reaction in subgingival and supragingival plaque of periodontitis and healthy subjects. ACTA ACUST UNITED AC 2004; 19:379-85. [PMID: 15491463 DOI: 10.1111/j.1399-302x.2004.00172.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to compare the detection frequencies of 25 bacterial species in subgingival and supragingival plaque of 18 untreated periodontitis subjects and 12 periodontally healthy subjects. Genomic DNA was extracted from subgingival and supragingival plaque samples, and bacterial detection was performed by polymerase chain reaction of the 16S rRNA genes. Fourteen bacteria showed no relationship with periodontitis, and 11 of these 14 species were frequently detected (> or =50%) in subgingival plaque in both periodontitis and healthy subjects. Nine bacteria such as Eubacterium saphenum, Prevotella intermedia, and Treponema denticola seemed to be related to periodontitis; their detection frequencies in subgingival plaque samples were higher in periodontitis than in healthy subjects, but these differences were not statistically significant by multiple comparisons (0.002< or =P<0.05). Two species (Mogibacterium timidum and Porphyromonas gingivalis) were detected significantly more frequently in subgingival plaque of periodontitis subjects than of healthy subjects (P<0.002), with P. gingivalis being detected only in periodontitis subjects, suggesting that these two species are closely related to periodontitis. There were no significant differences in the detection frequencies of the 25 bacteria between subgingival and supragingival plaque, suggesting that the bacterial flora of supragingival plaque reflects that of subgingival plaque.
Collapse
Affiliation(s)
- G Mayanagi
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | |
Collapse
|
32
|
Silva TA, Noronha FSM, de Macêdo Farias L, Carvalho MAR. In vitro activation of the hemolysin in Prevotella nigrescens ATCC 33563 and Prevotella intermedia ATCC 25611. Res Microbiol 2004; 155:31-8. [PMID: 14759706 DOI: 10.1016/j.resmic.2003.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Accepted: 09/12/2003] [Indexed: 11/16/2022]
Abstract
Hemolytic activity was evaluated in the putative periodontopathogens Prevotella intermedia and Prevotella nigrescens. Whole cells of both species present weak hemolytic activity evidenced only by solid media assays after 48 h of bacterial growth or after 5 h of interaction with erythrocytes at 37 degrees C in liquid assays. In this work we show that the use of crude extract allowed the detection of a higher hemolytic activity for P. intermedia, but surprisingly not for P. nigrescens. Incubation at 37 degrees C for 9 h, or treatment with trypsin or proteinase K, increased or exposed the hemolytic activity of P. intermedia and P. nigrescens crude extract, respectively. The activation process was inhibited by TLCK and PMSF but not by EDTA, E-64 or pepstatin A, indicating the serino-protease nature of the factor involved in activation of P. intermedia and P. nigrescens hemolysins. Both the buffer and the pH employed for cell fractionation influenced the activation of hemolysin, and the best results were obtained with Universal buffer at pH 8.0. The activated hemolysins acted optimally at pH 6.5 at 37 degrees C and the maximum hemolytic activity was detected at the early log phase of growth. The results of this study show for the first time a strong hemolytic activity for P. nigrescens and evidence of proteolytic activation of hemolysins produced by periodontopathogens.
Collapse
Affiliation(s)
- Tarcília Aparecida Silva
- Laboratório de Microbiologia Oral e Anaeróbios, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Pampulha, CEP 31 270-901, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
33
|
Duncan MJ. Genomics of oral bacteria. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:175-87. [PMID: 12799321 DOI: 10.1177/154411130301400303] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in bacterial genetics came with the discovery of the genetic code, followed by the development of recombinant DNA technologies. Now the field is undergoing a new revolution because of investigators' ability to sequence and assemble complete bacterial genomes. Over 200 genome projects have been completed or are in progress, and the oral microbiology research community has benefited through projects for oral bacteria and their non-oral-pathogen relatives. This review describes features of several oral bacterial genomes, and emphasizes the themes of species relationships, comparative genomics, and lateral gene transfer. Genomics is having a broad impact on basic research in microbial pathogenesis, and will lead to new approaches in clinical research and therapeutics. The oral microbiota is a unique community especially suited for new challenges to sequence the metagenomes of microbial consortia, and the genomes of uncultivable bacteria.
Collapse
Affiliation(s)
- Margaret J Duncan
- Department of Molecular Genetics, The Forsyth Institute, 140 Fenway, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Guan S, Nagata H, Kuboniwa M, Ikawa Y, Maeda K, Shizukuishi S. Characterization of binding and utilization of hemoglobin by Prevotella nigrescens. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:157-62. [PMID: 12030967 DOI: 10.1034/j.1399-302x.2002.170304.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability of Prevotella nigrescens to utilize and bind to hemoglobin was investigated. Growth studies showed that P. nigrescens was able to utilize hemoglobin efficiently as an iron source. Binding of P. nigrescens to hemoglobin was demonstrated by dot blot assay. Heat and trypsin treatments of the bacteria led to a decrease in activity. Globin gave nearly complete inhibition of activity. Additionally, lactoferrin partially inhibited activity. In contrast, transferrin, cytochrome C and catalase exerted little or no inhibitory effect. Although the sugars tested did not affect activity, several of the amino acids tested, including arginine, cysteine, histidine and lysine, inhibited activity. In a solid phase assay, 41-, 56- and 59-kDa proteins of P. nigrescens reacted with hemoglobin. These results suggest that P. nigrescens utilizes hemoglobin for growth and 41-, 56- and 59-kDa proteins may be involved in hemoglobin binding.
Collapse
Affiliation(s)
- S Guan
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Kamaguch A, Nakayama K, Ohyama T, Watanabe T, Okamoto M, Baba H. Coaggregation of Porphyromonas gingivalis and Prevotella intermedia. Microbiol Immunol 2002; 45:649-56. [PMID: 11694077 DOI: 10.1111/j.1348-0421.2001.tb01298.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Porphyromonas gingivalis cells coaggregated with Prevotella intermedia cells. The coaggregation was inhibited with L-arginine, L-lysine, Nalpha-p-tosyl-L-lysine chloromethyl ketone, trypsin inhibitor, and leupeptin. Heat- and proteinase K-treated P. gingivalis cells showed no coaggregation with P. intermedia cells, whereas heat and proteinase K treatments of P. intermedia cells did not affect the coaggregation. The vesicles from P. gingivalis culture supernatant aggregated with P. intermedia cells, and this aggregation was also inhibited by addition of L-arginine or L-lysine and by heat treatment of the vesicles. The rgpA rgpB, rgpA kgp, rgpA rgpB kgp, and rgpA kgp hagA mutants of P. gingivalis did not coaggregate with P. intermedia. On the other hand, the fimA mutant lacking the FimA fimbriae showed coaggregation with P. intermedia as well as the wild type parent. These results strongly imply that a heat-labile and proteinous factor on the cell surface of P gingivalis, most likely the gingipain-adhesin complex, is involved in coaggregation of P. gingivalis and P. intermedia.
Collapse
Affiliation(s)
- A Kamaguch
- Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan
| | | | | | | | | | | |
Collapse
|