1
|
Kanchanabanca C, Hosaka T, Kojima M. High-intensity green light potentially activates the actinorhodin biosynthetic pathway in Streptomyces coelicolor A3(2). Arch Microbiol 2023; 206:8. [PMID: 38038757 DOI: 10.1007/s00203-023-03730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
The development of practices that enhance the potential of actinomycetes as major antibiotic producers is a challenge in discovering new secondary metabolites. Light, an essential external stimulus for most microorganisms, could be exploited to manipulate their physiological processes. However, the effects of monochromatic green light on the production of secondary metabolites in actinomycetes have not yet been reported. In this paper, we report a novel and simple method that uses high-intensity monochromatic green light to potentially induce the production of cryptic secondary metabolites in the model actinomycete Streptomyces coelicolor A3(2). Using actinorhodin (ACT), a blue-pigmented antibiotic, and undecylprodigiosin (RED), a red-pigmented antibiotic, as indicators, we found that irradiation with high-intensity monochromatic green light-emitting diodes promoted sporulation, significantly decreased RED production, and increased ACT production. Semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses revealed, for the first time, that stimulation with green light accelerated the expression of ActII-ORF4, a pathway-specific regulator of ACT biosynthesis in S. coelicolor A3(2). This approach of stimulating secondary metabolite biosynthesis pathways in actinomycetes by irradiation with high-intensity monochromatic green light is expected to facilitate the discovery of cryptic antibiotics that are not typically produced under conventional dark culture conditions. However, the effective intensity and duration of irradiation with green light that are required to activate these metabolite pathways may vary markedly among actinomycetes.
Collapse
Affiliation(s)
- Chompoonik Kanchanabanca
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Takeshi Hosaka
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Masanobu Kojima
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.
| |
Collapse
|
2
|
Boukaew S, Yossan S, Cheirsilp B, Prasertsan P. Impact of environmental factors on
Streptomyces
spp. metabolites against
Botrytis cinerea. J Basic Microbiol 2022; 62:611-622. [DOI: 10.1002/jobm.202100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/27/2021] [Accepted: 12/31/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Sawai Boukaew
- College of Innovation and Management Songkhla Rajabhat University Songkhla Thailand
| | - Siriporn Yossan
- Division of Environmental Science, Faculty of Liberal Arts and Science Sisaket Rajabhat University Sisaket Thailand
| | - Benjamas Cheirsilp
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro‐Industry Prince of Songkla University Hatyai Thailand
| | - Poonsuk Prasertsan
- Research and Development Office Prince of Songkla University Hatyai Thailand
| |
Collapse
|
3
|
Fuwa H, Hemmi H, Kaweewan I, Kozaki I, Honda H, Kodani S. Heterologous production of new lasso peptide koreensin based on genome mining. J Antibiot (Tokyo) 2020; 74:42-50. [PMID: 32855516 DOI: 10.1038/s41429-020-00363-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022]
Abstract
Lasso peptides are a class of ribosomally biosynthesized and posttranslationally modified peptides with a knot structure as a common motif. Based on a genome search, a new biosynthetic gene cluster of lasso peptide was found in the genome of the proteobacterium Sphingomonas koreensis. Interestingly, the amino acid sequence of the precursor peptide gene includes two cell adhesion motif sequences (KGD and DGR). Heterologous production of the new lasso peptide was performed using the cryptic biosynthetic gene cluster of S. koreensis. As a result, a new lasso peptide named koreensin was produced by the gene expression system in the host strain Sphingomonas subterranea. The structure of koreensin was determined by NMR and ESI-MS analysis. The three-dimensional structure of koreensin was obtained based on an NOE experiment and the coupling constants. A variant peptide (koreensin-RGD), which had RGD instead of KGD, was produced by heterologous production with site-directed mutagenesis experiment. Koreensin and koreensin-RGD did not show cell adhesion inhibitory activity, although the molecules possessed cell adhesion motifs. The possible presence of a salt bridge between the motifs in koreensin was indicated, and it may prevent the cell adhesion motif from functioning.
Collapse
Affiliation(s)
- Hiroki Fuwa
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hikaru Hemmi
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Issara Kaweewan
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Ikko Kozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan. .,Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan. .,Academic Institute, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
4
|
Takuma M, Kuroha M, Nagano Y, Kaweewan I, Hemmi H, Oyoshi T, Kodani S. Heterologous production of coryneazolicin in Escherichia coli. J Antibiot (Tokyo) 2019; 72:800-806. [PMID: 31366953 DOI: 10.1038/s41429-019-0212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 11/09/2022]
Abstract
Coryneazolicin is a plantazolicin family peptide, belonging to linear azole-containing peptides (LAPs). Although coryneazolicin was previously synthesized by in vitro experiments, its biological activity has not been evaluated. In this report, the heterologous production of coryneazolicin was accomplished to obtain enough coryneazolicin for biological activity tests. The structure of coryneazolicin was confirmed by ESI-MS and NMR analyses. The biological activity tests indicated that coryneazolicin possessed potent antibacterial activity and cytotoxicity. Although antibacterial activity of plantazolicin was previously reported, cytotoxicity was newly found in coryneazolicin among plantazolicin type peptides. In addition, we revealed that coryneazolicin induced apoptosis on HCT116 and HOS cancer cell lines.
Collapse
Affiliation(s)
- Momoko Takuma
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mai Kuroha
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuki Nagano
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Issara Kaweewan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Hikaru Hemmi
- Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Takanori Oyoshi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Kodani S, Hemmi H, Miyake Y, Kaweewan I, Nakagawa H. Heterologous production of a new lasso peptide brevunsin in Sphingomonas subterranea. ACTA ACUST UNITED AC 2018; 45:983-992. [DOI: 10.1007/s10295-018-2077-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 11/29/2022]
Abstract
Abstract
A shuttle vector pHSG396Sp was constructed to perform gene expression using Sphingomonas subterranea as a host. A new lasso peptide biosynthetic gene cluster, derived from Brevundimonas diminuta, was amplified by PCR and integrated to afford a expression vector pHSG396Sp-12697L. The new lasso peptide brevunsin was successfully produced by S. subterranea, harboring the expression vector, with a high production yield (10.2 mg from 1 L culture). The chemical structure of brevunsin was established by NMR and MS/MS experiments. Based on the information obtained from the NOE experiment, the three-dimensional structure of brevunsin was determined, which indicated that brevunsin possessed a typical lasso structure. This expression vector system provides a new heterologous production method for unexplored lasso peptides that are encoded by bacterial genomes.
Collapse
Affiliation(s)
- Shinya Kodani
- College of Agriculture Academic Institute, Shizuoka University 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
- 0000 0001 0656 4913 grid.263536.7 Graduate School of Integrated Science and Technology Shizuoka University 422-8529 Shizuoka Japan
- 0000 0001 0656 4913 grid.263536.7 Graduate School of Science and Technology Shizuoka University 422-8529 Shizuoka Japan
| | - Hikaru Hemmi
- 0000 0001 2222 0432 grid.416835.d Food Research Institute, National Agriculture and Food Research Organization (NARO) 305-8642 Ibaraki Japan
| | - Yuto Miyake
- 0000 0001 0656 4913 grid.263536.7 Graduate School of Integrated Science and Technology Shizuoka University 422-8529 Shizuoka Japan
| | - Issara Kaweewan
- 0000 0001 0656 4913 grid.263536.7 Graduate School of Science and Technology Shizuoka University 422-8529 Shizuoka Japan
| | - Hiroyuki Nakagawa
- 0000 0001 2222 0432 grid.416835.d Food Research Institute, National Agriculture and Food Research Organization (NARO) 305-8642 Ibaraki Japan
- 0000 0001 2222 0432 grid.416835.d Advanced Analysis Center National Agriculture and Food Research Organization (NARO) 305-8642 Ibaraki Japan
| |
Collapse
|
6
|
Alpha-ketoglutarate protects Streptomyces coelicolor from visible light-induced phototoxicity. Biochem Biophys Rep 2017; 9:22-28. [PMID: 29114580 PMCID: PMC5632709 DOI: 10.1016/j.bbrep.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 01/12/2023] Open
Abstract
It has been known that some Streptomyces species, including the model strain Streptomyces coelicolor, are vulnerable to visible light. Much evidence demonstrated that the phototoxicity induced by visible light is a consequence of the formation of intracellular reactive oxygen species (ROS), which are potentially harmful to cells. In this study, we found that α-ketoglutarate (α-KG) has a protective role against the phototoxicity in S. coelicolor. It could be because that α-KG can detoxify the ROS with the concomitant formation of succinate, which mediates the cells getting into anaerobiosis to produce more NADH and maintain intracellular redox homeostasis, a situation that was demonstrated by overexpressing gdhA in S. coelicolor. This finding, therefore, connects the central metabolites with the bacterial resistance against phototoxicity effect induced by visible light. Streptomyces coelicolor is sensitive to visible light induced phototoxicity. α-ketoglutarate (α-KG) has a protective role against phototoxicity in S. coelicolor. α-KG maintains intracellular NAD/NADH redox homeostasis to resist phototoxicity.
Collapse
|
7
|
Isolation and structure determination of a new lasso peptide subterisin from Sphingomonas subterranea. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Aver'yanov AA, Lapikova VP, Pasechnik TD, Abramova OS, Gaivoronskaya LM, Kuznetsov VV, Baker CJ. Pre-illumination of rice blast conidia induces tolerance to subsequent oxidative stress. Fungal Biol 2014; 118:743-53. [PMID: 25110136 DOI: 10.1016/j.funbio.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/03/2014] [Accepted: 06/10/2014] [Indexed: 12/28/2022]
Abstract
Many environmental factors, alone or combined, affect organisms by changing a pro-/antioxidant balance. Here we tested rice blast fungus (Magnaporthe oryzae) for possible cross-adaptations caused by relatively intense light and protecting from artificially formed reactive oxygen species (ROS) and ROS-dependent fungitoxic response of the host plant. Spore germination was found to be suppressed under 4-h and, to larger extent, 5-h illumination. The effect was diminished by antioxidants and, therefore, suggests involvement of ROS. One-hour of light did not affect spore germination, but stimulated their chemically assayed superoxide production. The illuminated spores were more tolerant (than non-illuminated ones) to artificially generated H(2)O(2), O(2)(-), or OH or to toxic diffusate of rice leaf. They also caused more severe disease symptoms if applied to leaves of the susceptible rice cultivar at low concentration. Spore diffusates decomposed hydrogen peroxide. They detoxified exogenous H(2)O(2) and superoxide radical as well as leaf diffusates. Spore illumination increased some of these protective effects. It is suggested that short-term light led to mild oxidative stress, which induced spore antioxidant capacity, enhancing spore tolerance to subsequent stronger oxidative stress and its aggressiveness in planta. Such tolerance depends partly on the antidotal action of spore extracellular compounds, which may also be light-stimulated. Therefore, a certain ROS-related environmental factor may adapt a fungus to other factors and so modulate its pathogenic properties.
Collapse
Affiliation(s)
- Andrey A Aver'yanov
- Research Institute of Phytopathology, B. Vyazemy, Moscow Region 143050, Russia.
| | - Vera P Lapikova
- Research Institute of Phytopathology, B. Vyazemy, Moscow Region 143050, Russia
| | - Tatiana D Pasechnik
- Research Institute of Phytopathology, B. Vyazemy, Moscow Region 143050, Russia
| | - Olga S Abramova
- Russian People's Friendship University, 8 M. Maklay Str., Moscow 117813, Russia
| | | | | | - C Jacyn Baker
- Agricultural Research Service USDA, Beltsville, MD 20705, USA
| |
Collapse
|
9
|
Time-lapse microscopy of Streptomyces coelicolor growth and sporulation. Appl Environ Microbiol 2008; 74:6774-81. [PMID: 18791015 DOI: 10.1128/aem.01233-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria from the genus Streptomyces are among the most complex of all prokaryotes; not only do they grow as a complex mycelium, they also differentiate to form aerial hyphae before developing further to form spore chains. This developmental heterogeneity of streptomycete microcolonies makes studying the dynamic processes that contribute to growth and development a challenging procedure. As a result, in order to study the mechanisms that underpin streptomycete growth, we have developed a system for studying hyphal extension, protein trafficking, and sporulation by time-lapse microscopy. Through the use of time-lapse microscopy we have demonstrated that Streptomyces coelicolor germ tubes undergo a temporary arrest in their growth when in close proximity to sibling extension sites. Following germination, in this system, hyphae extended at a rate of approximately 20 microm h(-1), which was not significantly different from the rate at which the apical ring of the cytokinetic protein FtsZ progressed along extending hyphae through a spiraling movement. Although we were able to generate movies for streptomycete sporulation, we were unable to do so for either the erection of aerial hyphae or the early stages of sporulation. Despite this, it was possible to demonstrate an arrest of aerial hyphal development that we suggest is through the depolymerization of FtsZ-enhanced green fluorescent protein (GFP). Consequently, the imaging system reported here provides a system that allows the dynamic movement of GFP-tagged proteins involved in growth and development of S. coelicolor to be tracked and their role in cytokinesis to be characterized during the streptomycete life cycle.
Collapse
|