1
|
Kim EYS, Maltempi de Souza E, Müller-Santos M. Optimisation of DNA electroporation protocols for different plant-associated bacteria. J Microbiol Methods 2024; 220:106912. [PMID: 38452904 DOI: 10.1016/j.mimet.2024.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Electroporation is a vital process that facilitates the use of modern recombineering and other high-throughput techniques in a wide array of microorganisms, including non-model bacteria like plant growth-promoting bacteria (PGPB). These microorganisms play a significant role in plant health by colonizing plants and promoting growth through nutrient exchange and hormonal regulation. In this study, we introduce a sequential Design of Experiments (DOE) approach to obtain highly competent cells swiftly and reliably for electroporation. Our method focuses on optimizing the three stages of the electroporation procedure-preparing competent cells, applying the electric pulse field, and recovering transformed cells-separately. We utilized a split-plot fractional design with five factors and a covariate to optimize the first step, response surface methodology (RSM) for the second step, and Plackett-Burman design for two categorical factors and one continuous factor for the final step. Following the experimental sequence with three bacterial models, we achieved efficiencies 10 to 100 times higher, reaching orders of 105 to 106 CFU/μg of circular plasmid DNA. These results highlight the significant potential for enhancing electroporation protocols for non-model bacteria.
Collapse
Affiliation(s)
- Edson Yu Sin Kim
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Emanuel Maltempi de Souza
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
2
|
Burén S, Jiménez-Vicente E, Echavarri-Erasun C, Rubio LM. Biosynthesis of Nitrogenase Cofactors. Chem Rev 2020; 120:4921-4968. [PMID: 31975585 PMCID: PMC7318056 DOI: 10.1021/acs.chemrev.9b00489] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/30/2022]
Abstract
Nitrogenase harbors three distinct metal prosthetic groups that are required for its activity. The simplest one is a [4Fe-4S] cluster located at the Fe protein nitrogenase component. The MoFe protein component carries an [8Fe-7S] group called P-cluster and a [7Fe-9S-C-Mo-R-homocitrate] group called FeMo-co. Formation of nitrogenase metalloclusters requires the participation of the structural nitrogenase components and many accessory proteins, and occurs both in situ, for the P-cluster, and in external assembly sites for FeMo-co. The biosynthesis of FeMo-co is performed stepwise and involves molecular scaffolds, metallochaperones, radical chemistry, and novel and unique biosynthetic intermediates. This review provides a critical overview of discoveries on nitrogenase cofactor structure, function, and activity over the last four decades.
Collapse
Affiliation(s)
- Stefan Burén
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Emilio Jiménez-Vicente
- Department
of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, United States
| | - Carlos Echavarri-Erasun
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luis M. Rubio
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
3
|
Evolution and Functional Analysis of orf1 Within nif Gene Cluster from Paenibacillus graminis RSA19. Int J Mol Sci 2019; 20:ijms20051145. [PMID: 30845717 PMCID: PMC6429469 DOI: 10.3390/ijms20051145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022] Open
Abstract
Paenibacillus is a genus of Gram-positive, facultative anaerobic and endospore-forming bacteria. Genomic sequence analysis has revealed that a compact nif (nitrogen fixation) gene cluster comprising 9–10 genes nifBHDKENX(orf1)hesAnifV is conserved in diazotrophic Paenibacillus species. The evolution and function of the orf1 gene within the nif gene cluster of Paenibacillus species is unknown. In this study, a careful comparison analysis of the compositions of the nif gene clusters from various diazotrophs revealed that orf1 located downstream of nifENX was identified in anaerobic Clostridium ultunense, the facultative anaerobic Paenibacillus species and aerobic diazotrophs (e.g., Azotobacter vinelandii and Azospirillum brasilense). The predicted amino acid sequences encoded by the orf1 gene, part of the nif gene cluster nifBHDKENXorf1hesAnifV in Paenibacillus graminis RSA19, showed 60–90% identity with those of the orf1 genes located downstream of nifENX from different diazotrophic Paenibacillus species, but shared no significant identity with those of the orf1 genes from different taxa of diazotrophic organisms. Transcriptional analysis showed that the orf1 gene was expressed under nitrogen fixation conditions from the promoter located upstream from nifB. Mutational analysis suggested that the orf1 gene functions in nitrogen fixation in the presence of a high concentration of O2.
Collapse
|
4
|
Miura Y, Yoshimitsu K, Takatani N, Watanabe Y, Nakajima H. Effect of nitric oxide on VnfA, a transcriptional activator of VFe-nitrogenase in Azotobacter vinelandii. J Biochem 2014; 157:365-75. [PMID: 25500211 DOI: 10.1093/jb/mvu083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/09/2014] [Indexed: 11/13/2022] Open
Abstract
The transcriptional activator, VnfA, is necessary for the expression of the structural genes encoding vanadium-dependent nitrogenase in Azotobacter vinelandii. We have previously reported that VnfA harbours a Fe-S cluster as a prosthetic group, presumably a 3Fe-4S type, which is vital for the transcriptionally active VnfA. A plausible effector molecule is a reactive oxygen species (ROS), which disassembles the Fe-S cluster switching the active VnfA to become fully inactive. This finding prompted us to investigate the effect of nitric oxide (NO), another physiologically important radical species on the VnfA activity. Unlike ROS, the VnfA activity was moderately inhibited and converged to 70% of the maximum by NO irrespective of its concentration. The Fe-S cluster of VnfA was found to react with NO to form a dinitrosyl-iron complex, either in the dimeric or monomeric form, dependent on the relative stoichiometry of NO to the Fe-S cluster. The VnfA species harbouring the dinitrosyl-iron complexes in each form exhibited 50% ATPase activity compared to the active VnfA. The findings of this study would open an argument about a biological effect of NO on nitrogenase in light of its transcriptional regulatory system.
Collapse
Affiliation(s)
- Yukio Miura
- Department of Chemistry, Graduate School of Science; Graduate School of Bioagricultural Science; and Research Center of Materials Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Kyohei Yoshimitsu
- Department of Chemistry, Graduate School of Science; Graduate School of Bioagricultural Science; and Research Center of Materials Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Nobuyuki Takatani
- Department of Chemistry, Graduate School of Science; Graduate School of Bioagricultural Science; and Research Center of Materials Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Yoshihito Watanabe
- Department of Chemistry, Graduate School of Science; Graduate School of Bioagricultural Science; and Research Center of Materials Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Hiroshi Nakajima
- Department of Chemistry, Graduate School of Science; Graduate School of Bioagricultural Science; and Research Center of Materials Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan Department of Chemistry, Graduate School of Science; Graduate School of Bioagricultural Science; and Research Center of Materials Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan
| |
Collapse
|
5
|
Yoshimitsu K, Takatani N, Miura Y, Watanabe Y, Nakajima H. The role of the GAF and central domains of the transcriptional activator VnfA in Azotobacter vinelandii. FEBS J 2011; 278:3287-97. [PMID: 21752196 DOI: 10.1111/j.1742-4658.2011.08245.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
VnfA is a transcriptional activator that is required for the expression of the structural genes encoding nitrogenase-2 in Azotobacter vinelandii. VnfA consists of three domains: an N-terminal regulatory domain termed GAF, including a Cys-rich motif; a central domain from the AAA+ family; and a C-terminal domain for DNA binding. Previously, we reported that transcriptionally active VnfA harboring an Fe-S cluster (presumably of the 3Fe-4S type) as a prosthetic group and the Cys-rich motif were possibly associated with coordination of the Fe-S cluster. In the present study, we have investigated the roles of the GAF and central domains in the regulatory function of VnfA using truncated variants: ΔN15(VnfA) and ΔGAF(VnfA) that lack the N-terminal 15 residues and whole GAF domain, respectively, and GAF(VnfA) consisting of only the GAF domain. ΔN15(VnfA) and ΔGAF(VnfA) lost the ability to bind the Fe-S cluster, whereas GAF(VnfA) was still able to bind to the cluster, consistent with the hypothesis that the Cys-rich motif is essential for Fe-S cluster binding. The GAF domain showed an inhibitory effect on the transcriptional activity of VnfA, which was reversed in the presence of the Fe-S cluster, and reactivated upon disassembly of the cluster. The inhibitory activity of the GAF domain acts on the NTPase activity of the central domain, whereas the binding ability of VnfA to DNA was not significantly affected, when VnfA retains its tetrameric conformation. The results imply that a major pathway, by which VnfA function is regulated, operates via the control of NTPase activity by the GAF domain.
Collapse
Affiliation(s)
- Kyohei Yoshimitsu
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
6
|
Souza ALF, Invitti AL, Rego FGM, Monteiro RA, Klassen G, Souza EM, Chubatsu LS, Pedrosa FO, Rigo LU. The involvement of the nif-associated ferredoxin-like genes fdxA and fdxN of Herbaspirillum seropedicae in nitrogen fixation. J Microbiol 2010; 48:77-83. [PMID: 20221733 DOI: 10.1007/s12275-009-0077-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 07/26/2009] [Indexed: 10/19/2022]
Abstract
The pathway of electron transport to nitrogenase in the endophytic beta-Proteobacterium Herbaspirillum seropedicae has not been characterized. We have generated mutants in two nif-associated genes encoding putative ferredoxins, fdxA and fdxN. The fdxA gene is part of the operon nifHDKENXorf1orf2fdxAnifQmodABC and is transcribed from the nifH promoter, as revealed by lacZ gene fusion. The fdxN gene is probably cotranscribed with the nifB gene. Mutational analysis suggests that the FdxA protein is essential for maximum nitrogenase activity, since the nitrogenase activity of the fdxA mutant strain was reduced to about 30% of that of the wild-type strain. In addition, the fdxA mutation had no effect on the nitrogenase switch-off in response to ammonium. Nitrogenase activity of a mutant strain lacking the fdxN gene was completely abolished. This phenotype was reverted by complementation with fdxN expressed under lacZ promoter control. The results suggest that the products of both the fdxA and fdxN genes are probably involved in electron transfer during nitrogen fixation.
Collapse
Affiliation(s)
- André L F Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nakajima H, Takatani N, Yoshimitsu K, Itoh M, Aono S, Takahashi Y, Watanabe Y. The role of the Fe-S cluster in the sensory domain of nitrogenase transcriptional activator VnfA from Azotobacter vinelandii. FEBS J 2010; 277:817-32. [DOI: 10.1111/j.1742-4658.2009.07530.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Souza AL, Chubatsu LS, Souza EM, Pedrosa FO, Monteiro RA, Rego FG, Rigo LU. Expression, purification and DNA-binding activities of two putative ModE proteins of Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000400022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Schwab S, Ramos HJ, Souza EM, Pedrosa FO, Yates MG, Chubatsu LS, Rigo LU. Identification of NH4+-regulated genes of Herbaspirillum seropedicae by random insertional mutagenesis. Arch Microbiol 2007; 187:379-86. [PMID: 17323064 DOI: 10.1007/s00203-006-0202-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 11/09/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Random mutagenesis using transposons with promoterless reporter genes has been widely used to examine differential gene expression patterns in bacteria. Using this approach, we have identified 26 genes of the endophytic nitrogen-fixing bacterium Herbaspirillum seropedicae regulated in response to ammonium content in the growth medium. These include nine genes involved in the transport of nitrogen compounds, such as the high-affinity ammonium transporter AmtB, and uptake systems for alternative nitrogen sources; nine genes coding for proteins responsible for restoring intracellular ammonium levels through enzymatic reactions, such as nitrogenase, amidase, and arginase; and a third group includes metabolic switch genes, coding for sensor kinases or transcription regulation factors, whose role in metabolism was previously unknown. Also, four genes identified were of unknown function. This paper describes their involvement in response to ammonium limitation. The results provide a preliminary profile of the metabolic response of Herbaspirillum seropedicae to ammonium stress.
Collapse
Affiliation(s)
- Stefan Schwab
- Núcleo de Fixação de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Caixa Postal 19046, CEP 81.531-990 Curitiba-PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Hernandez JA, Igarashi RY, Soboh B, Curatti L, Dean DR, Ludden PW, Rubio LM. NifX and NifEN exchange NifB cofactor and the VK-cluster, a newly isolated intermediate of the iron-molybdenum cofactor biosynthetic pathway. Mol Microbiol 2006; 63:177-92. [PMID: 17163967 DOI: 10.1111/j.1365-2958.2006.05514.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The iron-molybdenum cofactor of nitrogenase (FeMo-co) is synthesized in a multistep process catalysed by several Nif proteins and is finally inserted into a pre-synthesized apo-dinitrogenase to generate mature dinitrogenase protein. The NifEN complex serves as scaffold for some steps of this synthesis, while NifX belongs to a family of small proteins that bind either FeMo-co precursors or FeMo-co during cofactor synthesis. In this work, the binding of FeMo-co precursors and their transfer between purified Azotobacter vinelandii NifX and NifEN proteins was studied to shed light on the role of NifX on FeMo-co synthesis. Purified NifX binds NifB cofactor (NifB-co), a precursor to FeMo-co, with high affinity and is able to transfer it to the NifEN complex. In addition, NifEN and NifX exchange another [Fe-S] cluster that serves as a FeMo-co precursor, and we have designated it as the VK-cluster. In contrast to NifB-co, the VK-cluster is electronic paramagnetic resonance (EPR)-active in the reduced and the oxidized states. The NifX/VK-cluster complex is unable to support in vitro FeMo-co synthesis in the absence of NifEN because further processing of the VK-cluster into FeMo-co requires the simultaneous activities of NifEN and NifH. Our in vitro studies suggest that the role of NifX in vivo is to serve as transient reservoir of FeMo-co precursors and thus help control their flux during FeMo-co synthesis.
Collapse
Affiliation(s)
- Jose A Hernandez
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Rego FGM, Pedrosa FO, Chubatsu LS, Yates MG, Wassem R, Steffens MBR, Rigo LU, Souza EM. The expression ofnifBgene fromHerbaspirillum seropedicaeis dependent upon the NifA and RpoN proteins. Can J Microbiol 2006; 52:1199-207. [PMID: 17473889 DOI: 10.1139/w06-085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The putative nifB promoter region of Herbaspirillum seropedicae contained two sequences homologous to NifA-binding site and a –24/–12 type promoter. A nifB::lacZ fusion was assayed in the backgrounds of both Escherichia coli and H. seropedicae. In E. coli, the expression of nifB::lacZ occurred only in the presence of functional rpoN and Klebsiella pneumoniae nifA genes. In addition, the integration host factor (IHF) stimulated the expression of the nifB::lacZ fusion in this background. In H. seropedicae, nifB expression occurred only in the absence of ammonium and under low levels of oxygen, and it was shown to be strictly dependent on NifA. DNA band shift experiments showed that purified K. pneumoniae RpoN and E. coli IHF proteins were capable of binding to the nifB promoter region, and in vivo dimethylsulfate footprinting showed that NifA binds to both NifA-binding sites. These results strongly suggest that the expression of the nifB promoter of H. seropedicae is dependent on the NifA and RpoN proteins and that the IHF protein stimulates NifA activation of nifB promoter.Key words: Herbaspirillum seropedicae, nif, nitrogen fixation, NifA, RpoN.
Collapse
Affiliation(s)
- Fabiane G M Rego
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Baldani JI, Baldani VLD. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. AN ACAD BRAS CIENC 2005; 77:549-79. [PMID: 16127558 DOI: 10.1590/s0001-37652005000300014] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of whichwas coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica). The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus) and GENOPAR (Herbaspirillum seropedicae) reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.
Collapse
Affiliation(s)
- José I Baldani
- Embrapa Agrobiologia, Seropédica, Rio de Janeiro, 23851-970, Brazil.
| | | |
Collapse
|
13
|
Klassen G, de Oliveira Pedrosa F, de Souza EM, Yates MG, Rigo LU. Nitrogenase activity of Herbaspirillum seropedicae grown under low iron levels requires the products of nifXorf1 genes. FEMS Microbiol Lett 2003; 224:255-9. [PMID: 12892890 DOI: 10.1016/s0378-1097(03)00453-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Herbaspirillum seropedicae strains mutated in the nifX or orf1 genes showed 90% or 50% reduction in nitrogenase activity under low levels of iron or molybdenum respectively. Mutations in nifX or orf1 genes did not affect nif gene expression since a nifH::lacZ fusion was fully active in both mutants. nifX and the contiguous gene orf1 are essential for maximum nitrogen fixation under iron limitation and are probably involved in synthesis of nitrogenase iron or iron-molybdenum clusters.
Collapse
Affiliation(s)
- Giseli Klassen
- Departamento de Patologia Básica, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba PR, Brazil.
| | | | | | | | | |
Collapse
|
14
|
Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 2003; 45:39-47. [DOI: 10.1016/s0168-6496(03)00108-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Potrich DP, Bressel TA, Schrank IS, Passaglia LM. Sequencing and promoter analysis of the nifENXorf3orf5fdxAnifQ operon from Azospirillum brasilense Sp7. Braz J Med Biol Res 2001; 34:1379-95. [PMID: 11668346 DOI: 10.1590/s0100-879x2001001100003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 40-kb DNA region containing the major cluster of nif genes has been isolated from the Azospirillum brasilense Sp7 genome. In this region three nif operons have been identified: nifHDKorf1Y, nifENXorf3orf5fdxAnifQ and orf2nifUSVorf4. The operons containing nifENX and nifUSV genes are separated from the structural nifHDKorf1Y operon by about 5 kb and 10 kb, respectively. The present study shows the sequence analysis of the 6045-bp DNA region containing the nifENX genes. The deduced amino acid sequences from the open reading frames were compared to the nif gene products of other diazotrophic bacteria and indicate the presence of seven ORFs, all reading in the same direction as that of the nifHDKorf1Y operon. Consensus sigma54 and NifA-binding sites are present only in the promoter region upstream of the nifE gene. This promoter is activated by NifA protein and is approximately two-times less active than the nifH promoter, as indicated by the beta-galactosidase assays. This result suggests the differential expression of the nif genes and their respective products in Azospirillum.
Collapse
Affiliation(s)
- D P Potrich
- Departamento de Genética, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Benito Gonçalves, 9500 Prédio 43421, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
16
|
Persuhn DC, Souza EM, Steffens MB, Pedrosa FO, Yates MG, Rigo LU. The transcriptional activator NtrC controls the expression and activity of glutamine synthetase in Herbaspirillum seropedicae. FEMS Microbiol Lett 2000; 192:217-21. [PMID: 11064198 DOI: 10.1111/j.1574-6968.2000.tb09385.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The role of the Ntr system in Herbaspirillum seropedicae was determined via ntrB and ntrC mutants. Three phenotypes were identified in these mutants: Nif(-), deficiency in growth using nitrate, and low glutamine synthetase (GS) activity. All phenotypes were restored by the plasmid pKRT1 containing the intact glnA, ntrB and ntrC genes of H. seropedicae. The promoter region of glnA was subcloned into a beta-galactosidase fusion vector and the results suggested that NtrC positively regulates the glnA promoter in response to low nitrogen. The H. seropedicae ntrC and ntrB mutant strains showed a deficiency of adenylylation/deadenylylation of GS, indicating that NtrC and NtrB are involved in both transcription and activity control of GS in this organism.
Collapse
Affiliation(s)
- D C Persuhn
- Departamento de Bioquímica, Universidade Federal do Paraná, C. Postal 19046, 81531-990, PR, Curitiba, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Drysdale R, Bayraktaroglu L. Current awareness. Yeast 2000; 17:159-66. [PMID: 10900461 PMCID: PMC2448328 DOI: 10.1155/2000/907141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on comparative and functional genomics. Each bibliography is divided into 16 sections. 1 Reviews & symposia; 2 General; 3 Large-scale sequencing and mapping; 4 Genome evolution; 5 Comparative genomics; 6 Gene families and regulons; 7 Pharmacogenomics; 8 Large-scale mutagenesis programmes; 9 Functional complementation; 10 Transcriptomics; 11 Proteomics; 12 Protein structural genomics; 13 Metabolomics; 14 Genomic approaches to development; 15 Technological advances; 16 Bioinformatics. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted
Collapse
Affiliation(s)
- R Drysdale
- FlyBase-Cambridge, Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|
18
|
|